
S. Marinai and A. Dengel (Eds.): DAS 2004, LNCS 3163, pp. 213–224, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Layout and Content Extraction for PDF Documents

Hui Chao and Jian Fan

Hewlett-Packard Laboratories, 1501 Page Mill Road, ms 1203
Palo Alto, CA, 95129, USA

{hui.chao,jian.fan}@hp.com

Abstract. Portable document format (PDF) is a common output format for elec-
tronic documents. Most PDF documents are untagged and do not have basic
high-level document logical structural information, which makes the reuse or
modification of the documents difficult. We developed techniques that identi-
fied logical components on a PDF document page. The outlines, style attributes
and the contents of the logical components were extracted and expressed in an
XML format. These techniques could facilitate the reuse and modification of
the layout and the content of a PDF document page.

1 Introduction

Portable document format (PDF) is a common output format for electronic docu-
ments. PDF documents preserve the look and feel of the original documents by de-
scribing the low-level structural objects such as a group of characters, lines, curves
and images and associated style attributes such as font, color, stroke, fill, and shapes,
etc. [1] However, most PDF documents are untagged and don’t have the basic high
level logical structure information such as words, text lines, paragraphs, logos, and
figure illustrations, which makes reusing, editing or modifying the layout or the con-
tent of the document difficult. Although originally, the Portable Document Format
(PDF) was designed for the final presentation of a document, there were trends to
extend the capability of PDF to more than a viewable format [2] and to recover the
PDF document layout and its content. In variable data printing (VDP), it is desirable
to reuse the layout of an existing PDF page as a template or to reedit the content of an
existing page by replacing the images, figure illustrations or modifying a body of text
to create a new page or a new version of the page without going back to the original
document. The goal of this work is to identify logical components and their associ-
ated layouts and to extract the content of the components in a PDF document. The
layout and style attributes of the logical components can be used as a template for
creating new pages.

In the past two decades, extensive studies have been done in discovering the layout
of document images [3-8] for content understanding and extraction. Because of the
limited information available in the bitmap images, for example there is no layering
information of the page objects, most of the layout studies have been limited to busi-
ness letters, technical journals and newspapers, where objects overlaps are minimal.
Studies have also been done on multilayer analysis and segmentation of document
images for the compression purpose. Scanned document images were broken into

214 Hui Chao and Jian Fan

different regions and different layers based on the texture of the objects on the page
[13, 14]. Several groups have studied PDF documents layout and logical structure [9-
12]. Brailsford et al. have been able to segment a PDF document page into different
image and text blocks. Anewierden has reported his work on recovering the logical
structure of the technical manuals in PDF. Hadjar et al. have developed a tool for
extracting the structures from PDF documents. However, most of the studies gave
limited consideration to overlaid and arbitrarily shaped blocks.

In this paper, we present our techniques that automatically segmented a PDF docu-
ment page into different logical structure regions such as text blocks, images blocks,
vector graphics blocks and compound blocks. Each block represented a logical
component of the document. We identified the geometrical outline of each com-
ponent, extracted the style attributes and content of each component. The results of
this analysis were expressed in an XML format.

2 Document Layout and Content Analysis and Extraction

PDF document content stream lists all the page objects such as text objects, image
objects, path objects etc. [1] Path objects are referred to as vector graphics objects or
drawings and paintings composed by lines, curves and rectangles. Page objects in
PDF document don’t reflect nor are related to the logical structure or logical compo-
nents of the document. For example, a text object may only have part of the charac-
ters of a word; path objects which are the building blocks for the graphical illustra-
tions, such as bar charts, pie charts and logos are often just a fraction of the whole
figure illustrations e.g. one bar in a bar chart [16, 17]. To discover the logical compo-
nents of a document, we need to analyze and interpret the layouts and attributes of the
page objects so as to correctly break or group them into different logical components.

2.1 Overview of the System

Figure 1 shows our processing pipeline. In the documents with high graphical con-
tent, there are often blocks overlay, e.g. a text block or a logo is embedded in an im-
age, which makes the analysis more complicated. To minimize the potential logical
components overlay and the interference between different logical components, we
first separated the page into three layers: text, image and vector graphics layer. Each
layer became an individual PDF document. To identify the logical structural compo-
nent blocks in each layer, we could either directly analyze the three PDF documents
or convert the PDF documents into bitmap images and perform document image
segmentation. We then obtained the outline of each component block in polygon and
extracted the style attributes and content of the component. For the text components,
we extracted the font, size, line spacing and color as the text style and extracted the
text strings as the content. For the image components, we identified the shapes of the
images and the masks if they existed and extracted the data stream of each image into
an image file. For the vector graphics components, we identified the path objects
within each component, converted the path objects into the SVG path objects and
created an SVG file for each vector graphics component.

Layout and Content Extraction for PDF Documents 215

PDF
document

Separate
document
into text,

image and
vector

graphics
layer

Text-only PDF
document

Image-only PDF
document

Graphics-only PDF
document

Identify the text
content within
each block

Identify the image
blocks

Identify the image
associated with

each block
Identify the vector
graphics blocks

Identify the text blocks and
style of the text such as

font, font size, orientation
and color

Identify the path objects within
each block; convert them into
the SVG path objects and form
an SVG file with those elements

for each block.

Combine the results
and export the XML

file

Preprocessing

Fig. 1. The overview of the processing pipeline. Each block represents a logical component or
subcomponent of the document.

2.2 Preprocessing

Page objects can be simple types like text, image or path objects. They can also be
compound types like container objects and form XObjects, which themselves may
contain a list of objects including text, image and path objects or even another level
of compound objects. In order to access all the objects on the page, objects within
compound objects were extracted and replaced in the content stream list to substitute
for the compound objects while the layout order of the objects was preserved. The
extraction and substitution process continued until there were no more compound
objects on the page display list.

2.3 Separating the Document into Text, Image
and Vector Graphics Documents

After the compound objects were replaced by the simple-types objects, all the text
objects on the page were extracted to form a new text-only PDF document, all the
image objects were extracted to form a new image-only PDF document and all the
path objects were extracted to form a new path-objects-only PDF document. The
order of the objects placed on the page was preserved during this exercise.

2.4 Text Segmentation

For the text on the page, the PDF document provides information of all characters
used in the text, their position and attributes, such as font, color, character spacing,
orientation, etc. Directly analyzing the PDF document can provide more accurate

216 Hui Chao and Jian Fan

information than document image analysis and OCR. And the results are not affected
by the contrast of the text, the background and text overlay. Therefore, our text seg-
mentation was performed directly on PDF document.

For each group (horizontal and
vertical): Get the first word

Start a text line with the word. Assign the orientation,
rotation and style of the word to the text line

 does it align
 with current text line ?

&& is its style ==existing
text line style?

yes

yes No

Add to existing line

Get
next word if

existing

Find the smallest line gap for each styles, that is, for text
lines with same font, font size, orientation, color, find the

shortest distance between the text lines,

Sort words in each orientation group according to
their bounding-box-center positions on the page

Find all the words or quads on the page, obtain
the content in each words or quads

Separate all the words or quads according to their orientation:
horizontal, vertical words

start a text segment with a text line in each orientation group

Group all the adjacent text lines with the same style to form
a text segment, the distance between the adjacent text

lines must be less than x * smallest line gap of that text line
style; assign the text line style to the segment. X is a

heuristic threshold.

Are there
more ungrouped

 text lines ?

Is there
a segment embedded in another

segment?

No

Yes

Combine Segments

Sort the lines within each text
segment for content extract

yes

Obtain the outline and
bounding box of each text

segment

Print out the bounding box, polygon outline,
text style (font, font size, color, orientation
etc.) of each text segment to an XML file

No

No

Fig. 2. The flowchart for text segmentation.

As shown in Figure 2, based on a bottom up approach, text segmentation was
started with the smallest text: from characters in PDF documents, words were formed
using Adobe’s word-finder [20, 21]; from words, text lines were formed based on the
alignment, style of the words and distance between them; and finally from text lines,
text segments were formed based on text lines adjacency, styles and line gaps.

2.4.1 Forming Text Lines from the Words
PDF documents have the style and position information about characters used in the
document. We used an attributes vector, which included font name, font size, color

Layout and Content Extraction for PDF Documents 217

and orientation of the words, to represent the style of the words. Adobe’s Acrobat
word-finder provides the coordinates of the four corners of the quad(s) of the word.
Quad is the quadrilateral bounding of a contiguous piece of a word. Based on the
orientation of the words, all the words on the page were separated into two groups,
horizontal and vertical words. Assuming the angle between the bottom line of the
quad and the horizontal axis of the page was α and 0<α<900, if 0<α<450, the word
was treated as horizontal word; otherwise, if 450<α<900, it was treated as a vertical
word. Quads in each group were sorted based on the center positions of the quads on
the page.

Assuming: (x, y) were the coordinates of the center of the quads and PW and PH
were the page width and height. For horizontal words, the sorting was based on the
values of x+ y* PW and for vertical words the sorting was based on the values of y +
x *PH. Therefore, horizontal words were sorted from left to right first and then from
top to bottom and vertical words were sorted from top to bottom first and then from
left to right. After sorting, the horizontal words aligned at the bottom were listed next
to each other. Similarly, vertical words aligned at the right were listed next to each
other.

Text lines were started with the first words of the horizontal and vertical words
group respectively. The style of text line adopted the style of the word that started the
text line. The next word on the list was selected and compared against the text line.
The following criteria were checked: style, alignment and distance between the
bounding box of the text line and the bounding box of the new word. The distance
between two aligned boxes was the shortest distance between the east and west edge
of the two boxes for bottom-aligned boxes and north and south edge of the two boxes
for right-aligned boxes. If the word and text line had same style, if they were aligned
at the bottom for the horizontal text or aligned at the right for the vertical text and if
the distance between the bounding boxes of the word and the text line was less than a
predetermined limit, e.g. space character or the maximum font width for the font used
in the word and text line, then the word was added to the text line. If the next word on
the list didn’t satisfy the criteria, another text line was started with this word. The text
content within each text line was obtained by concatenating the sorted words in the
text line.

2.4.2 Text Line Analysis
For text lines with same style, there is usually a consistent line gap between text lines
that belong to the same text segment or same paragraph. A larger gap is usually pre-
sent between two text segments. Text line analysis was performed to search for the
consistent line gap for each text line style on the page. The values of the line gaps
were used later in forming the text segments.

After all the text lines were formed, the distances between any two adjacent text
lines with the same style and orientation were measured. The adjacency referred to
two text lines with no objects sitting in the gap between them. The value of the text
line gap for a particular text style was the shortest vertical distance for the horizontal
text and the shortest horizontal distance for the vertical text. The distances were
measured between the bottoms of the current text line to the top of the next line.

218 Hui Chao and Jian Fan

2.4.3 Forming Text Segments from the Text Lines
Text segments were formed by grouping adjacent text lines within close distance,
with same style and orientation. A text segment was started with a text line. Using
this text line as reference, all text lines that were adjacent or attached to this text line,
had the same style as this text line and were with the distance shorter than a threshold
to this text line were added to the text segment. The threshold was a function of the
line gap and the font size for the particular text line style. We chose the threshold to
be the minimal of the twice of the line gap and twice the height of the bounding box
of the reference text line. The text lines that were added to the text segments were
marked as the grouped text lines. Using the newly added text lines as references, with
same criteria, more adjacent or attached lines were added to the text segment. This
process was repeated until there were no more ungrouped text lines that could be
added to the current text segment. Each text line could only belong to one text seg-
ment. The next segment started with another ungrouped text line. The same process
was performed to form all the text segments on the page.

2.4.4 Combining the Text Segments
Sometime, one or more words within a paragraph were highlighted by having differ-
ent style such as italic while the majority of the words were regular; superscriptions
or subscriptions might be present with different font size and different alignment
from the main text. Previous steps performed for the text segmentation would identify
them as individual text segments. Since our goal was to find the design intention for
the logical blocks, which should be minimally affected by the current content, in this
step, we combined the small text segments with the big one if the small text segments
were embedded in the big one. The attributes or the style of the combined segment
were the attributes or the style of the big text segment, which represented the style of
the majority of text within the block.

2.4.5 Tracing the Outlines of the Text Segments
In the graphical rich documents, we often saw a text block wrapping around another
arbitrarily shaped image or graphics block. It was important to find the outline of the
text block so that the shape and the layout relation between blocks would be pre-
served during text content replacement or modification. As shown in Figure 4, the
outline of a text segment was identified by tracing the corner points of the bounding
boxes of the sorted text lines within the segment. Text lines within a horizontal text
segment were sorted from the left to the right first and then the top to the bottom.
Text lines within a vertical text segment were sorted from the top to the bottom first
and then the left to the right. To find the outline of a horizontal text segment, as
shown in figure 4a, we first connected all the left corner points of the bounding boxes
of the text lines within the segment till the last text line; then moved to the right bot-
tom corner of the bounding box of the last text line; and connected all the right corner
points. When connecting points on the left side, only a move down was allowed and
when connecting points on the right side, only a move up was allowed. Processing
steps were as follows:

Layout and Content Extraction for PDF Documents 219

Starting point, move down
to find next point

(a)

Text line 1

Text line 2

Text line 3

Starting point, move right
to find next point

(c)

(b1)

T
ext line 1

T
ext line 2

T
ext line 3

(d1) (d2)

T
ext line 1

T
ext line 2

21

3 4

56

78

X

X

T
ext line 1

T
ext line 2

21

3 4

56

78

X

X

Text line 1
Text line 2

1

2

3

4

X X

5

6

7

8

(b2)

Text line 1

Text line 2

1

2
3

4
X

5

6
7

8

X

Fig. 3. Tracing the outline of text segment by connecting the corner points of the bounding
boxes of text lines. (a) For horizontal text lines, connections started with the text line on the
top, moved down to connect all the left side points, then moved up to connect all the right side
points of the bounding boxes of the text lines. (b1) When connecting the left side points, only
moving down was allowed. (b2) when connecting the right side points, only moving up was
allowed. (c)For vertical text lines, connection started with the text line on the most left, moved
right to connect all the points on the top and then moved left to connect all the points at the
bottom of the bounding boxes of the text lines. (d1) when connecting the points on the top, only
moving right was allowed. (d2) when connecting the points at the bottom only moving left was
allowed.

Assuming origin is at the lower left corner,
1. Sort all boxes by the vertical positions of the centers from the top to bottom B

0
, B

1
, …

B

n-1

2. Create two point-vectors L and R for the left and right points
3. Fill L with the left top and bottom points of the bound boxes of the text lines, starting with

the bounding box on the top: [L
0
 , L

1
, …L

2n
]=[B

0
.L.top, B

0
.L.bottom, B

1
.L.top, B

1
.L.bottom, …

B
n-1

.L.top, B
n-1

.L.bottom] ;
4. Fill R with the right bottom and top points of the bound boxes of the text lines, starting with

the bounding box at the bottom: [R
0
 , R

1
, …R

2n
]=[B

n-1
.R.bottom, B

n-1
.R.top, B

n-2
.R.bottom, B

n-

2
.R.top, …

B

0
.R.bottom, B

0
.R.top] ;

5. Set NumPtsL=2*n;NumPtsR=2*n; Count=0;
6. do{ count=0;

for I=0:NumPtsL
if connecting L

i
 to L

i+1
 is a right up move (i.e. L

i
.x< L

i+1
.x and L

i
.y< L

i+1
.y),

Remove L
i+1

from L[], count++; NumPtsL--;(figure 4(b1))
else if connecting L

i
 to L

i+1
 is a left up move (i.e. L

i
.x> L

i+1
.x and L

i
.y< L

i+1
.y)

Remove L
i
from L[], count++; NumPtsL--;(figure 4(b2))

}while(count>0)

220 Hui Chao and Jian Fan

7. do{ count=0;
for I=0:NumPts-1
if connecting R

i
 ->R

i+1
 is a right down move (i.e. R

i
.x< R

i+1
.x and R

i
.y< R

i+1
.y),

Remove R
i
from R[], count++; NumPtsR--; (figure 4(b2))

else if connecting R
i
 ->R

i+1
 is a left down move (i.e. R

i
.x> R

i+1
.x and R

i
.y< R

i+1
.y)

Remove R
i+1

from R[], count++; NumPtsR--;(figure 4(b1))
}while(count>0)

8. Connect all the points in the order of L
0
 -> L

2
, …->L

NumPtsL-1
�

R

0
 ->R

2
, …->R

NumPts-1
 -> L

0

where NumPtsL is the number of points in the set L and NumPtsL is the number of points in
the set R.

Similar to horizontal lines, to find the outline of a vertical segment, we first con-
nected all the top corner points of the bounding boxes of the sorted text lines, then
connected all the bottom points of the bounding boxes of sorted text lines as shown in
figure 4c. When connecting points on the top, only a move right was allowed; when
connecting points at the bottom, only a move left was allowed as shown in figure 4d.
The outlines of the segments were expressed as the polygons. The connecting points
were the vertex of the polygons.

2.4.6 Extracting the Content of the Text Segments
After all the text segments were identified, text contents within the text segments
were formed by concatenating the text strings of the sorted text lines within the seg-
ments.

2.5 Image Components Identification and Extraction

To identify the image components on the page, we could convert the image-only PDF
document to a bitmap image and apply document image segmentation. However,
since image objects in PDF are well-defined logical units (different from text and
path objects). Image components were identified directly from PDF document.

Each image object in the PDF document page content stream was identified as a
logical component of the document, the image component. The image data stream
was extracted and saved as an image file. If the image had a mask that gave the spe-
cial effect to the image or a clipping path that defined the visible portion of the image,
the mask and clipping path were extracted and the image object was saved as an SVG
image object and an SVG file would be created. An XML file, which described the
bounding box of the image component on the page, the width and height of the image
and the type of the image decoder, was created. It also referenced the image file name
or the SVG file name.

2.6 Vector Graphics Segmentation and Extraction

To find the vector graphics component blocks on the page, we had the choice of ana-
lyzing PDF directly [16] or applying document image segmentation technique in the
automatic mode [18, 19]. We found in a lot of cases, for vector graphics components,
it was more straightforward to analyze the bitmap of the page than to follow the
drawings of the path objects on the page. Therefore we applied document image seg-

Layout and Content Extraction for PDF Documents 221

mentation tool to find the regions that represented different components. The outline
of each region was used to find the path objects within each component on the PDF
page. With those path objects, we created the SVG representation for the logical com-
ponent.

2.6.1 Vector Graphics Zoning
We converted the path-objects-only PDF page into a bitmap image and applied a
document image segmentation tool to the bitmap image. Different zones were identi-
fied. Each zone represented a logical component. The outline of each zone was ex-
pressed in a polygon.

2.6.2 Identifying the Path Objects Within Each Block
In PDF document, drawings or path objects are expressed as a combination of lines,
curves and rectangles. In this step, the coordinates of the polygon outline of each
region in the bitmap image coordinate space were converted to the coordinates in
PDF page coordinate space, the path objects enclosed in the polygons were identified
and the corresponding SVG objects were created.

To find out if a path object in the PDF document belonged a region, we could
check if all the points along the lines, curves and rectangles of the path objects were
within the polygon outline of the region. To reduce the computing complexity, we
only checked the starting and the ending points of the lines and curves and the four
corner points of the rectangles. If and only if the starting and end points for lines and
curves and four corner points of the rectangles of all the sub-segments of a path ob-
ject were inside the polygon [22], then the path object was identified as part of the
logical component. All the identified path objects were translated into SVG path
objects. An SVG file was created for each logical component.

If there were still unidentified path objects left, which didn’t belong to any existing
logical components, the unidentified path objects were grouped to form new logical
components based on their attachment, vicinity and layering order [17]. Again an
SVG file was created for each logical component.

2.7 Combining Components into a Compound Component

If a component block discovered in 2.4-2.6 was completely embedded in another
block, the two components were most likely to be one logical component. Therefore
in this step, they were combined into a compound component with two subcompo-
nents. This process was repeated until there was no one component being completely
embedded in another component. The subcomponents remained to be accessible logi-
cal units that could be modified or replaced.

3 Results

Figure 4 shows the results of applying our tool to a PDF page at different processing
steps. The outlines of different segments were highlighted, with the text segments in
green, the image segments in red and the vector graphics segments in blue. The text

222 Hui Chao and Jian Fan

contents were expressed in XML files. Images were saved as image or SVG files and
vector graphics components were saved as SVG files.

Fig. 4. An example that shows how the system works by giving the results at each processing
step. The page was separated into text, image and vector graphics layer; each layer was ana-
lyzed to identify logical-component blocks. The style and content of the components were
extracted.

We have tested our tool on 100 pages of HP marketing collaterals and 100 pages
of traveling brochures. Segmentation results were manually checked. Segmentation
errors happened in 18 pages among these 200 pages. Errors were in three categories:
(1) pages with tables, an example is shown in figure 5a, in which the text in different
cells were grouped into the same segment; (2) text on a map, an example is shown in
figure 5b, in which text that were close to each other, but indicate different locations
on the map were grouped into the same segment; (3) text style changing after a colon,
an example is shown in figure 5c. To overcome these errors, methods to identify
special kinds of logical components need to be developed, such as table and map
recognition. A user instruction would also help to improve the precision of results.

Fig. 5. Examples show the segmentation errors. The segmentation error happened when the text
were embedded in a table (a); when text were embedded in a map (b); and when the text style
changed after the colons (c).

4 Conclusion and Discussion

We have developed techniques to identify logical components on a PDF page. The
outlines of the segments were determined and the style and content within the com-
ponents were extracted and expressed in an XML file. A user could treat the outline

���������
	
���

�
������
����������

���
��

����
�
����
��

�
���
����
��

�������������
����

(a) (b) (c)

Layout and Content Extraction for PDF Documents 223

and style attributes of the logical components on the page as a layout template for the
new page creation. A user could also take a logical component to modify it or to re-
use it in another document.

However, page layout is more than the outline of the document, it is also the rela-
tion constraints between the logical components such as alignments and white spaces.
Further research need to be done to discover the layout constraints so that a more
dynamic layout reuse can be allowed.

Acknowledgement

We want to thank our colleague Steve Simske for providing the document image
segmentation tool, Lei He at Atlanta Armstrong University for testing the image seg-
mentation tool and developing user interface for our tool.

References

1. “PDF Reference”, Adobe system Incorporated.
2. “Acrobat 4: Adobe’s bid to make it more than a viewer” Walter, M. Seybold report on

Internet Publishing. Vol. 3, no. 7.
3. Nagy G., Seth S. and Viswanathan M., “A prototype document image analysis system for

technical Journals”, IEEE Computer, vol. 25, pp. 10-22, 1992.
4. Dengel, A. “Initial learning of document structures”, the Second International Conference

on Document Analysis and Recognition (ICDAR),1993 pg 86-90.
5. Dengel, A., Dubiel, F.“Clustering and classification of document structure? A machine

learning approach.” ICDAR 1995, pp 587-591.
6. Kise, K. Incremental acquisition of knowledge about layout structures from examples of

documents. ICDAR 1993, (pp.668-671).
7. Walischewski, H., Automatic knowledge acquisition for spatial document interpretation.”

Proceedings of the Fourth ICDAR 1997, (pp. 243-247).
8. Jain A., Yu, B., “Document representation and its application to page decomposition”.

IEEE Transactions on pattern analysis and machine intelligence, Vol. 20, No. 3, March
1998.

9. Smith, P.N., Brailsford, D.F., “Towards structured, block-based PDF”, Electronic publish-
ing: origination, dissemination and Design, Vol. 8 no. 2-3.

10. Lovegrove W.S., Brailsford, D.F “Document analysis of PDF files; method, results and
implications”, Electronic publishing, Vol. 8 no. 2-3.

11. Anjewierden A.,“AIDAS: Incremental logical structure discovery in PDF document“,
ICDAR 2001.

12. Karim, H., Rigamonti, M.,Lalanne, D., Ingold, R. “Xed: a new tool for extracting hidden
structure from electronic documents”. Digital Library workshop. Palo alto, January 2004.

13. Haffner, P., Bottou, L., Howard, P., Cun, Y. L. “DjVu Analyzing and Compressing
Scanned Documents for Internet Distribution”. ICDAR, pp 625-628, 1999.

14. Jian Fan, "Text extraction via an edge-bounded averaging and a parametric character
model", Proc. Electronic Imaging 2003, SPIE Vol. 5010, pp. 8-19, 22-24 Jan. 2003, Santa
Clara, CA.

224 Hui Chao and Jian Fan

15. Chao, H, Beretta, G, Sang, H, “PDF Document Layout Study with Page Elements and
Bounding Boxes”, DLIA 2001.

16. Chao, H., “Graphics Extraction in PDF Document”, SPIE vol. 5010, no. 317.
17. Chao, H., “Background extraction in multi-page PDF document”, DLIA 2003.
18. Simske, S.J., Arnabat J., “User-directed analysis of scanned images”, ACM workshop of

Document Engineering 2003.
19. Revankar, S.V. and Fan, Z., “Image Segmentation system”, U.S. Patent 5,767,978, January

21, 1997.
20. Paknad, M.D. and Ayers R M., “Method and apparatus for identifying words described in

a portable electronic document”, US patent 5,832,530.
21. Ayers; Robert M., “Method and apparatus for identifying words described in a page de-

scription language file”, US patent 5,832,531.
22. O’Rourke, “Computational Geometry in C”, 1998.

	1 Introduction
	2 Document Layout and Content Analysis and Extraction
	2.1 Overview of the System
	2.2 Preprocessing
	2.3 Separating the Document into Text, Image and Vector Graphics Documents
	2.4 Text Segmentation
	2.5 Image Components Identification and Extraction
	2.6 Vector Graphics Segmentation and Extraction
	2.7 Combining Components into a Compound Component

	3 Results
	4 Conclusion and Discussion
	References

