Space and Time Complexity of Exact
Algorithms:
Some Open Problems

Gerhard J. Woeginger

TU Eindhoven, The Netherlands
gwoegi@win.tex.nl

Abstract. We discuss open questions around worst case time and space
bounds for NP-hard problems. We are interested in exponential time
solutions for these problems with a relatively good worst case behavior.

1 Introduction

Every problem in NP can be solved in exponential time by exhaustive search:
Recall that a decision problem is in NP, if and only if there exists a polynomial
time decidable relation R(x,y) and a polynomial m(|z|) such that for every YES-
instance x, there exists a YES-certificate y with |y| < m(z) and R(x,y). A trivial
exact algorithm for solving instance x enumerates all possible strings y with
lengths up to m(|z|), and checks whether any of them yields a YES-certificate.
Up to polynomial factors that depend on the evaluation time of R(z,y), this
yields an exponential running time of 27(*),

A natural question is: Can we do better than this trivial enumerative al-
gorithm? Interestingly, for many combinatorial optimization problems the an-
swer is YES. Early examples include an O*(1.4422™) algorithm for deciding
3-colorability of an n-vertex graph by Lawler [21]; an O*(1.2599™) algorithm
for finding a maximum independent set in an n-vertex graph by Tarjan & Tro-
janowski [24]; an O*(1.4142™) algorithm for the SUBSET-SUM problems with
n integers by Horowitz & Sahni [I8]. (The notation O*(f(n)) is explained at the
end of this section.) Woeginger [26] surveys many results in this area.

For some optimization problems, we can reach an improved time complexity,
but it seems that we have to pay for this with an exponential space complexity.
Note that algorithms with exponential space complexities are absolutely useless
for real life applications. In this paper, we discuss a number of results around fast
exponential time algorithms that come with exponential space complexities. We
present approaches, tricks, related polynomially solvable problems, and related
open questions.

Notation. Throughout this paper, we will use a modified big-Oh notation that
suppresses polynomially bounded terms. For a positive real constant ¢, we write
O*(c") for a time complexity of the form O(c¢™ - poly(n)). The notations £2*(c™)
and ©*(c") are defined analogously.

R. Downey, M. Fellows, and F. Dehne (Eds.): IWPEC 2004, LNCS 3162, pp. 281-290] 2004.
© Springer-Verlag Berlin Heidelberg 2004

282 Gerhard J. Woeginger
2 Integers and Their Sums

We start this section with a couple of polynomially solvable problems: An input
to the first problem “k-SUM?” consists of m integers aq, . .., a,, and a goal sum S.
The problem is to decide whether there are k of these integers that add up to S.
An input to the second problem “Table-k-SUM” consists of a k x m table and a
goal sum S; the entries in row 7 of the table are denoted by R;(1), ..., R;(m). The
problem is to decide whether one can choose k integers from this table, exactly
one from each row, that add up to S. In both problems, the number k is a fixed
integer that is not part of the input. Both problems are closely related, and they
can be reduced to each other in linear time (Erickson [12]). Both problems are
trivially solvable in polynomial time O(m*).

Here is how to get a better time complexity for Table-2-SUM: Sort the entries
in the first row. Then for j = 1,...,m perform a binary search for the value
S — Ry(j) in this sorted first row. If the search succeeds at Ry (i), then Ry (i) =
S — Ry(j) and the answer is YES. If all searches fail, then the answer is NO.

Fact. Table-2-SUM can be solved in O(mlogm) time and O(m) space.

The same approach also yields fast algorithms for Table-k-SUM for all k£ > 3:
Compute the sum of every [k/2]-tuple of integers that has one entry in each of
the first [k/2] rows; these sums form the first row in a new table. Compute
the sum of every |k/2|-tuple of integers that has one entry in each of the last
|k/2] rows; these sums form the second row in the new table. Apply the above
algorithm to this new instance of Table-2-SUM.

Fact. Table-k-SUM can be solved in O(m!*/?1logm) time and O(m!*/21) space.

For odd k, the time complexity can be slightly improved to O(m[k/ﬂ); see
for instance Erickson [I1]. In particular, the 3-SUM problem can be solved in
O(m?) time. We will not go into details, since in this paper we really do not care
about logarithmic factors. The main drawback of all these algorithms is their
horrible space complexity.

Schroeppel & Shamir [23] improve the space complexity for Table-4-SUM
by using a data structure that enumerates the m? sums R; (i) + Ra(j) with
1 <4,j < 'm in non-decreasing order. This data structure uses only O(m) space.
Every time we kick it, it starts working for O(log m) time steps, and then spits
out the next larger sum Ry (i) + R2(j). The data structure is based on a balanced
search tree that supports deletions, insertions, and extracting the minimum with
logarithmic work per operation. It is built as follows: In a preprocessing step, we
bring the entries in the second row into non-decreasing order. As a consequence,
we have for every fixed index ¢ that

Rl(i)+R2(1) < R1(2)+R2(2) < ... < Rl(l)—l—RQ(m)

For every index i (1 < ¢ < m), the data structure stores the pair (¢,7) that
corresponds to the first unvisited sum R; (i) + Rz(j) in this ordering. Whenever
the data structure is kicked, it extracts and deletes the pair (4, j) with minimum

Space and Time Complexity of Exact Algorithms: Some Open Problems 283

sum, and inserts the pair (7,7 + 1) instead. All in all, the enumeration of the m?
sums costs O(m? logm) time.

Schroeppel & Shamir [23] use two such data structures; the first one generates
the sums x = R;(7) + R2(j) in non-decreasing order, whereas the second one
generates the sums y = R3(s)+ R4(t) in non-increasing order. Whenever z+y <
S holds, the current value of x is too small for reaching the goal sum S; we
replace it by the next larger sum R (i) + R2(j) from the first data structure.
Whenever z+y > S holds, the current value of y is too large for reaching the goal
sum S; we replace it by the next smaller sum Rs(s)+ R4(t) from the second data
structure. These steps are repeated over and over again, until one data structure
becomes empty (answer NO) or until we reach x +y = S (answer YES).

Fact. Table-4-SUM can be solved in O(m?logm) time and O(m) space.

Open problem 1

(a) Is there an O(m3logm) time and O(m) space algorithm for Table-6-SUM?
(b) Is there an O(m[*¥/21=) time algorithm for Table-k-SUM for some integer
k > 3 and some real a > 07

Now let us turn to negative results around the k-SUM and the Table-k-SUM
problem. The 3-SUM problem plays a notorious role in computational geometry.
Gajentaan & Overmars [I5] have put together a long list of geometric problems:
All problems on this list can be solved in quadratic time, and for all of them
nobody knows how to do better. All problems on this list contain 3-SUM as
a special case (under linear time reductions), and for all of them this 3-SUM
special case (intuitively) seems to be the main obstacle for breaking through
the quadratic time barrier. One example problem on this list is: Given m (pos-
sibly overlapping) triangles in the Euclidean plane, compute the area of their
union. Another one: Given m pairwise non-intersecting straight line segments in
the Euclidean plane, is there a straight line that separates them into two non-
empty subsets? And another one: Given m points in the Euclidean plane, are
some three of them on a common line? For instance, the linear time reduction
from 3-SUM to 3-POINTS-ON-A-COMMON-LINE is based on the following
observation: The z-coordinates of the intersection points of the line y = ax + b
with the curve y = f(z) = 2® — S2? are the roots of 23 — S2? —ax — b = 0;
for every line the sum of these roots equals S, the coefficient of the quadratic
term. Consequently, the point set (a1, f(a1)), (ag, f(a2)),. .., (am, f(am)) con-
tains three points (az, f(az)), (ay, f(ay)), (a=, f(a.)) on a common line, if and
only if az + ay + a, = S. The bottom-line of this paragraph is that research on
the 3-SUM problem is severely stuck at the threshold O(m?).

What about the general k-SUM problem with k£ > 47 Here we are stuck
around the threshold O(m[*/21). Erickson [IT] proved an £2(m[*/21) lower bound
on k-SUM in a certain restricted variant of the linear decision tree model. The
additional restriction in his model is that every decision step must be based on
testing the sign of some affine linear combination of at most k£ elements of the
input. At first sight, this model seems to be strange, and the lower bound result

284 Gerhard J. Woeginger

seems to be quite weak. However, given our general failure in proving reasonable
lower bounds for algorithmic problems and given the lack of tools in this area,
Erickson’s lower bound result in fact is a major breakthrough.

Open problem 2 Prove a non-trivial lower bound for the k-SUM problem in
the algebraic decision tree model or in the algebraic computation tree model (see
Ben-Or [4)).

Downey & Fellows [78] have proved that the k-SUM problem with parameter
k is W[l]-hard. All these negative results for k-SUM translate into analogous
negative results for Table-k-SUM.

After this long polynomial time prelude, we will spend the rest of this sec-
tion on NP-hard problems. In the NP-hard SUBSET-SUM problem, the input
consists of n positive integers b1,...,b, and a goal sum B. The problem is to
decide whether there exists some subset of the b; that add up to B. The strongest
known negative result for SUBSET-SUM is an 2(n?) lower bound in the alge-
braic computation tree model of computation [6/4].

On the positive side, Horowitz & Sahni [18] have come up with the following
approach for SUBSET-SUM: They split the instance into two parts, one part
with b1, ..., b, /2] and another part with b|,,/2) 11, ..., bn. They construct a table
with two rows, where the first row consists of all the subset sums for the first part,
and where the second row consists of all the subset sums for the second part.
The table can be computed in O*(2"/2) time. The SUBSET-SUM instance has
answer YES, if and only if the constructed Table-2-SUM instance with S = B has
answer YES. Our above discussion of Table-2-SUM yields the following result.

Fact. SUBSET-SUM can be solved in O*(2™/?) time and in O*(2™/?) space.

Schroeppel & Shamir [23] follow essentially the same idea, but instead of
splitting the SUBSET-SUM instance into two parts, they split it into four parts
of size approximately n/4. This leads to a corresponding instance of Table-4-
SUM, and to a substantially improved space complexity.

Fact. SUBSET-SUM can be solved in O*(2"/?) time and in O*(2™*) space.

Generally, if we split the SUBSET-SUM instance into & > 2 parts, then we
get a corresponding table with k£ rows and 0(2"/ k) elements per row. Apply-
ing the fastest known algorithm to the corresponding instance of Table-k-SUM
gives a time complexity of O*(2/("*)) with f(n,k) = n [k/2] /k > n/2. Hence,
this approach will not easily lead to an improvement over the time complexity
O*(2"/?). Schroeppel & Shamir [23] also construct #(n) time and s(n) space al-
gorithms for SUBSET-SUM for all s(n) and t(n) with £2*(2"/2) < t(n) < O*(2")
and s2(n) - t(n) = ©*(2").

Open problem 3

(a) Construct an O*(1.4™) time algorithm for SUBSET-SUM.
(b) Construct an O*(1.99™) time and polynomial space algorithm for SUBSET-
SUM.

Space and Time Complexity of Exact Algorithms: Some Open Problems 285

(c) We have seen that positive results for Table-k-SUM yield positive results
for SUBSET-SUM. Can we establish some reverse statement? Do fast (ex-
ponential time) algorithms for SUBSET-SUM yield fast (polynomial time)
algorithms for Table-k-SUM?

Another NP-hard problem in this area is the EQUAL-SUBSET-SUM problem:
Given n positive integers by, . . . , b,, do there exist two disjoint non-empty subsets
of the b; that both have the same sum. A translation of EQUAL-SUBSET-
SUM into a corresponding Table-4-SUM instance leads to an O*(2™) algorithm
for EQUAL-SUBSET-SUM. It might be interesting to design faster algorithms
for EQUAL-SUBSET-SUM, and to get some understanding of the relationship
between fast algorithms for SUBSET-SUM and fast algorithms for EQUAL-
SUBSET-SUM.

3 Graphs and Their Cliques and Cuts

We start this section with the polynomially solvable k-CLIQUE problem: An
input counsists of an undirected, simple, loopless p-vertex graph G = (V, E). The
problem is to decide whether G contains a clique on k vertices. We stress that k
is not part of the input. The k-CLIQUE problem is easily solved in polynomial
time O(p*).

Itai & Rodeh [I9] observed that fast matrix multiplication can be used to
improve this time complexity for 3-CLIQUE: Recall that the product of two
p X p matrices can be computed in O(p*) time, where w < 2.376 denotes the so-
called matriz multiplication exponent; see Coppersmith & Winograd [b]. Recall
that in the fth power A’ of the adjacency matrix A of graph G, the entry at the
intersection of row i and column j counts the number of walks with £+ 1 vertices
in G that start in vertex ¢ and end in vertex j. Furthermore, a 3-clique {z,y, z}
yields a walk x — y — z — x with four vertices from z to x, and vice versa, every
walk with four vertices from vertex z to x corresponds to a 3-clique. Hence, G
contains a 3-clique if and only if A3 has a non-zero entry on its main-diagonal.

Fact. The 3-CLIQUE problem for a p-vertex graph can be solved in O(p“) time
(where w < 2.376 is the matriz multiplication exponent) and in O(p?) space.

Nesetiil & Poljak [22] extend this idea to the 3k-CLIQUE problem: For every
k-clique C' in G, create a corresponding vertex v(C') in an auxiliary graph. Two
vertices v(Cy) and v(Cq) are connected by an edge in the auxiliary graph, if and
only if C; U Cy forms a 2k-clique in G. Note that the auxiliary graph has O(p*)
vertices. Furthermore, graph G contains a 3k-clique if and only if the auxiliary
graph contains a 3-clique.

Fact. The 3k-CLIQUE problem for a p-vertex graph can be solved in O(p**)
time and O(p**) space.

This approach yields a time complexity of O(p®**1) for (3k + 1)-CLIQUE,
and a time complexity of O(p* **+2) for (3k+2)-CLIQUE. Eisenbrand & Grandoni
[9] slightly improve on these bounds for (3k + 2)-CLIQUE (with k& > 2) and for

286 Gerhard J. Woeginger

(3k+1)-CLIQUE (with 1 < k < 5). In particular, for 4-CLIQUE [9] gives a time
complexity of n3334,

Open problem 4

(a) Design algorithms with better time and/or space complexities for k-CLIQUE!
(b) Is there an O(p™®) time algorithm for 10-CLIQUE?
(¢) Is 3-CLIQUE as difficult as Boolean matriz multiplication?

On the negative side, we have that the k-CLIQUE problem with parameter k
is W[1]-hard (Downey & Fellows [78]). For the variant where k is part of the
input and k = logn, Feige & Kilian [14] show that a polynomial time algorithm
highly unlikely to exist.

Now let us turn to NP-hard problems. In the MAX-CUT problem, the in-
put consists of an n-vertex graph G = (V| E). The problem is to find a cut of
maximum cardinality, that is, a subset X C V of the vertices that maximizes
the number of edges between X and V' — X. The MAX-CUT problem can be
solved easily in O*(2") time by enumerating all possible certificates X. Fedin
& Kulikov [I3] present an O*(2/F1/4) time algorithm for MAX-CUT; however,
it seems a little bit strange to measure the time complexity for this problem in
terms of |E| and not in terms of n = |V].

Williams [25] developed the following beautiful approach for MAX-CUT:
We partition the vertex set V' into three parts Vg, Vi, Vo that are of roughly
equal cardinality n/3. We introduce a complete tri-partite auxiliary graph that
contains one vertex for every subset Xy C Vj, one vertex for every subset X; C
V1, and one vertex for every subset X C V5. For every subset X; C V; and
every X; C V; with j = i+1 (mod 3), we introduce the directed edge from X; to
X ;. This edge receives a weight w(X;, X;) that equals the number of edges in G
between X; and V; — X; plus the number of edges between X; and V; — X plus
the number of edges between X; and V; — X;. Note that for X; CV; (i =0,1,2)
the cut Xo U X7 U X5 cuts exactly w(Xo, X1) + w(X7, X2) + w(Xa, Xo) edges in
G. Consequently, the following three statements are equivalent:

— The graph G contains a cut with z edges.

— The auxiliary graph contains a 3-clique with total edge weight z.

— There exist non-negative integers zo1, 212, 220 With zo1 + 212 + 220 = 2, such
that the auxiliary graph contains a 3-clique on three vertices X; C V; (i =
0,1,2) with w(Xo, X1) = 201 and w(X1, X2) = 212 and w(Xa, Xo) = 220.

The condition in the third statement is easy to check: There are O(| E|®) possible
triples (201, 212, 220) to consider. For each such triple, we compute a correspond-
ing simplified version of the auxiliary graph that only contains the edges of
weight z;; between vertices X; C V; and X; C V;. Then everything boils down
to finding a 3-clique in the simplified auxiliary graph on O(2"/3) vertices.

Fact. The MAX-CUT problem can be solved in O*(2¥"/3) time and O*(2*™/3)
space. Note that 2¢™/3 < 1.732".

Space and Time Complexity of Exact Algorithms: Some Open Problems 287

Of course, William’s algorithm could also be built around a partition of
the vertex set V into four parts of roughly equal cardinality n/4, or around a
partition of the vertex set V into k parts of roughly equal cardinality n/k. The
problem then boils down to finding a k-clique in some simplified auxiliary graph
on O(2"/*) vertices. With the currently known k-CLIQUE algorithms, this will
not give us an improved time complexity.

Open problem 5

(a) Design a faster exact algorithm for MAX-CUT.
(b) Construct an O*(1.99™) time and polynomial space algorithm for MAX-
CUT.

An input of the NP-hard BISECTION problem consists of an n-vertex graph G =
(V. E). The problem is to find a subset X C V with |X| = n/2 that minimizes
the number of edges between X and V — X. The approach of Williamson yields
an O*(2¥"/3) time algorithm for BISECTION. Can you do better?

4 Sets and Their Subsets

There is a number of exact algorithms in the literature that attack an NP-
hard problem by running through all the subsets of an underlying n-element
ground set, while generating and storing useful auxiliary information. Since an
n-element ground set has 2™ subsets, the time complexities of these approaches
are typically 2%(2™). And also the space complexities of these approaches are
typically £2*(2™), since they store and remember auxiliary information for every
subset.

A good example for this approach is the famous dynamic programming al-
gorithm of Held & Karp [17] for the travelling salesman problem (TSP): A trav-
elling salesman has to visit the cities 1 to n. He starts in city 1, runs through
the cities 2,3,...,n — 1 in arbitrary order, and finally stops in city n. The dis-
tance d(i,j) from city i to city j is specified as part of the input. The goal
is to find a path that minimizes the total travel length of the salesman. The
dynamic program of Held & Karp [I7] introduces for every non-empty subset
S C {2,...,n — 1} of the cities and for every city ¢ € S a corresponding state
[S;i]. By LENGTH[S;] we denote the length of the shortest path that starts in
city 1, then visits all cities in S — {i¢} in arbitrary order, and finally stops in
city 4. Clearly, LENGTH[{i};¢] = d(1,4) holds for every i € {2,...,n — 1}. And
for every S C {2,...,n — 1} with |S| > 2 we have

LENGTH[S;i] = min{LENGTH[S — {i};j]+d(j,¢): j€ S —{i}}.

By processing the subsets S in order of increasing cardinality, we can compute
the value LENGTH[S; 4] in time proportional to |S|. In the end, the optimal travel
length is given as the minimum ming<g<p—1 LENGTH[{2,...,n—1}; k]+d(k, n).

Fact. The TSP can be solved in O*(2") time and O*(2™) space.

288 Gerhard J. Woeginger

Open problem 6

(a) Construct an ezxact algorithm for the n-city TSP with O*(1.99™) time com-
plexity!

(b) Construct an exact algorithm for the n-city TSP with O*(2™) time complexity
and polynomial space complexity!

In the Hamiltonian path problem, we have to decide for a given graph G =
(V,E) with vertices 1,...,n whether it contains a spanning path starting in
vertex 1 and ending in vertex n. The Hamiltonian path problem forms a simpler
special case of the TSP. Karp [20] (and independently Bax [1]) provided a cute
solution for the restriction of Problem [l (b) to this Hamiltonian special case. We
use the following definitions. A walk in a graph is a sequence vy, .. ., vg of vertices
such that every pair of consecutive vertices is connected by an edge; vertices and
edges may show up repeatedly in a walk. For a subset S C V we denote by
WALK(S) the set of all walks with n vertices in G that start in vertex 1, end in
vertex n, and avoid all the vertices in S. Let A be the adjacency matrix of G—S.
Recall that in the kth power A* of A, the entry at the intersection of row i and
column j counts the number of walks with k + 1 vertices in G — S that start in
vertex ¢ and end in vertex j. Therefore, the number of walks in WALK(S) can
be read from matrix A" 1:

Fact. For every subset S C 'V, the cardinality [WALK(S)| can be determined in
polynomial time.

If a walk through n vertices in G does not avoid any vertex k, then it must
visit all the vertices, and hence must form a Hamiltonian path. Consequently,
the number of Hamiltonian paths from 1 to n in G equals

|WALK(D)| — |D WaLk({k})| = Y (=1 [WaLk(9)].
k=2 SCV

Here we have used the inclusion-exclusion principle. The sum in the right hand
side of the displayed equation is straightforward to compute by applying the
fact discussed above. We only need to remember the partial sum of all the terms
evaluated so far, and the space used for evaluating one term can be reused in
evaluating the later terms. All in all, evaluating and adding up the values of
O(2"™) terms yields an O*(2"™) time and polynomial space algorithm for counting
the number of Hamiltonian paths. The following fact is a trivial consequence of
this:

Fact. The Hamiltonian path problem in an n-vertex graph can be solved in
O*(2™) time and polynomial space.

Eppstein [I0] improves on this polynomial space result for Hamiltonian path
in the special case of cubic graphs: He presents an algorithm that uses O*(1.297™)
time and linear space. Bax [2] and Bax & Franklin [3] have extended the
inclusion-exclusion approach to a number of counting problems around paths
and cycles in n-vertex graphs. For all these problems, the time complexity is
O*(2™) and the space complexity is polynomial.

Space and Time Complexity of Exact Algorithms: Some Open Problems 289

Open problem 7 Construct O*(1.99™) time exact algorithms for the following
counting problems in n-vertex graphs G:

(a) Count the number of paths between a given pair of vertices in G.
(b) Count the number of cycles in G.

(c) Count the number of cycles through a given vertez in G.

(d) Count the number of cycles of a given length £ in G.

Now let us turn to some relatives of the n-city TSP. For a fixed Hamiltonian
path from city 1 to city n and for a fixed city k, we denote by the delay of
city k the length of the subpath between city 1 and city k. In the travelling
repairman problem (TRP), the goal is to find a Hamiltonian path from city 1
to city n that minimizes the sum of delays over all cities. In the precedence
constrained travelling repairman problem (prec-TRP), the input additionally
specifies a partial order on the cities. A Hamiltonian path is feasible, if it obeys
the partial order constraints.

Here is a related scheduling problem SCHED: There are n jobs 1,...,n
with processing times pi,...,p,. The jobs are partially ordered (precedence
constrained), and if job i precedes job j in the partial order, then ¢ must be
processed to completion before j can begin its processing. All jobs are available
at time 0, and job preemption is not allowed. The goal is to schedule the jobs
on a single machine such that all precedence constraints are obeyed and such
that the total job completion time Z;I:l C; is minimized; here C; is the time
at which job j completes in the given schedule. SCHED is the special case of
prec-TRP where the distances between cities ¢ # j are given by d(i, j) = p;. It is
quite straightforward to design an O*(2™) time and O*(2") space dynamic pro-
gramming algorithm for prec-TRP (and for its special cases TRP and SCHED).

Open problem 8

(a) Construct an O*(1.99™) time exact algorithm for TRP or for SCHED or for
prec-TSP.

(b) Provide evidence in favor of or against the following claim: If there exists an
O*(c™) time exact algorithm with ¢ < 2 for one of the four problems TSP,
TRP, SCHED, prec-TSP, then there exist O*(c™) time exact algorithms for
all four problems.

References

1. E.T. Bax (1993). Inclusion and exclusion algorithm for the Hamiltonian path
problem. Information Processing Letters 47, 203—207.

2. E.T. Bax (1994). Algorithms to count paths and cycles. Information Processing
Letters 52, 249-252.

3. E.T. Bax AND J. FRANKLIN (1996). A finite-difference sieve to count paths and
cycles by length. Information Processing Letters 60, 171-176.

4. M. BEN-OR (1983). Lower bounds for algebraic computation trees. In Proceedings
of the 15th Annual ACM Symposium on the Theory of Computing (STOC’1983),
80-86.

290

5.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Gerhard J. Woeginger

D. COPPERSMITH AND S. WINOGRAD (1990). Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation 9, 251-280.

D. DOBKIN AND R.J. LIPTON (1978). A lower bound of in® on linear search
programs for the knapsack problem. Journal of Computer and System Sciences 16,
413-417.

R.G. DOWNEY AND M.R. FELLOWS (1995). Fixed-parameter tractability and com-
pleteness II: On completeness for W[1]. Theoretical Computer Science 141, 109—
131.

R.G. DOwNEY AND M.R. FELLOWS (1999). Parameterized complezity. Springer
Monographs in Computer Science.

F. EISENBRAND AND F. GRANDONI (2004). On the complexity of fixed parameter
clique and dominating set. Theoretical Computer Science, to appear.

D. EPPSTEIN (2003). The traveling salesman problem for cubic graphs. In Pro-
ceedings of the 8th International Workshop on Algorithms and Data Structures
(WADS’2003), Springer-Verlag, LNCS 2748, 307-318.

J. ERICKSON (1999). Lower bounds for linear satisfiability problems. Chicago Jour-
nal of Theoretical Computer Science 1999(8).

J. ERICKSON (2004). Private communication.

S.S. FEDIN AND A.S. KULIKOV (2002). Solution of the maximum cut problem
in time 2/Z1/4, (In Russian). Zapiski Nauchnykh Seminarov Sankt-Peterburgskoe
Otdeleniya Matematicheskii Institut imeni V.A. Steklova 293, 129-138.

U. FEIGE AND J. KILIAN (1997). On limited versus polynomial nondeterminism.
Chicago Journal of Theoretical Computer Science 1997.

A. GAJENTAAN AND M.H. OVERMARS (1995). On a class of O(n?) problems in
computational geometry. Computational Geometry 5, 165—185.

M.R. GAREY AND D.S. JOHNSON (1979). Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, San Francisco.

M. HELD AND R.M. KARP (1962). A dynamic programming approach to sequenc-
ing problems. Journal of SIAM 10, 196-210.

E. HOROWITZ AND S. SAHNI (1974). Computing partitions with applications to
the knapsack problem. Journal of the ACM 21, 277-292.

A. Itat AND M. RODEH (1978). Finding a minimum circuit in a graph. SIAM
Journal on Computing 7, 413—-423.

R.M. KaArp (1982). Dynamic programming meets the principle of inclusion and
exclusion. Operations Research Letters 1, 49-51.

E.L. LAWLER (1976). A note on the complexity of the chromatic number problem.
Information Processing Letters 5, 66—67.

J. NESETRIL AND S. PoLJAK (1985). On the complexity of the subgraph problem.
Commentationes Mathematicae Universitatis Carolinae 26, 415-419.

R. SCHROEPPEL AND A. SHAMIR (1981). A T = O(2"/?), S = O(2"/*) algorithm
for certain NP-complete problems. SIAM Journal on Computing 10, 456—464.
R.E. TARJAN AND A.E. TROJANOWSKI (1977). Finding a maximum independent
set. SIAM Journal on Computing 6, 537-546.

R. WILLIAMS (2004). A new algorithm for optimal constraint satisfaction and its
implications. In Proceedings of the 31st International Colloquium on Automata,
Languages and Programming (ICALP’2004), Springer Verlag, 2004.

G.J. WOEGINGER (2003). Exact algorithms for NP-hard problems: A survey. In
Combinatorial Combinatorial Optimization — Eureka, you shrink!”, LNCS 2570,
Springer Verlag, 185-207.

	Introduction
	Integers and Their Sums
	Graphs and Their Cliques and Cuts
	Sets and Their Subsets

