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Abstract. Dual-rail encoding, return-to-spacer protocol and hazard-free logic can
be used to resist differential power analysis attacks by making the power consump-
tion independent of processed data. Standard dual-rail logic uses a protocol with
a single spacer, e.g. all-zeroes, which gives rise to power balancing problems.
We address these problems by incorporating two spacers; the spacers alternate
between adjacent clock cycles. This guarantees that all gates switch in each clock
cycle regardless of the transmitted data values. To generate these dual-rail circuits
an automated tool has been developed. It is capable of converting synchronous
netlists into dual-rail circuits and it is interfaced to industry CAD tools. Dual-rail
and single-rail benchmarks based upon the Advanced Encryption Standard (AES)
have been simulated and compared in order to evaluate the method.

1 Introduction

Secure applications such as smart cards require measures to resist Differential Power
Analysis (DPA). Dual-rail encoding provides a method to enhance the security properties
of a system making DPA more difficult. As an example, in the design described in [1] the
processor can execute special secure instructions. These instructions are implemented
as dual-rail circuits, whose switching activity is meant to be independent from data.
Whilst alternatives exist at the software level to balance power, the need at the hardware
level is also mandatory. Special types of CMOS logic elements have been proposed
in [2], but this low-level approach requires changing gate libraries and hence is costly
for a standard cell or FPGA user. As a solution, using balanced data encoding such as
dual-rail or together with self-timed design techniques has been proposed in [3,4].

The clock signal is typically used as a reference in power analysis techniques. System
"desynchronisation" as in [3,5] can help hide the clock signal. To mask the operation of a
block of logic is a much more complex task which could demand very expensive changes
to the entire design flow. A cheaper desynchronisation method to rebuild individual
blocks within the same synchronous infrastructure so, that their power signatures become
independent from the mode of operation and from the data processed. This method is
used in [5], where synchronous pipelines are transformed into asynchronous circuits
using dual-rail coding.

These desynchronisation methods represent a combination of two aspects of security:
reference signal hiding and balancing of data encoding w.r.t. switching activity. In this
paper we separate these aspects, concentrating on data encoding only.

Our idea is to replace blocks in existing architectures dominated by synchronous
single-threaded CPU cores and their slow buses, having no pipelining or concurrency,
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with secure and hazard free dual-rail circuits. Using the standard dual-rail protocol with
a single spacer still has certain balancing problems due to the asymmetry between logic
gates within a dual-rail gate. In this paper we address and solve these problems by using
a new protocol with two spacers alternating in time; leading to all gates switching within
every clock cycle. This is the first contribution of the paper.

The other idea is to stay as close to the standard industry design flow as possible.
Our method is applied via an automated tool to a clocked single-rail netlist obtained
by standard RTL synthesis tools from a behavioural specification. Such circuits have an
architecture depicted in Figure 1(a). The result is also a netlist which can be simulated
and passed to the back-end design tools. Furthermore, all DFT (Design For Testability)
features incorporated at the logic synthesis stage are preserved in our approach.

The resultant dual-rail circuit can be built in either of two architectures: self-timed
dual-rail or clocked dual-rail, Figure 1(b, c) respectively.
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Fig. 1. Design architectures

Self-timed dual-rail circuits do not have a clock and their registers are controlled
by a completion signal formed in the completion detection logic. Being asynchronous,
these circuits should exhibit better throughput, but they suffer from a significant size
overhead due to additional logic from completion detection.

Clocked dual-rail circuits do not have completion detection logic and rely on the
assumption that the hazard-free dual-rail combinational logic switches by the end of
the clock period. In our method this assumption is easy to meet, because the delay
characteristics of the dual-rail circuit are inherited from single-rail prototype.
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While the method and the tool support both dual-rail architectures, in this paper we
concentrate on the latter one. The security aspects of system level, memory elements,
buses, etc. also do not belong to the focus of the paper. We are looking at security of
logic circuits only.

The rest of the paper is organised as follows. Firstly the theory of applying dual-
rail coding to synchronous circuits using a single spacer and two spacers is described,
then the operation of the tool is discussed. The AES benchmark results and potential
improvements follow and finally the conclusions are presented.

2 Method

2.1 Single Spacer Dual-Rail

Dual-rail code uses two rails with only two valid signal combinations {01, 10}, which
encode values 0 and 1 respectively. Dual-rail code is widely used to represent data in
self-timed circuits [6,7], where a specific protocol of switching helps to avoid hazards.
The protocol allows only transitions from all-zeroes {00}, which is a non-code word, to
a code word and back to all-zeroes as shown in Figure 2(a); this means the switching is
monotonic. The all-zeroes state is used to indicate the absence of data, which separates
one code word from another. Such a state is often called a spacer.

An approach for automatic converting single-rail circuits to dual-rail, using the above
signalling protocol, that is easy to incorporate in the standard RTL-based design flow has
been described in [5]. Within this approach, called Null-Convention Logic [8] one can
follow one of two major implementation strategies for logic: one is with full completion
detection through the dual-rail signals (NCL-D) and the other with separate completion
detection (NCL-X). The former one is more conservative with respect to delay depen-
dence while the latter one is less delay-insensitive but more area and speed efficient. For
example, an AND gate is implemented in NCL-D and NCL-X as shown in Figure 2(b,c)
respectively. NCL methods of circuit construction exploit the fact that the negation op-
eration in dual-rail corresponds to swapping the rails. Such dual-rail circuits do not have
negative gates (internal negative gates, for example in XOR elements, are also converted
into positive gates), hence they are race-free under any single transition.

If the design objective is only power balancing (as in our case), one can abandon
the completion detection channels, relying on timing assumptions as in standard syn-
chronous designs; thus saving a considerable amount of area and power. This approach
was followed in [9], considering the circuit in a clocked environment, where such timing
assumptions were deemed quite reasonable to avoid any hazards in the combinational
logic. Hence, in the clocked environment the dual-rail logic for an AND gate is simply
a pair of AND and OR gates as shown in Figure 2(d).

The above implementation techniques certainly help to balance switching activity at
the level of dual-rail nodes. Assuming that the power consumed by one rail in a pair is
the same as in the other rail, the overall power consumption is invariant to the data bits
propagating through the dual-rail circuit. However, the physical realisation of the rails
at the gate level is not symmetric, and experiments with these dual-rail implementations
show that power source current leaks the data values.
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Fig. 2. Single spacer dual-rail

For example, in the structure in Figure 2(d) we compare the gate switching profiles
when computing two different binary sequences of values c for corresponding input
sequences on a and b. The first sequence is a = 0000, b = 1111, c = 0000, and the
second sequence is a = 1111, b = 1111, c = 1111. The switching profile of these
sequences at the level of gates is different: in the first sequence there are eight firings
of OR gate and in the second there eight firings of AND (note that we counted both
spacer→code word and code word→spacer phases).

While there could be ways of balancing power consumption between individual gates
in dual-rail pairs by means of modifications at the transistor level, adjusting loads and
changing transistor sizes, etc., all such measures are costly. The standard logic library
requires finding a more economic solution. We do not consider randomisation techniques
in this paper as they can be applied independently, and possibly in conjunction with our
method.

Synchronous flip-flops are built to be power efficient, so if they switch to the same
value (data input remains the same within several clocks) then nothing changes at the
output. The absence of the output transition saves power, but in the same time it makes
the power consumption data dependent. In order to avoid this, we make flip-flops operate
in the return-to-spacer protocol as in Figure 2(a). The solution in Figure 3(a) uses the
master-slave scheme, writing to the master is controlled by the positive edge of the clock
and writing to the slave is controlled by the negative edge. At the same time the high
value of the clock enforces slave outputs into zero (output spacer as in Figure 2(a)) and
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the low clock value enforces master outputs into one (a similar spacer for the logic with
active zero).

This circuit operates as explained in Figure 3(b). Both master and slave latches have
their respective reset and enable inputs (active zero for the master). The delay between
removing the reset signal and disabling writing for each latch (hold time) is formed by
the couple of buffers in the clock circuit. Buffers between master and slave are needed
to delay m code-set value until s En-. The advantage of this implementation is the use
of a single cross-coupled latch in each stage for a couple of input data signals.
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Fig. 3. Single spacer dual-rail flip-flop

2.2 Dual Spacer Dual-Rail

In order to balance the power signature we propose to use two spacers (i.e. two
spacer states, {00} for all-zeroes spacer and {11} for all-ones spacer), resulting in
a dual spacer protocol as shown in Figure 4. It defines the switching as follows:
spacer→code word→spacer→code word. The polarity of the spacer can be arbitrary
and possibly random as in Figure 4(a). A possible refinement for this protocol is the
alternating spacer protocol shown in Figure 4(b). The advantage of the latter is that all
bits are switched in each cycle of operation, thus opening a possibility for perfect energy
balancing between cycles of operation.

As opposed to single spacer dual-rail, where in each cycle a particular rail is switched
up and down (i.e. the same gate always switches), in the alternating spacer protocol both
rails are switched from all-zeroes spacer to all-ones spacer and back. The intermediate
states in this switching are code words. In the scope of the entire logic circuit, this means
that for every computation cycle we always fire all gates forming the dual-rail pairs.
In [10] we introduce two security characteristics of a circuit w.r.t. DPA attacks: imbalance
and exposure time. By imbalance we mean the variation in power consumption when
processing different data values. Exposure time is the time during which the imbalance
is exhibited. Our experiments show that the worst case imbalance in a dual-rail circuits
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Fig. 4. Dual-spacer dual-rail protocol

under a realistic load is 2.1%. The worst case exposure time depends on the spacer
protocol. It is up to the whole time of circuit operation if the single spacer protocol is
used. By using of the alternating spacer protocol the exposure time is reduced to less
than one clock cycle, which makes the circuit more resistant to DPA.

The new alternating spacer discipline cannot be directly applied to the implemen-
tation techniques shown in Figure 2(b,c). Those, both in the logic rails as well as in
completion detection assume the fact that for each pair of rails, the {11} combination
never occurs. In fact the use of all-ones spacer would upset the speed-independent im-
plementation in Figure 2(b), because the outputs of the second layer elements would
not be acknowledged during code word→all-ones spacer transition. The completion
detection for those gates can of course be ensured by using an additional three-input C-
element, but this extra overhead would make this implementation technique much less
elegant because of the additional acknowledgement signal channel. In the single spacer
structure, due to the principle of orthogonality (one-hot) between min-terms a0 · b0,
a1 · b0 and a0 · b1, only one C-element in the rail c0 fires per cycle.

If some parts of a dual-rail circuit operate using the single spacer and the others the
alternating spacer protocol, then spacer converters should be used. The alternating-to-
single spacer converter shown in Figure 5(a) is transparent to code words and enforces
all-zeroes spacer on the output if the input is all-ones or all-zeroes.

The implementation of a single-to-alternating spacer converter, Figure 5(b), uses a
toggle to decide which spacer to inject all-ones or all-zeroes. The toggle can be con-
structed out of two latches as shown in Figure 5(c). It operates in the following way:
x+ → x1+ → x− → x2+ → x+ → x1− → x− → x2−, i.e. x1 changes on positive
edge of x, and x2 switches on its negative edge. The frequency of x1 and x2 is half the
frequency of x.

The alternation of spacers in time is enforced by flip-flops. The alternating spacer
flip-flop can be built combining a single spacer dual-rail flip-flop with a single spacer
to alternating spacer converter. The power consumption of the single spacer dual-rail
flip-flop is data independent due to the symmetry of its rails. The rails of the spacer
converter are also symmetric, which makes the power consumption of the resultant
alternating spacer flip-flop data independent. The optimised version of such a flip-flop
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(toggle is moved outside) is depicted in Figure 5(d). This implementation uses clk2
signal to decide which spacer to inject on the positive phase of clk. The signal clk2
changes on the negative edge of the clock and is formed by a toggle (one for the whole
circuit) whose input is clk. The timing assumption for clk2 is that it changes after the
output of single spacer flip-flop. Both, the slave latch of the single spacer flip-flop and
the toggle which generates clk2 signal, are triggered by the negative edge of clk. The
depth of logic in the toggle is greater than in the slave latch of the flip-flop. At the same
time clk2 goes to all flip-flops of the circuit and requires buffering, which also delays it.
This justifies our timing assumption.

It should be mentioned that the inputs of the dual-rail circuit must also support the
alternating spacer protocol. Moreover, the same spacer should appear each cycle on
the inputs of a dual-rail gate. That means the spacer protocol on the circuit inputs and
flip-flop outputs must be synchronised in the reset phase.
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2.3 Negative Gate Optimisation

In CMOS a positive gate is usually constructed out of a negative gate and an inverter.
That is why the total area overhead in dual-rail logic is more than twofold comparing to
single-rail. Use of positive gates is not only a disadvantage for the size of dual-rail circuit,
but also for the length of the critical path. Our method for negative gate optimisation [9]
is described in this section.

If the all-zeroes spacer of the dual-rail code is applied to a layer of negative gates
(NAND, NOR, AND-NOR, OR-NAND), then the output will be all-ones spacer. The
opposite is also true: all-ones spacer is converted into all-zeroes spacer. The polarity of
signals within code words remains the same if the output rails are swapped.

The spacer alternation between odd and even layers of combinational logic can be
used for negative gate optimisation of dual-rail circuits. The optimised circuit uses either
all-ones spacer or all-zeroes spacer in different stages (the spacer changes between the
layers of logic) as captured in Figure 6.
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all−zeroes spacer

code words "0" "1"

all−ones spacer

odd layers of logic

even layers of logic

00

1001 1001

11

Fig. 6. Spacer polarity after logic optimisation

In order to optimise a dual-rail circuit for negative gates the following transformations
should be applied. First, all gates of positive dual-rail logic are replaced by negative gates.
Then, the output rails of those gates are swapped. Finally, spacer polarity converters
are placed at the wires that connect the layers of logic of the same parity (odd-to-odd or
even-to-even).

Consider negative gate optimisation using a simple example shown in Figure 7(a).
Dotted lines in the single-rail circuit indicate signals which will be mapped into the
dual-rail with the all-ones spacer. The bar on the wire is the location of a spacer polarity
converter. The circuit in Figure 7(b) is obtained by replacing gates by their dual-rail
versions. These gates are built from traditional positive dual-rail gates by adding signal
inversion to their outputs and swapping the output rails (the latter is needed to preserve the
polarity of signals in the output code words). The operation of negation is implemented
by a rail swapping and does not require any logic gates. The spacer polarity converter is
implemented as a pair of inverters having their outputs crossed in order to preserve the
polarity of signals in the output code words. It is possible to combine such an optimisation
with the alternation of spacers in time.
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Fig. 7. Constructing negative gate dual-rail circuit

This section presented the application of dual-rail coding to the building of secure
circuits, whose power consumption is independent of the data they process.An extension
of the dual-rail protocol was presented, namely dual spacer in time (alternating spacer
protocol). This aims at power balancing by switching all gates in each cycle of circuit
operation. The negative gate optimisation was applied to the circuits implementing such
a protocol.

3 Tool Description
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Fig. 8. Verimap design kit

The described conversion procedure of
single-rail into dual-rail circuit has been im-
plemented as a software tool named the “Ver-
imap design kit”. It successfully interfaces to
the Cadence CAD tools. It takes as input a
structural Verilog netlist file, created by Ca-
denceAmbit (or another logic synthesis tool),
and converts it into dual-rail netlist. The re-
sulting netlist can then be processed by Ca-
dence or other EDA tools.

The structure of our Verimap design kit
is displayed in Figure 8. The main parts are
the tool itself and two libraries. The library
of gate prototypes contains the description of
gates used in the input netlist. It facilitates the
structural analysis of the input netlist. The li-
brary of transformation rules defines: com-
plementary gates needed for construction of
the dual-rail logic, the polarity of gate inputs
and outputs and specifies if the correspond-
ing dual-rail gate requires completion signal
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(for asynchronous design only) and if it inverts the spacer. If a predefined dual-rail imple-
mentation of a gate is found in the library the tool uses it, otherwise an implementation
is built automatically using the rules.

The main function of the tool is conversion of single-rail RTL netlist into dual-rail
netlist of either of two architectures: self-timed and clocked, Figure 1(b, c) respectively. It
is done in four stages. First, a single-rail circuit is converted into positive logic dual-rail.
Second, the positive dual-rail gates are replaced by negative dual-rail gates and the spacer
polarity inverters are inserted. Then, the completion signal is generated (asynchronous
design only). Finally, a wrapper module connecting the dual-rail circuit to the single-rail
environment is added (optional).

Apart from generating netlists, Verimap tool reports statistics for the original and re-
sultant circuits: estimated area of combinational logic and flip-flops, number of negative
gates and transistors, number of wires.

The tool also generates a behavioural Verilog file assisting the power analysis of the
original and resultant circuits. Being included into simulation testbench these Verilog
counts the number of switching events in each wire of the circuits.

4 Benchmark Results and Future Improvements

This section summarises the experiments performed to characterise the proposed method
in terms of security, size and power consumption. Two AES designs were used:
Open core AES and AES with computable sbox (for details see Appendix A). For each
design a single-rail AES circuit was synthesised from RTL specification by using Ca-
dence Ambit v4.0 tool and AMS-0.35µ library. Our Verimap tool was applied to the
netlist generated by Ambit and the dual-rail netlist was produced. The dual-rail circuits
were optimised for negative gates and used alternating spacer dual-rail protocol. Both,
single-rail and dual-rail designs were analysed for static delays (SDF delay annotation)
and simulated in Verilog-XL v3.10. By keeping to the RTL design flow the netlists can
be directly used in the back-end design tools of Cadence.

The statistics for the parts of AES, namely ciphers and sboxes, are shown in Table 1,
Table 2 and Table 3.

The purpose of the first experiment was to evaluate the correlation between data and
switching activity of the circuits. Switching activity is the number of switching events in
the circuit within one clock cycle. Table 1 presents the minimum, average and maximum
switching activity for the sboxes and ciphers. These values were obtained by simulating
the circuits with a number of input vectors: 10,000 random input vectors for sboxes and
284 standard AES testbench vectors for ciphers.

The experiment shows a significant difference between the min/average/max switch-
ing activity values for the single-rail sbox benchmarks. The minimum value is zero, and
the maximum values are up to 48% higher than the average values. At the same time,
switching activity for the dual-rail circuits is constant. In the single-rail switching activity
varies significantly depending on data and clearly they exhibit zero switching activity if
the input data does not change. In addition many switching events in single-rail circuits
are caused by hazards and the single-rail sbox benchmarks are no exception. Here the
hazards caused up to 80% of data dependent switching events. The number of switching
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Table 1. Switching activity

benchmark switching activity (hazards)
name min avg max

sbox single-rail 0 (0) 162 (33) 277 (124)
(open dual-rail 1,180 1,180 1,180
core) overhead ∞ 628% 326%

sbox single-rail 0 (0) 525 (345) 936 (746)
(comp.) dual-rail 868 868 868

overhead ∞ 65% -17%

cipher single-rail 0 9,147 13,236
(open dual-rail 41,285 41,285 41,285
core) overhead ∞ 351% 211%

cipher single-rail 0 (0) 3,810 (2,013) 6,140 (3,682)
(comp.) dual-rail 13,055 13,055 13,055

overhead ∞ 242% 112%

events in dual-rail combinational logic is constant for any input data and is equal to the
number of wires. It shows that all gates are switching in each clock cycle, thus making
power consumption data independent (described in detail in Section 2.2).

The single and dual-rail implementations of the AES ciphers were simulated and
compared against combinational logic blocks (sboxes). Switching activity in the open
core dual-rail cipher is 351% higher than in the single-rail cipher and 255% higher for
the AES design with computed sboxes. These values are greater than the results for
the corresponding sboxes. The increased difference can be explained by the nature of
computations in complex circuits. They execute in bursts defined by their algorithms.
Under a burst the switching is similar to our experiments with combinational circuits.
However, between the bursts the situation is significantly different: a single-rail circuit
is inactive and a dual-rail circuit continues to ‘burn power’ by switching between code
words and spacers.

A possible way to address this issue is to implement clock gating. This, however,
should be different from the conventional clock gating technique. It is important to make
it data independent. At this stage we do not see a feasible way of implementing this at
the netlist level. Most likely it will require analysis of behavioural specifications. We
view this idea as a subject of future work.

In order to compare the security features of single spacer and alternating spacer
circuits, the AES design with computable sboxes was also converted into single spacer
dual-rail. Both, single spacer and alternating spacer dual-rail implementations were
simulated with 284 input vectors from the standard AES testbench in the encryption
and decryption modes. The switching activities of “1” and “0” rails were recorded
separately. Table 2 shows the worst case difference in switching activity between “1”
and “0” rails. The imbalance between the number of switching events in the rail 1 and
rail 0 is calculated as disbalance = |rail 1−rail 0|

rail 1+rail 0 · 100%. While the total switching
activity is the same in both implementations, the single spacer implementation exhibits
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Table 2. Switching activity in dual-rail rails

benchmark switching activity
name single spacer alternating spacer

cipher rail 1 8,388 6,505
(encryption) rail 0 4,622 6,505

disbalance 29% 0%

cipher rail 1 8,572 6,505
(decryption) rail 0 4,438 6,505

disbalance 32% 0%

significant differences in the number of switching events on the complementary rails. As
the complementary gates within a dual-rail gate have different power consumptions, the
power signature of the single spacer dual-rail circuit becomes dependent on the processed
data.Alternating spacer dual-rail circuits do not suffer from this leakage because all gates
are switching in every clock cycle.

Table 3. Circuit size

benchmark negative gate count transistor count wire estimated area
name (comb. logic) (comb. logic) count comb. logic flip-flops

sbox single-rail 655 3,180 482 44,593 0
(open dual-rail 1,523 6,672 1,180 101,364 0
core) overhead 133% 110% 145% 127% 0

sbox single-rail 634 2,362 400 32,975 0
(comp.) dual-rail 1,164 4,628 868 68,603 0

overhead 84% 96% 117% 108% 0

cipher single-rail 12,752 68,184 9,980 873,175 142,370
(open dual-rail 26,396 139,828 24,367 1,925,190 466,870
core) overhead 107% 105% 144% 120% 228%

cipher single-rail 10,372 50,344 5,936 580,046 118,678
(comp.) dual-rail 19,510 95,066 13,055 1,237,260 462,021

overhead 88% 89% 120% 113% 289%

The cost of improved security features is the increase in the number of gates, wires
and area, see Table 3.

The benchmarks indicate only 84-88% overhead in gate numbers (a positive gate is
counted as a pair of a negative gate and an inverter) for AES design with computable
sboxes. This is less than 100% due to the negative gate optimisation. For Open core
design the overhead is more than 100% due to the structure of its sbox module. During
the negative logic optimisation of Open core sbox more inverters were inserted into not-
critical path (as components of spacer inverters) than removed from the critical path.
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The number of wires is increased by 117-145%. Wires are duplicated in a dual-rail
circuit and then spacer converters are added, further increasing the number of wires.

The estimated area of the benchmarks combinational logic indicates a 102%-127%
overhead. A significant area increase for flip-flops (228%-289%) can be explained by
using dual-rail flip-flops constructed out of standard logic gates. This can be improved
by transistor level optimisation of the flip-flops.

It is clear that in the AES designs there are opportunities to minimise power con-
sumption as not all logic is necessarily being used all the time. Industry synthesis tools
can identify sleep mode logic and use this information to annotate places in the netlist
which could be committed to sleep mode logic later in the design flow. This low power
optimisation could be utilised in our dual-rail circuitry, one approach would be to put a
spacer on the input to the identified sleep mode logic and holding this there for the clock
cycles whilst it is not used. By doing so the switching is now zero, thus saving power.
This technique would not reveal data as the sleep mode logic is in a “meaningless” spacer
state. By using the synthesis tool to identify the sleep mode logic we are adhering to
the RTL design flow and our conversion tool could use the annotated netlist to apply
the optimisation to dual-rail circuits; note the committal stage of the sleep mode logic
would need to be different to what the synthesis tools would do (simple AND gates using
a control signal). Presently this has not been implemented in the tool but investigated
using schematic entry with simple examples which gave promising results. This needs
to be investigated further together with the clock gating idea.

5 Conclusions

We have presented a technique for improving resistance to DPA attacks at the hardware
level by power balancing in a deterministic way. The power consumption within each
cycle of operation is constant. Our technique uses two spacers alternating in time within
the dual-rail logic framework. It is very cheap yet effective and is supported by software
tools that interface to standard RTL design flow tools used by most ASIC designers. The
idea of using two spacers is deemed particularly efficient for dual-rail logic, where the
Hamming distance between each spacer and a valid combination is the same. While it
can still be used without too much overhead in optimally balanced k-of-n codes (e.g.
3-of-6) it would be much less efficient in other popular codes such as 1-of-4 [11].

The AES benchmarks indicate that we have fully eliminated the dependency which
existed between data and switching activity in the dual-rail circuits. The price to pay
for the improved security features is the increased average switching activity and area
overheads.
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A Advanced Encryption Standard

The symmetric block cipher Rijndael [13] was standardised by NIST as the Advanced
Encryption Standard (AES) [14] in November 2001 as the successor to DES. The algo-
rithm is a block cipher that encrypts/decrypts blocks of 128, 192, or 256 bits, and uses
symmetric keys of 128, 192 or 256 bits. It consists of a sequence of four primitive func-
tions, SubBytes, ShiftRows, MixColumns and AddRoundKey called a round. A round
is executed 10, 12 or 14 times depending on the key and plain text lengths. Before the
rounds are executed the AddRoundKey function is applied for initialisation plus the last
round omits the MixColumns operation. A new key is derived for each round from the
previous key.
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For decryption the procedure is reversed and inverse versions of the aforementioned
functions are applied, excluding AddRoundKey, this has no inverse.

A detailed explanation of each function can be found in [12,13]. For clarity the
SubBytes function performs a non linear transformation using byte substitution tables
(Sboxes), each Sbox is a multiplicative inversion in GF(256) followed by an affine
transformation.

Both designs were synthesised from a RTL Verilog specification using the Cadence
Ambit v4.0 tool and AMS-0.35µ library. A brief description of the two architectures
follows.

A.1 Open Core AES Architecture

This design operates on 128 bits and has two separate ’sub-cores’ one for encryption
and the other for decryption; they share the same type of key generation module [15]
and initial permutation module, however separate instances exist inside each sub-core.
The core is shown in Figure 9; each sub core has 16 inverse/S-boxes inside the round
permutation module. The initial permutation modules simply perform theAddRoundKey
function and the round permutation modules loops internally to perform the 10 rounds
and the final permutation module performs the last round. For this yields a complete
encryption in 12 clock cycles. The decryption core consists of 16 inverse S-boxes these
differ from the S-boxes used for encryption. The key reversal buffer stores keys for all the
rounds and these are presented to the round permutation module each round in reverse
order. Using this principle a complete decryption can be performed in 12 clock cycles. It
must be highlighted that since the keys are used in reverse order - the initial key must be
first expanded 10 times to get the last key, taking 10 extra clock cycles. In this design the
Inv/SubBytes transformations (sboxes) are hardwired instead of being computed on the
fly or stored in a ROM. This can be seen as simply a large decoder. The sub-cores both
have 128 pins for plain/cipher text and 128 pins for the key and miscellaneous control
pins and logic.

Key

Generation Unit

Control

Permutation

Initial

Permutation

Round Final

Permutation
Data_In Data_out

Key_In

ld

Fig. 9. Open core AES

A.2 AES with Computed Sboxes Architecture

This architecture combines encryption and decryption into one core working on 128
bits. The designs’ basis is taken from [12], it was chosen due to its structure namely: it is
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highly regular (this keeps the layout small), it has short balanced combinational paths,
hardware reuse for encryption and decryption which yields a small area and finally it
has a 32 pin interface for the data (128 pin for the key) and shared computed sboxes.

Cell Cell Cell Cell

Cell Cell Cell Cell

Cell Cell Cell Cell

Cell Cell Cell Cell

Sbox Sbox Sbox Sbox

Data_In

Barrel Shifter

Data Unit

Key

Generation

Unit

Key_In

Key to each
Cell and Sbox

Logic

Control
Control_In

Control Logic
to each Cell

Data_Out

Fig. 10. AES with computed sboxes

The design consists of a key generation unit, control logic and a data unit incorpo-
rating 16 data cells, 4 sboxes (these perform the sbox and inverse sbox unlike the open
core design) and a barrel shifter. The core is displayed in Figure 10, since the core does
both encryption and decryption the diagram summarises both.

The data unit can perform any of the AES round functions and uses the key provided
by the key unit for the AddRoundKey function. A single data cell comprises of a register,
a GF(256) multiplier [12], a bank of XOR gates, and an input selection multiplexer.
Additional multiplexers are included to enable the required function to be selected.

The Sboxes are able to perform either the Sbox transformation or the inverse Sbox
transformation taking two clock cycles to compute a result due to a two-stage pipeline.
Whilst the Sboxes are not used by the data unit (the MixColumns operation) the key
generation unit takes advantage of this to generate the next key. The Sbox is computed
by reducing the computation to GF(16) and GF(16) arithmetic and then applying the
affine transformation as illustrated in [16].

Since the design has a 32 pin interface for the data, four clock cycles are required to
clock the plain text, or cipher text into the data unit, and the same number to retrieve the
data.After loading, the round functions are selected by the control logic. In total 60 clock
cycles are needed for a complete encryption or decryption. As with the other design the
input key needs to be expanded to the last key value before any rounds can take place;
this takes an extra 20 clock cycles due to the pipelined Sbox. The total number of cycles
for encryption or decryption could be reduced to 30 by using 16 sboxes at the expense
of more area.
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