An Anytime Algorithm for Interpreting Arguments

Sarah George, Ingrid Zukerman, and Michael Niemann

School of Computer Science and Software Engineering
Monash University, Clayton, VICTORIA 3800, AUSTRALIA
{sarahg, i ngrid, ni emann}@sse. nonash. edu. au

Abstract. The problem of interpreting Natural Language (NL) discourse is gen-
erally of exponential complexity. However, since interactions with users must be
conducted in real time, an exhaustive search is not a practical option. In this paper,
we present an anytime algorithm that generates “good enough” interpretations of
probabilistic NL arguments in the context of a Bayesian network (BN). These in-
terpretations consist of: BN nodes that match the sentences in a given argument,
assumptions that justify the beliefs in the argument, and a reasoning structure
that adds detail to the argument. We evaluated our algorithm using automatically
generated arguments and hand-generated arguments. In both cases, our algorithm
generated good interpretations (and often the best interpretation) in real time.

1 Introduction

Discourse interpretation is a complex task that is essential for human-computer inter-
action. This complexity arises from the large number of choices to be made at different
stages of the interpretation process, e.g., there are several possible referents for each
noun, each sentence could have more than one meaning, and sentences may relate to
each other in a variety of ways. As a result, the problem of finding an interpretation of
Natural Language (NL) discourse is exponential. However, interactions with users must
be conducted in real time. This precludes an exhaustive search for the best interpretation
of a user’s discourse, and leads us to the idea of a “good enough” interpretation.

Anytime algorithms were introduced by Dean [1] and Horvitz et al. [2] in the late
1980’s to produce approximate solutions to complex problems in limited time. In this
paper, we present an anytime algorithm for discourse interpretation. Our algorithm re-
ceives as input probabilistic arguments presented by users to an argumentation system
called BIAS (Bayesian Interactive Argumentation System). These arguments are com-
posed of NL sentences linked by means of argumentation connectives (a small sample
argument is shown in Fig. 1).

Our system uses Bayesian networks (BNs) [3] as its knowledge representation and
reasoning formalism. Our domain of implementation is a murder mystery, which is
represented by a 32-node BN. An interpretation of an argument consists of nodes in
the domain BN that match the sentences in the argument, assumptions (values for BN
nodes) that account for the beliefs stated in the argument, and a reasoning structure (a
subnet of the domain BN) that connects the identified nodes. For instance, the subnet
in Fig. 1 illustrates an interpretation generated for the argument on the left-hand-side.
The italicized nodes are those mentioned in the argument, and the grey, boxed node is
an assumption (inferred by the system) that accounts for the beliefs in the argument.

In the next section, we discuss related research. We then define interpretations in
the context of BNs, and describe our anytime algorithm for argument interpretation. In
Section 5, we evaluate our algorithm’s performance, followed by concluding remarks.

Mr Green being in the garden at 11 [Likely]
AND
The murder weapon being fired by Mr Green

GreenMurderedBody

[Likely]
IMPLIES GreenHasMeans GreenHasOpportunity
Mr Green murdered Mr Body
[Better ThanEvenChance] Murder Wi
uraer veapon GreenlnGardenAt
FiredByGreen TimeOf Death

TimeOfDeath11 GreenlnGardenAtl1

Fig. 1. Sample argument and interpretation

2 Related Research

Discourse interpretation systems typically employ different resources to fill in infor-
mation omitted by a user, e.g., [4,5]. However, most interpretation systems developed
to date have focused on the procedures and knowledge sources required for generating
interpretations, ignoring issues of efficiency and real-time performance.

These issues have been addressed by anytime algorithms in the context of planning,
diagnosis and decision-making under uncertainty, e.g., [1, 6]. In areas more related to
our work, anytime algorithms have been used in a system that generates proofs for
hypotheses [7], and in spoken dialogue systems [8, 9].

Haenni [7] applied an anytime algorithm based on the Dempster-Schaefer formal-
ism for generating proofs for hypotheses. Like BIAS, his system aims for a concise
proof. However, he used heuristics to select propositions to be included in the proof,
while we use a complex function that combines different attributes of an interpretation.
The anytime algorithm described in [8] improves the quality of the surface realization
of spoken responses to users’ queries, while the algorithm presented in [9] interprets
users’ spoken queries. Both systems are implemented in the travel timetable domain.
Our work resembles most that of Fischer et al. [9] in the sense that their system also
maps users’ queries to points in a network (although they use a semantic network), and
they also use a cost function to assess the quality of an interpretation. However, their
domain of discourse is significantly more restricted than ours.

3 What isan interpretation?

An interpretation of an argument in the context of a BN is a tuple { NC,AC,IG}, where
NC'is anode configuration, AC' is an assumption configuration, and /G is an interpre-
tation graph.

A Node Configuration is a set of nodes in the domain BN that match the sentences in an
argument. Each node in the BN is associated with one or more canonical sentences that
express its content. For instance, the canonical sentence for GreenHasOpportunity in
Fig. 1 is “Mr Green had the opportunity to murder Mr Body”. BIAS uses a cosine simi-
larity measure [10] complemented with an automatically-derived word-similarity score
[11] to estimate the similarity between an input sentence and a canonical sentence as-
sociated with a node. For example, an input sentence such as “Mr Green had the chance
to kill Mr Body” is considered similar to “Mr Green had the opportunity to murder Mr

Body” and (a little less similar) to “Mr Green murdered Mr Body”. Hence, arguments
that contain this sentence yield node configurations that include GreenHasOpportunity
and GreenMurderedBody. The process for proposing candidate node configurations is
described in Section 4.1.

An Assumption Configuration is a set of assumptions made by BIAS to account for
the beliefs in an argument. For example, for the argument in Fig. 1 to make sense,
the system has to assume that the time of death was 11. At present, our BN nodes are
binary. Hence, the possible assumptions are: SET TRUE — assume that a node is True;
SET FALSE — assume that a node is False; and UNSET — assume no direct evidence for
this node.

An Interpretation Graph is a subnet of the domain BN which links the nodes that cor-
respond to the antecedents in an argument (according to a particular node configuration)
to the nodes that correspond to the consequents. Note that a good interpretation graph is
not necessarily the minimum spanning tree that connects the nodes in question, as this
spanning tree may have blocked paths (through which evidence cannot propagate in a
BN [3]), which render an interpretation invalid.

4 Anytime Algorithm

Algorithm Generatelnterpretations (Fig. 2) receives as input an argument Arg, and re-
turns the best N (=4) interpretations among those considered in the available time. To
this effect, it matches the sentences in the argument to nodes in the domain BN (Step 1),
makes assumptions that are warranted by the beliefs in the argument (Step 2), and pro-
poses subnets of the BN that connect the nodes in the argument (Step 3). Each of these
steps selects the “best” component of an interpretation based on local knowledge. How-
ever, this component is not necessarily the best overall when considered in conjunction
with the other components. Fig. 3(a) depicts the search tree generated by our algorithm,
where each level of the tree corresponds to a different component. Fig. 3(b) instantiates
this search tree with respect to a small example.

4.1 Getting a Node Configuration

Algorithm GetNodeConfig (Fig. 2) receives as input the sentences in an argument, and
returns a set of matching nodes — one node per sentence. The algorithm selects a node
configuration from a list called NodeConfigList. This list comprises two main parts:
{PrevNodeConfigList, MakeNewConfig}, where PrevNodeConfigList is a list of previ-
ously generated node configurations, and MakeNewConfig is a call to a function that
returns the next best configuration of a given type, e.g., a hode or assumption configu-
ration, or an interpretation graph (Section 4.4).

For the example in Figure 3(b), PrevNodeConfigList is initially empty, hence Mak-
eNewConfig(Node) must be called, returning node configuration NC';. This configura-
tion is added to PrevNodeConfigList, and returned by GetNodeConfig. Now, NodeCon-
figList contains two elements: { NC;, MakeNewConfig}, where NC is selected with
probability 0.952, and MakeNewConfig with probability 0.048 (=5% of 0.952). If Mak-
eNewConfig is selected next time GetNodeConfig is called, then NodeConfigList will
contain three elements: { NC;, NC>,MakeNewConfig}.

Algorithm Generatelnterpretations(Arg)
while {there is time}

{

1. // Get a node configuration in the domain BN that matches the argument
NC «— GetNodeConfi g(Arg)

2. Il Get an assumption configuration that accounts for the beliefs stated for the nodes in NC'
AC — GetAssumptionConfi g(Arg,NC)

3. // Get an interpretation graph that connects the nodes in NC
1G — GetlnterpretationGraph(NC,AC)

4. Evaluate interpretation {NC, AC, IG}.

5. Retaintop N (=4) interpretations.

}

Algorithm GetNodeConfig(Arg) (Section 4.1)

1. Select an element from NodeConfi gList at random (all previously generated configurations
are equiprobable, and the probability of generating a new configuration is Phew% (=5%) of
the probability of any of the previous configurations).

2. If MakeNewConfi g(Node) was called, (Section 4.4)

Then insert the node configuration returned by this function in PrevNodeConfi gList.

3. Return the chosen configuration.

Algorithm GetAssumptionConfig(Arg,NC) (Section 4.2)
1. If AssumptionConfi gList is empty
(@) Call MakeNewConfi g(Assumption) K times (= 200), where each time MakeNewConfi g
returns the best assumption configuration. (Section 4.4)
(b) Assign the top k (=3) assumption configurations to AssumptionConfi gList.
2. Select an element from AssumptionConfi gList at random.
3. Return the chosen configuration.

Algorithm GetlnterpretationGraph(NC,AC) (Section 4.3)
Call MakeNewConfi g(InterpretationGraph), and return the configuration it produced.

Algorithm MakeNewConfig(ConfigType) (Section 4.4)

1. If the priority queue is empty, propose an initial configuration, calculate its probability, and
add the configuration and its probability to the priority queue.

2. Remove the first configuration from the queue.

3. Generate the children of this configuration, calculate their probability, and insert them in the
queue so that the queue remains sorted in descending order of probabilities.

4. Return the chosen (removed) configuration.

Fig. 2. Anytime algorithm for argument interpretation

Algorithm GetNodeConfig reduces the fan-out factor of node configurations by hav-
ing an initial low probability of generating a new node, and further reducing this prob-
ability as the list of configurations grows. This low fan-out is due to the fact that the
intended node configuration is usually among the top three returned by our parser.

Note that when a node configuration is generated, a belief mentioned regarding a
particular statement becomes associated with the node that matches that statement. For
example, in Fig. 3(b), the belief of BetterThanEvenChance given for the sentence “Mr
Green had the chance to kill Mr Body” is associated with node GreenHasOpportunity
for node configuration N C4, and with GreenMurderedBody for N Cs.

Argument (connected sentences) Mr Green being in the garden last night [Likely] IMPLIES
Mr Green had the chance to kill Mr Body [Better ThanEvenChance]

NC1 NC2 N[ox T Ne2 Nes

GreeninGardenAt1l GreenVisitBodyLastNight GreenInGardenAt11
\ GreenHasOpportunity GreenHasOpportunity GreenMurderedBody
AC11 AC12 AC13 AcC21 ‘
Ac1l AC12
/ \ TimeOfDeathll TRUE NONE
1G121 1G122 1G123 1G124 1G111 1G121

GreeninGardenAtll [Likely]| | GreenVisitBodyLastNight [Likely]
NC -- node configuration) .
AG . assumption confiiguration GremlnGaf;imAtTlmeOfDe&h GreenHasOpportunity [BTEC]
IG -- interpretation graph GreenHasOpportunity [BTEC]

(a) Search tree (b) Sample search tree

Fig. 3. Process for generating interpretations

4.2 Getting an Assumption Configuration

For each node configuration, the system determines whether it needs to make assump-
tions so that the beliefs in the BN resulting from Bayesian propagation match the beliefs
stated in an argument. For instance, if “Mr Green being in the garden last night” is in-
terpreted as GreeninGardenAt11 (Fig. 3(b)), then BIAS must assume that the time of
death was 11 (TimeOfDeath11 TRUE) for the beliefs in the BN to match those in the ar-
gument (AC11). In contrast, if this sentence is interpreted as GreenVisitBodyLastNight,
no assumptions are required (AC2).

Algorithm GetAssumptionConfig (Fig. 2) receives as input an argument Arg and a
node configuration NC, and returns an assumption configuration, i.e., a set of nodes
in the BN accompanied by their assumed beliefs. This algorithm randomly selects an
assumption configuration from a list of configurations denoted AssumptionConfigList,
which is composed of the top & (=3) assumption configurations among those returned
by MakeNewConfig (Section 4.4).

For the example in Figure 3(b), assume that we are under node configuration NC1,
and that AssumptionConfigList is empty. Hence, MakeNewConfig(Assumption) is called
K times, returning each time the best assumption configuration. After these K calls,
the top k configurations are retained: { AC11, AC12, AC13}. From now on, every time
GetAssumptionConfig is called, it selects one of these configurations at random.

4.3 Getting an Interpretation Graph

There are many ways to connect the nodes in an argument, and each way yields a differ-
ent interpretation graph. Interpretation graphs are generated after making assumptions
(even though assumed nodes are not part of an interpretation graph), because the valid-
ity of an interpretation is influenced by the assumptions.

Algorithm GetlnterpretationGraph (Fig. 2) receives as input an assumption con-
figuration AC and a node configuration NC, and returns an interpretation graph — a
Bayesian subnet that connects the nodes in NC. This algorithm simply calls Make-
NewConfig(InterpretationGraph), which returns the next best interpretation graph from
a priority queue. The output of this algorithm is illustrated by the two interpretation
graphs at the bottom of the search tree in Fig. 3(b).

Since this algorithm is activated for the last layer of the search tree, the interpretation
graphs it returns do not need to be cached for further processing, as opposed to node
configurations and assumption configurations.

4.4 Making a New Configuration

MakeNewConfig is at the core of our anytime algorithm. It returns a new configura-
tion every time it is called (Fig. 2). This may be a node configuration, an assumption
configuration or an interpretation graph. The algorithm maintains a priority queue of
configurations and their probabilities. Each time it is called, it removes the configura-
tion at the top of the queue, generates its “child configurations” (configurations derived
from the selected one), inserts them in the queue, and returns the selected configuration.

Algorithm MakeNewConfig performs three activities that require calls to specialized
functions: propose an initial configuration, generate children of a configuration, and
calculate the probability of a configuration. A static approach is applied to perform the
first two activities for node and assumption configurations, and a dynamic approach for
interpretation graphs.

Static approach. In order to generate the next node or assumption configuration, the
algorithm maintains a structure called Score Table, which maps an input element to a
decision (e.g., a sentence to a matching node, or a node to an assumption about it). This
structure is obtained from our sentence parser or our assumption generator.

The Sentence Score Table is a list where each element corresponds to a sentence
in the argument. Each sentence in turn is associated with a list of <node: probability>
pairs — one pair for each node in the domain BN — ordered in descending order of
probability (Fig. 4(a)). Each pair represents the probability that this node is intended
by the sentence in question, which is calculated based on the similarity between this
sentence and the canonical sentences for the node [11].

Each element in the Assumption Score Table corresponds to a node in the BN.
Each node is associated with a list of <assumption: probability> pairs — one pair for
each type of assumption (Fig. 4(b)). Each pair represents the probability of making this
assumption about the node in question, which is obtained using heuristics such as the
following: not changing the belief in a node has the highest probability, and asserting
the belief in a node has a higher probability than contradicting it (e.g., a belief of 0.8
has a higher probability of being assumed true than false).

The three activities mentioned above are performed as follows.

Propose an initial configuration — Select the first row from the Score Table.

Generate children of a configuration — The ith child is generated by moving down one
place in list 7 in the Score Table, while staying in the same place in the other lists.

Calculate the probability of a configuration — For node configurations, this probability
is the product of the probabilities of the entries in a configuration. For assumption
configurations, this probability is a function of the “cost” of making a set of assump-
tions (the higher the product of the probabilities of the entries in an assumption con-
figuration, the lower the cost) and the “savings” due to a closer match between the
beliefs stated in an argument and those in the BN as a result of making the assump-
tions (the calculation of this component is described in [12]). For instance, for the
example in Fig. 1, the time of death assumption reduces the discrepancy between

sentence; sentence; . .. sentence,,

ni: 02 mis: 04 ...ms: 0.3 node; node; ... hodes
Noa: 0.15 n10: 0.3 ... map: 0.1 UNSET. 0.8 sertrue; 0.95 ... unseT: 0.5
o o o o seT TRUE. 0.1 uNseT: 0.04 ...serTrue: 0.3
naa: 0.0 mo: 0.01 ...my3: 0.02 seT FaLse: 0.1 serracse: 0.01 ... serracse: 0.2
(a) Sentence Score Table (b) Assumption Score Table

Fig. 4. Sample Score Tables for node configurations and assumption configurations

the user’s stated belief in GreenMurderedBody and that in the BN in the absence of
this assumption.

To illustrate the operation of this algorithm, consider the Sentence Score Table in
Fig. 4(a). Initially, the first row is selected, yielding nodes {ni,nis,...,ns} which
have probability 0.2 x 0.4 x ... x 0.3. Prior to returning this configuration to GetN-
odeConfig, its children are generated: {no4, n1s,...,n3}, {ni,nio,...,n3}, ..., their
probabilities are calculated, and they are inserted in the queue in descending order of
their probability. Next time MakeNewConfig is called for node configurations, the first
configuration in the queue will be removed, its children will be generated, and so on.

Dynamic approach. This procedure is described in detail in [12]. Here we provide a
brief outline.

Propose an initial configuration— Generate the minimum spanning tree that connects
the nodes corresponding to the argument.

Generate children of a configuration — The children of an interpretation graph are gen-
erated by iteratively “growing” the graph, i.e., adding nodes and arcs.

Calculate the probability of a configuration — The probability of an interpretation graph
is a function of its size (the larger the graph the lower its probability), its structural
similarity with the argument, and the probability that its nodes were implied by the
argument (nodes that were previously seen by the user are more likely than nodes
with which the user is unfamiliar).

4.5 Algorithm Analysis

Our anytime algorithm may be classified as interruptible [6], as it can be interrupted at
any time to produce results whose quality is described by its Conditional Performance
Profile (CPP). Notice, however, that our algorithm has a small fixed-time component
due to the K calls to MakeNewConfig from GetAssumptionConfig.

The operation of GetAssumptionConfig differs from that of GetNodeConfig and Get-
InterpretationGraph as follows. GetAssumptionConfig makes a random selection from
a static list of the & best assumption configurations (selected from K assumption con-
figurations generated by MakeNewConfig for a particular node configuration), while the
other two procedures iteratively call MakeNewConfig to obtain a new node configura-
tion or interpretation graph. This difference is due to the fact that the process which
generates the children of a node configuration or an interpretation graph reliably pro-
poses items of decreasing goodness, while this is not necessarily the case for the process
which generates the next assumption configuration. This is because the assumptions are
generated from the top of the Assumption Score Table, but their goodness can be deter-
mined only after Bayesian propagation is performed.

5 Evaluation

Our evaluation focuses on the anytime algorithm, i.e., the time BIAS takes to produce
a good interpretation, rather than on BIAS’ ability to produce plausible interpretations
(which was evaluated in [12]).

Our evaluation consists of two experiments: one where the system interprets auto-
matically generated arguments, and one where it interprets hand-generated arguments.
The arguments in both experiments were designed to test the effect of three factors on
BIAS’ performance: argument size, interpretation complexity, and belief distortion.

Argument size measures the number of nodes in an argument. We considered three
argument sizes: Small (2-3 nodes), Medium (4-5 nodes) and Large (6-7 nodes).
Interpretation complexity measures how much of an “inferential leap” is performed
in order to connect between the nodes in an argument. The complexity of an in-
terpretation is approximated by means of the number of nodes in the minimum
spanning tree that connects the nodes in an argument. We considered three levels
of complexity for our automatic evaluation: 0 (the minimum spanning tree includes
only the nodes in the argument), +2 (the minimum spanning tree includes 2 ad-
ditional nodes), and +4 (4 additional nodes). Our hand-generated evaluation had

interpretations with a complexity of up to +7.

Belief distortion measures how far the beliefs in an argument are from those inferred
by BIAS. For instance, if the argument states that a node is Likely while BIAS be-
lieves it is VeryLikely, there is a distortion of 1. Belief distortions are related to
assumptions, since BIAS may be forced to make assumptions in order to reconcile
the beliefs in an argument with BIAS’ propagated beliefs. We considered 5 levels
of total distortion between an argument and its interpretation (from 0 to 4) for both
experiments. O distortion means that the beliefs in the argument match those in the
interpretation, and a distortion of 4 means that the total discrepancy between the
beliefs in the nodes in the argument and BIAS’ beliefs is 4 — this may be due to a
large discrepancy in one node, or small discrepancies in several nodes.

Our automatically generated arguments were produced by randomly selecting a cer-
tain number of nodes from our domain BN, and positioning them in the BN so that there
are enough intervening nodes — this achieves a desired level of complexity. The propa-
gated beliefs in the nodes in these arguments were then altered to achieve different levels
of belief distortion. Our hand-generated arguments were based on arguments entered by
people (obtained in previous system trials [12]). These arguments were manually mod-
ified in order to obtain enough sample arguments to test the above three factors.

Our experiments focused on two aspects of an interpretation: assumptions and in-
terpretation graphs. Hence, our test arguments consist of implications that connect be-
tween nodes in the BN (rather than between NL sentences). Our interpretation algorithm
was run for 5 minutes to obtain a performance profile over time. Its performance for our
experiments is described below.

Automatically generated arguments. We ran our interpretation algorithm on a total of
228 automatically generated arguments, which varied in argument size, interpretation
complexity and belief distortion. Fig. 5 depicts different aspects of the performance of
our anytime algorithm for these experiments.

N P > 15 . —
8 Ho W+2J+4 § = Complem%/
<7 AL 2 14t
5 ™ c c +2
Sgo 50 — — 5 15l B
B T 5 = .
o 50 © g
S S 40 o
540 3 s 1.2
Eg Ey 8 \
i i £ 11 -
© 201 El 20 o L
2 o
2 = g
g g E o >
= Small Medium Large = 0 12 34 ® 09
argument size belief distortion 0 50 100 150 200

time (in seconds)
(a) Time-to-best versus arg. size (b) Time-to-best versus bel. distortion (c) Solution quality versus time
(90 arguments) (138 Large arguments) (30 Large arguments)

Fig. 5. Performance of our anytime algorithm for automatically generated arguments

Fig. 5(a) shows the effect of argument size and interpretation complexity on the
average time taken to find the best interpretation for 90 arguments, while keeping the
belief distortion to 0. This chart indicates that argument size has a small influence on
system performance (the best interpretation was found in less than 20 seconds), except
when the complexity of the interpretation is +4 (4 nodes in addition to those in the
argument) and the argument is Medium or Large. In these cases, the average time re-
quired to find the best interpretation exceeds 50 seconds. Although the performance for
Medium arguments appears worse than that for Large arguments, this difference is not
statistically significant, as the standard deviation is quite large.

Fig. 5(b) shows the effect of belief distortion and interpretation complexity on the
average solution time for 138 Large arguments (the performance for Medium arguments
is consistent with that for Large arguments). Belief distortion seems to have little effect
on algorithm performance (with the best interpretation found in around 20 seconds),
while once more, the main influencing factor is interpretation complexity.

These results prompted us to examine the CPP (conditional performance profile)
of our algorithm in relation to interpretation complexity. Fig. 5(c) plots average in-
terpretation quality against time, where interpretation quality is defined below. This
information was plotted for the 30 Large arguments from Fig. 5(a) for the three levels
of interpretation complexity.

— log, Pr(best interpretation found so far)

interpretation quality = - - — -
P quallty = — log,, Pr(best interpretation obtained in 5 minutes)

As can be seen from this plot, the worst performance is obtained for interpretations
of complexity +4, but even this performance improves significantly early in the pro-
cess, with solutions reaching near-optimum obtained at around 25 seconds. The plot for
complexity +2 reaches the best interpretation at about 16 seconds, and the plot for com-
plexity 0 is nearly invisible, as it reaches the best interpretation quality immediately.

User-based arguments. Our results for user-based arguments are significantly better
than those obtained for the automatically generated arguments. In fact, the best solu-
tion was obtained in under 3 seconds for all our hand-generated arguments, which had
levels of complexity of up to +7. This indicates that the automatically generated argu-
ments produce very harsh evaluation conditions, which constitute an upper bound for
the performance expected under actual working conditions.

6 Conclusion

We have offered an anytime algorithm that generates “good enough” interpretations
of probabilistic arguments in the context of a BN. These interpretations consist of BN
nodes that match the sentences in an argument, assumptions that justify the beliefs in
the argument, and a reasoning structure that adds detail to the argument. Our evalua-
tion focused on interpreting arguments that required making additional assumptions and
postulating interpretation graphs (rather than proposing different node configurations).
Our anytime algorithm generated a good interpretation for automatically generated ar-
guments in under 25 seconds, and the best interpretation for hand-generated arguments
in under 3 seconds. In both cases creditable performance was achieved in real time.
However, this discrepancy in run times suggests that our algorithm’s performance for
automatically generated arguments constitutes an upper bound for its performance un-
der actual conditions, which is very encouraging.

7 Acknowledgments

This research is supported in part by the ARC Centre for Perceptive and Intelligent
Machines in Complex Environments. The NL parser was implemented by Tony Ng.

References

1. Dean, T., Boddy, M.S.: An analysis of time-dependent planning. In: AAAI-88 — Proceedings
of the 7th National Conference on Artificial Intelligence, St. Paul, Minnesota (1988) 49-54

2. Horvitz, E., Suermondt, H., Cooper, G.: Bounded conditioning: flexible inference for deci-
sion under scarce resources. In: UAI89 — Proceedings of the 1989 Workshop on Uncertainty
in Artificial Intelligence, Windsor, Canada (1989) 182—193

3. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Pub., San Ma-
teo, California (1988)

4. Raskutti, B., Zukerman, .. Generation and selection of likely interpretations during plan
recognition. User Modeling and User Adapted Interaction 1 (1991) 323—-353

5. Carberry, S., Lambert, L.: A process model for recognizing communicative acts and model-
ing negotiation subdialogues. Computational Linguistics 25 (1999) 1-53

6. Zilberstein, S., Russell, S.: Approximate reasoning using anytime algorithms. In Natarajan,
S., ed.: Imprecise and Approximate Computation. Kluwer Academic Pub. (1995) 4362

7. Haenni, R.: Anytime argumentative and abductive reasoning. Soft Computing Journal 8
(2003)

8. Jokinen, K., Wilcock, G.: Confidence-based adaptivity in response generation for a spo-
ken dialogue system. In: Proceedings of the Second SIGdial Workshop on Discourse and
Dialogue, Aalborg, Denmark (2001)

9. Fischer, J., Haas, J., Noth, E., Niemann, H., Deinzer, F.: Empowering knowledge based
speech understanding through statistics. In: ICSLP’98 — Proceedings of International Con-
ference on Spoken Language Processing. Volume 5., Sydney, Australia (1998) 2231-2235

10. Salton, G., McGill, M.: An Introduction to Modern Information Retrieval. McGraw Hill
(1983)

11. Zukerman, I., George, S., Wen, Y.: Lexical paraphrasing for document retrieval and node
identification. In: IWP2003 — Proceedings of the Second International Workshop on Para-
phrasing: Paraphrase Acquisition and Applications, Sapporo, Japan (2003) 94-101

12. Zukerman, |., George, S.: A probabilistic approach for argument interpretation. To appear in
User Modeling and User-Adapted Interaction, Special Issue on Language-Based Interaction:
User Modeling and Adaptation (2004)

