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Abstract. DNA microarrays are widely used techniques in molecular
biology and DNA computing area. It consists of the DNA sequences
called probes, which are DNA complementaries to the genes of interest,
on solid surfaces. And its reliability seriously depends on the quality of
the probe sequences. Therefore, one must carefully choose the probe sets
in target sequences. In this paper, the probe design for DNA microarrays
is formulated as the multi-objective optimization problem. We propose a
multi-objective evolutionary approach, which is known to be suitable for
this kind of optimization problem. Since a multi-objective evolutionary
algorithm can find multiple solutions at a time, we used thermodynamic
criteria to choose the most suitable one. For the experiments, the probe
set generated by the proposed method is compared to the sequences used
in commercial microarrays, which detects a set of Human Papillomavirus
(HPV). The comparison result supports that our approach can be useful
to optimize probe sequences.

Contents Area: Bioinformatics and AI, Evolutionary computing

1 Introduction

DNA microarray is a small plate on which various kinds of oligonucleotide probes
are attached. It is widely used to study cell cycle, gene expression profiling and
other DNA-related phenomena in a cell. When the contents of a cell is hybridized
to the microarray, if there exists a complementary molecule to one of the probes,
it would hybridize to the probe so that a user can detect it. In this way, it can
provide the information on whether a gene is expressed or not for hundreds of
genes at a time. From this, a biologist can get an overview of gene expression
level at a certain time point.

There are two kinds of DNA microarray, cDNA microarray and oligonu-
cleotide microarray. In contrast to cDNA microarrays, one can choose or change
the probe sequences on oligonucleotide microarrays. Therefore, the reliability of
the information that a oligonucleotide microarray provides depends on the qual-
ity of probe sets that used. If a probe hybridizes to not only its target gene but
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also other genes, the microarray may produce misleading data. Thus, one needs
to design the probe set carefully to get precise data.

In literature, lots of probe design methods are suggested reflecting its im-
portance. In [4], the frequency matrix based method was suggested. And an
information theoretical method based on Shannon entropy as a quality criterion
was used in [5]. Li et al. suggested a method based on sequence information
and hybridization free energy in [7]. The optimum probes are picked based on
having free energy for the correct target, and maximizing the difference in free
energy to other mismatched target sequences. And Bourneman et al. proposed
two heuristics for minimizing the number of oligonucleotide probes needed for
analyzing populations of ribosomal RNA gene clones on DNA microarrays [1].
One was a simulated annealing based method which was used to find the probe
sets maximizing the number of distinguished pairs of clones for the given num-
ber of probes, and the other heuristic, the Lagrangian relexation, was applied
to find a minimum number of probes that distinguish all given clones. Recently,
a method based on machine learning algorithms such as näıve Bayes, decision
trees, and neural networks has been also proposed for aiding probe selection
[9]. It tests the probe sets which has high possibility for the hybridization ex-
periments by the learning on the microarray data from E. coli and B. subtilis.
But in spite of the variety of probe design methods, there exists no evolutionary
computation-based approach.

We formulated the problem of selecting optimal set of probes as multi-
objective optimization problem and applied multi-objective evolutionary algo-
rithm. A multi-objective optimization problem usually has a set of Pareto opti-
mal solutions instead of only one optimal solution. The multi-objective evolution-
ary algorithm has the advantage that one can get the Pareto optimal solutions
at a time. But in the real-world application, one must choose one solution rather
than the set of Pareto optimal solutions. As a final decision maker, we choose
the thermodynamic criteria for it can provide a realistic evaluation of the set of
probes.

In the following sections, we explain the suggested probe design method in
detail. In section 2, we briefly introduce the multi-objective optimization prob-
lem and formulates the probe design problem as multi-objective optimization
problem. Section 3 and 4 describe our probe design method and provide the
experimental results. Conclusions are drawn in section 5.

2 Multi-objective Formulation of Probe Design

2.1 Multi-objective Optimization Problem

As the name suggests, a multi-objective optimization problem (MOP) has a
number of objectives which are to be optimized [3]. And the problem usually
has a number of constraints. The general form of multi-objective optimization
problem is like the following:

Optimize fi(X), i = 1, · · · , M ;
subject to gj(X) = 0, j = 1, · · · , N.
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Here, M denotes the number of objectives and N the number of constraints.
And a solution can be represented as a vector in the objective space, denoted
by f(X) = (f1(X), f2(X), . . . , fM (X)).

We suppose conflicting objectives and no priority between objectives in the
further explanation. For non-conflicting objectives, the optimization of one ob-
jective implies the optimization of the other and both objectives can be treated
as one objective. And if there exists priority between objectives, one can opti-
mize objectives according to the priority by optimizing single objective which
is the weighted sum of objectives. Therefore, for both cases, the given prob-
lem becomes a single objective optimization problem and we exclude such cases
hereafter.

Given an optimization problem, one’s goal is to find optimal solution(s). For
a single objective case, the optimality of a solution is determined by simply
comparing its objective function value to others. In multi-objective case, the
optimality of a solution is determined by domination relation between solutions.
A solution X is said to dominate other solution Y when the following two con-
ditions are satisfied and denoted by X � Y :

1. X is no worse than Y in all objectives.
2. X is strictly better than Y in at least one objective.

Therefore, the optimal solutions for a MOP are those that are not dominated by
any other solutions. Thus, one’s goal in MOP is to find such a non-dominated
set of solutions.

There exist several methods to find such non-dominated set of solutions for an
MOP. Among them, evolutionary method is most popular and currently most
actively studied method. Because it is a population-based method, it has the
advantage that it can provide a set of non-dominated solutions by one run.

2.2 Probe Design as an MOP

There exist several criteria to evaluate the set of probes. We list the generally
used conditions for good probes as follows:

1. The probe sequence for each gene should not appear other genes except its
target gene.

2. The non-specific interaction between probe and target should be minimized.
3. The probe sequence for each gene should be different from each other as

much as possible.
4. The probe sequence for each gene should not have secondary structure such

as hairpin.
5. The melting temperatures of the probes should be uniform.

The first three conditions concern with the specificity of the probes. And the
secondary structure of a probe can disturb the hybridization with its target
gene. Therefore, well-designed probes should have minimal secondary structure.
Lastly, the probes on a oligonucleotide chip is exposed to the same experimental
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condition. If the melting temperatures of the probes are not uniform, some probes
can not hybridize with its target. So, the probes must have the uniform melting
temperatures.

Before going on the formulation of the problem, let us introduce some no-
tations. We denote a set of n probes by X = {x1, x2, . . . , xn}, where xi =
{A, C, G, T }l for i = 1, 2, . . . , n, l is the length of each probe. And we denote the
set of target genes by T = {t1, t2, . . . , tn}.

The first condition is the basic requirement for a valid set of probes. Therefore
it can be treated as a constraint as follows:

g(X) =
∑

i�=j

subsequence(xi, tj),

where subsequence(xi, tj) is one if xi occurs in tj at least once and zero otherwise.
From its definition, this constraint must be zero.

Other 4 conditions can be formulated as minimization objectives. These are
formulated as follows:

f1(X) =
∑

i�=j

hybridize(xi, tj),

f2(X) =
∑

i�=j

similarity(xi, xj),

f3(X) =
∑

i

hairpin(xi),

f4(X) = σTm(X).

Here, hybridize(xi, tj) has non-zero value in proportion to the hybridization like-
lihood between xi and tj . And similarity(xi, xj) means the hamming distance
between xi, xj including shifted comparison. For condition 4, we considered hair-
pin as the only possible secondary structure, because other structures are hard
to compute or hardly occur in microarray probes. hairpin(xi) has non-zero value
in accordance with the probability that xi can form a hairpin. Condition 5 can
be formulated as minimizing the standard deviation of melting temperatures of
each probes (Tm(X)).

From above, the probe design problem is formulated as an MOP with 4
minimization objectives and 1 equality constraints.

Minimize fi(X), i = 1, · · · , 4;
subject to g(X) = 0 .

3 Evolutionary Oligonucleotide Probe Design

To design probe set that satisfies above condition, we propose an evolutionary
computation-based approach. In this approach, we try to find various optimal
solutions simultaneously using multi-objective evolutionary algorithm and then
choose appropriate probe set according to thermodynamic criteria.
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In the following subsections, we describe the algorithm and the thermody-
namic criteria in detail.

3.1 The Multi-objective Evolutionary Approach

We try to find optimal probe sets using multi-objective evolutionary algorithm.
For the multi-objective evolutionary algorithm produces multiple solutions, we
choose the most appropriate solution using thermodynamic criteria.

When we optimize probe sets, we applied multi-objective evolutionary algo-
rithm for the following reasons. First, the probe design can be viewed as a kind
of multi-objective optimization problem, and evolutionary algorithm showed
good performance in optimization including multi-objective optimization. Sec-
ond, evolutionary approach can provide a population of solutions rather than
one solution. The probe design is a multi-objective optimization between con-
flicting objectives. For example, if we extremely maximize the difference between
the probe sequences, the specificity of the probes may drop. Therefore, each set
of probes is a trade-off between these conflicting objectives. Evolutionary multi-
objective algorithm can find multiple trade-off solutions of various degree. Users
can find the most suitable trade-off solution among the population according to
appropriate criteria. In this paper, we choose the thermodynamic criteria.

We used the multi-objective evolutionary algorithm called NSGA-II [2]. It
is based on the constrained domination concept. The constrained domination
concept determines which solution is better than the other in multi-objective
problem. Let x and y be two solutions. If both of them is infeasible, the one
that violates less constraints dominates the other. If only one of them is feasible
and the other is infeasible, the feasible one dominates the other. If both of them
is feasible, the objective values are compared. If x is not worse than y in every
objective and is strictly better than y in at least one objective, x dominates y.
Applying above process to every pair of solutions in the population, each solution
in the population can be ranked by the number of solutions it dominates. The
objective of NSGA-II is to drive every solution towards the first rank through
evolutionary process.

The NSGA-II algorithm is composed of the following steps:

1. Combine parents and offsprings in the previous generation.
2. Perform constrained non-dominated sorting within the combined population.

This step produces several layers of populations with different ranking.
3. Generate the parent population for the next generation by selecting solutions

from each layers in the previous step. The higher the rank of the layer, the
more solutions are selected from that layer. When selecting solution in each
layer, we used tournament selection.

4. Generate the offspring population for the next generation from the parent
population in the previous step using genetic operations such as crossover
and mutation.

5. Repeat 1 ∼ 4 for fixed number of generations.
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Fig. 1. The flow of NSGA-II.

The above procedure is shown in Fig. 1. While repeating above steps, the
solution that has the lowest rank is removed from the population and the whole
population moves towards trade-off surface. In the mean time, various trade-off
solutions are evolved in the population. As a result, we can get a population of
non-dominated trade-off solutions.

Among the previously mentioned conditions for good probes, we used the
first condition as a constraint and the others as objectives in NSGA-II.

After the final generation, NSGA-II produces many non-dominated solutions.
Among these the fittest one is chosen by using thermodynamic criteria.

3.2 The Thermodynamic Criteria

We used the thermodynamic criteria to determine if a probe hybridize to the
wrong target gene. The thermodynamic criteria is based on the nearest neighbor
model of DNA [8]. A probe candidate can hybridize to various site of a gene.
Using the nearest neighbor model, we can calculate the free energy it takes to
hybridize at each site and determine the corresponding melting temperature. If
the melting temperature at a wrong hybridization site is higher than the actual
hybridization temperature, misleading hybridization may occur. Using this way,
we can determine if a candidate probe hybridizes to the wrong target gene or
not.

Using this criteria, we chose the set of probes which have the least mis-
hybridizing probes from the Pareto optimal solutions generated by multi-objec-
tive evolutionary algorithm.
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4 Experimental Results

The multi-objective evolutionary algorithm introduced in the previous section is
applied to design the set of probes for HPV (human papillomavirus) detection
which is known to be the cause of cervical cancer. We present the result set of
probes from our approach and compare its quality with those on pre-existing
oligonucleotide microarray for HPV detection (Biomedlab Co., Korea) [6] in
terms of specificity of hybridization.

HPV types can be divided into two classes. The HPV types which belong to
one class are very likely to cause the cervical cancer and those that belong to the
other class are not. 19 genotypes of HPV belong to the first class are selected as
target genes. Each type of HPV has similar but different gene sequence. So our
goal is to discriminate each of 19 genotypes among themselves.

The length of each probe was set to 30 nucleotides long. And based on the
experimental data from Biomedlab, the hybridization temperature was set to
40◦C. The concentration of sodium ion and oligomers were set to 1M and 1nM
respectively.

The size of population was set as 1000 and the maximum generation number
as 200. The generation number is chosen to be big enough for the population
to converge to Pareto front. The crossover and mutation probabilities are set as
0.9 and 0.01 respectively.

To compare the quality of probes, we checked the specificity of hybridization
for each probes. To do so, we used the following procedure. First, we compute
the melting temperature of most stable configuration for every pair of probes
and genes. Then, the average of the difference between these values and the
melting temperature of probes is calculated. This procedure can be formulated
as follows: ∑

i(Tm(xi) − maxj,i�=j(Tm(xi, tj)))
|T |

where, Tm(x) denotes the melting temperature of probe x and Tm(x, y) the
melting temperature of most stable configuration of probe x and gene y. If a
probe is not hybridized to its target gene specifically and is highly likely to
cross-hybridize to other target genes, its melting temperature of most stable
configuration with that gene would be high. Then, the difference between its own
melting temperature and the cross-hybridization temperature would be small.
By averaging these values for all probes, we can check specificity of hybridization
of a probe set. The larger the average value is, the more specific the hybridization
reactions between probes and its target genes are.

The probe set produced by the suggested algorithm has the value of 61.21
and that from Biomedlab Co. has 56.38 (see Table 1). As can be seen from
the table, the suggested method could produce a more reliable probe set. The
resulting probe set generated by the proposed approach is shown in Table 2.
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Table 1. The comparison result between probes in commercial chip and produced sets
of probes.

The Multi-objective Approach Biomedlab. Probes

61.21 56.38

Table 2. The resulting sets of probes.

HPV Type Probe Sequence

HPV6 GCATCCGTAACTACATCTTCCACATACACC
HPV11 GACACTATGTGCATCTGTGTCTAAATCTGC
HPV16 ACTAACTTTAAGGAGTACCTACGACATGGG
HPV18 ATGATGCTACCAAATTTAAGCAGTATAGCA
HPV31 TTGTGCTGCAATTGCAAACAGTGATACTAC
HPV33 AACTAGTGACAGTACATATAAAAATGAAAA
HPV34 GCACAAACTTTTCAGTTTGTGTAGGTACAC
HPV35 GTCTGTGTGTTCTGCTGTGTCTTCTAGTGA
HPV39 CCGTAGTACCAACTTTACATTATCTACCTC
HPV40 AGTAATTTCAAGGAATATTTGCGTCATGGG
HPV42 CAACATCTGGTGATACATATACAGCTGCTA
HPV44 CACAGTCCCCTCCGTCTACATATACTAGTG
HPV45 CCTCTACACAAAATCCTGTGCCAAGTACAT
HPV51 GGTTTCCCCAACATTTACTCCAAGTAACTT
HPV52 AGGTTAAAAAGGAAAGCACATATAAAAATG
HPV56 ACTATTAGTACTGCTACAGAACAGTTAAGT
HPV58 GCACTAATATGACATTATGCACTGAAGTAA
HPV59 ATTCCTAATGTATACACACCTACCAGTTTT
HPV66 ATTAATGCAGCTAAAAGCACATTAACTAAA

5 Conclusions

We formulated the probe design problem as a constrained multi-objective opti-
mization problem and presented a multi-objective evolutionary method for the
problem. Because our method is based on multi-objective evolutionary algo-
rithm, it has the advantage to provide multiple choices to users. And to make it
easy to choose among candidates, we suggested the thermodynamic criteria as
an assistant to the decision maker. It is shown that the proposed method can be
useful to design good probes by applying it to real-world problem and comparing
them to currently used probes.

But in the proposed approach, several time consuming stages are contained
such as the non-dominated sorting procedure. Thus, it is necessary to optimize
such procedures. And our conditions for good probes are simplified and it needs
more consideration on more appropriate conditions.
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