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Abstract. This paper introduces a novel approach for dynamic structuring of 
contextual lattices. It is anticipated that the approach can be applied to improve 
the accuracy of word-segmentation patterns in autonomous text recognition sys-
tems. A multi-level hierarchical structure of lattices is used to implement the 
algorithm, and the approach can be applied in a generic manner to other pattern 
recognition problems. We apply a top-down structural model in parallel with a 
constrained probabilistic model and intelligent distributed searching paradigm. 
This paradigm is based on the integration between probabilistic bi-grams and 
adaptive intelligent swarm-based agent search to identify the most likely sen-
tence structures. The searching paradigm allows the exploitation of positive 
feedback as a search mechanism and, consequently, makes the model amenable 
to parallel implementation. The distributed intelligence of the proposed ap-
proach enables the dynamic structuring of contextual lattices and has proved to 
scale well with large lattice sizes. Moreover, we believe that the proposed archi-
tecture solves the ill-conditioned nature of most pattern recognition problems 
that lies in the effect of noise in the segmentation phase. To verify the devel-
oped Swarm-based Intelligent Search Algorithm (SISA), a simulation study was 
conducted on a set of variable size scripts. The proposed paradigm proved to be 
efficient in identifying the most highly segmented patterns and also returned 
good decisions concerning lower probability segments enabling further re-
segmentations and re-combinations to take place. The paper is the first to apply 
the intelligent swarm-based paradigm for the identification of optimal seg-
mented patterns in contextual recognition models. The algorithm is compared 
with other algorithms for the same problem, and the computational results dem-
onstrate that the proposed approach is very efficient and robust for large-scale 
statistical contextual-lattice structures. 

Introduction 

Sentence segmentation has become an integral part of intelligent text recognition and 
the optimization of large vocabulary models. However, sentence segmentation may 
include false segments (or sub-words) as a result of the misidentification of segmenta-
tion points. The existence of these false words leads to sub-optimal or inaccurate 
solutions, and severely reduces the recognition rate. Therefore effective identification 
and reconstruction of false paths (or sentence words) corresponding to false sub seg-
ments has the potential to improve the segmentation accuracy. Extensive search has 
been carried out on the problem of identifying false paths that arise in some applica-
tions, such as time analysis and circuit optimization in large digital IC designs. Al-
though the complete identification of all such false paths in a circuit or network is an 
NP-complete problem, a number of heuristic or approximate methods have been pro-
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posed [1,2]. The search process is the most important and challenging part of our 
optimization strategy. The likelihood of different segmentation patterns is computed 
using scores on the feature model. The search paradigm has then to efficiently choose 
patterns with the highest likelihood. The number of possible hypotheses grows expo-
nentially with the number of features and imposes heavy constraints on the computa-
tion and storage requirements. Therefore intuitively obvious techniques such as an 
exhaustive search are not at all practical and strategies that save on computation by 
modifying the search space are vital to achieve efficient and accurate performance.   

In character recognition dictionary or n-gram constraints [3] will restrict the allow-
able combination of characters in forming words, while grammatical constraints will 
limit the assembly of words into sentences. Lack of success in some pattern recogni-
tion problems can be a result of the problem being ill conditioned [4]. An example of 
the ill-conditioned nature of pattern recognition lies in the segmentation stage. The 
noise removal stage may apply smoothing for example, which reduces noise, but may 
result in adjacent symbols touching one another. Where white space is used to seg-
ment putative characters this small change will result in an incorrect glyph that will 
fail to be recognized correctly. In practice no segmentation method is sufficiently 
reliable for handwritten document recognition, and some symbols will be merged 
while others are broken. These errors are difficult to recover from in a pipeline pattern 
recognition architecture. If many putative segmentations are passed forward in order 
to increase the likelihood that the correct one is amongst them, then a combinatorial 
explosion of possibilities is likely to render solution space intractable. 

In this paper, we introduce a new architecture for contextual modeling using multi-
layer lattices in parallel with an intelligent distributed searching paradigm for the 
optimization of the contextual model. A new adaptive intelligent swarm-based agent 
approach is proposed for the optimization of this lattice structure where good sugges-
tions can be fed back to the segmentation layer to adjust the segmentation points. The 
constructed multi-layered lattice is dynamically stretched and/or shrunk according to 
improvements in the segmentation process until a more optimal structure is obtained. 
The proposed approach can be applied to find the best sub-lattice structure of L-best 
sentences from segmented entities formed from low-level processing. The proposed 
iterative intelligence, swarm-based agent model is a first applied to this class of prob-
lems. From experimental results we believe that our proposed approach holds promise 
in improving the segmentation process and is robust and dynamically adaptable to any 
changes in the contextual model. The paper is organized as follows. In the next sec-
tion, we introduce the contextual model based on a multi-layer lattice and illustrate by 
describing the representation of the segmented words using attributed word-lattice 
graph. Next, in section 3, we introduce the proposed swarm-based intelligent search-
ing paradigm. The dynamic re-structuring of contextual lattices is explained in sec-
tion 4. Experiments and simulation results are presented in section 5 with an analysis 
of the performance of the proposed algorithm. Finally, a summary and conclusions 
are given in section 6. 

Contextual Modeling Using a Multi-layer Lattice  

In order to explain the model, a simple example is illustrated by a tiny subset of pos-
sible English sentences as follows: (1) The cat sat on the mat, (2) The boy threw the 
ball. 



498      David G. Elliman and Sherin M. Youssef 

 

Fig. 1.  A Word Lattice      Fig. 2.  A Letter Lattice 

In this domain we have only ten words, three of which are the word “the”. The a 
priori probability of “the” is therefore 0.3, while that of the other words is 0.1. A 
transition matrix can also be derived with the probability of any pair of words appear-
ing contiguously. We introduce special tokens to mean before the start of, and after 
the end of a sentence, and include these in our bi-gram probabilities. These tokens 
might be termed top ( )  and bottom (⊥) in the context of forming a lattice as shown 
in figure 1. In general a lattice implements a partial ordering based on the ≤ relation-
ship. Our lattice refers to the ordering or words in a sentence and is in fact a total 
ordering (that is on <) as it is not possible for two words to share the same position in 
a sentence.  

A similar lattice may be constructed for letters as shown in figure 2. Consider an 
imperfect segmentation process that takes an image and divides it into a sequence of 
glyphs which it is hoped correspond to characters, and which also identifies word 
boundaries (∆). Each of the glyphs is processed by a classifier, which returns a set of 
character classes, each with an associated probability. Every sentence of characters 
between word boundaries is applied to a character lattice of the type shown in figure 
2. This prunes character combinations that could not form words in the model. If no 
valid word can be formed then the system backtracks to the segmentation stage. 
Where words can be formed that obey the lattice constraints, these are assigned a 
probability according to the recognition, letter and letter bi-gram probabilities. That 
is:  Pw = ∏ l=1...L (pl rl) ∏ l=1...L-1(dl). 

Where rl is the recognition probability of a letter, pl is the a priori probability of 

that letter, and dl is the bi-gram probability of the letter in position l and the following 
letter. This expression is normalized to remove the effects of word length and scaled 
to a convenient magnitude. The system backtracks to the segmentation stage, and the 
process is repeated for the affected words. This process will usually result in groups 
of words that have a probability of being correct. These constitute our top-down cue, 
and we hypothesise words based on the most likely words in the model. This process 
will suggest segmentation and classification mistakes that can be corrected, and the 
process repeated to try to establish further results that are consistent with those se-
quences already found.  

Representation of the Segmented Words Using Attributed Word-Lattice Graph  

Word strings (or sub segments) which are resulted from different segmentation likeli-
hood patterns, are represented as a bi-gram attributed word-lattice graph LG (�, S, T, 

A, �), where:  
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�: token mean before the start of sentence.    
S: the set of all states in the lattice, where a state represents a word (or sub-segment) 

string, |S| = N. 
T: the set of bi-gram transition probability between each two words. 
  η = {ηij ∀ i,j ∈N},  where ηij  is the bi-gram probability of observing a 

word j given that it is preceded  by the word i. 
A: the set of states probability pairs , A = {a1,a2,a3,…,aN}, and ai = 

{ϕi(u),ϑi(u)}, where: 

  ϕi(u) is the recognition probability, and ϑi(u) is the a priori probability of 
that word.  

�: token mean after the end of sentence. 
 
 

 

Fig. 3.   An example of a fully-connected Word-lattice graph of 14 words 

Swarm-Based Intelligent Search   
for the Optimization of Contextual Lattices (SISOCL) 

Overview of Swarm Intelligence (Ant Colony Systems ACS) 

Swarm intelligence originates from the work on the emergence of collective behaviors 
of real ants [5-7]. Ant Colony Systems (ACS) is a particular heuristic of ant colony 
optimization (ACO), one of the nature-inspired meta-heuristics to the solution of 
discrete optimization problems. The first ACS was introduced by Dorigo [8,9], which 
is termed the ant system (AS). It is the result of research on computational intelli-
gence approaches to combinatorial optimization problems. By laying down different 
density trails of an attracting substance called a “pheromone”, ants become able to 
discriminate between food sources of different routes and qualities. Sensing of 
pheromone trails is used as a mechanism for the indirect communication among indi-
viduals regarding paths, and used to make routing decisions. In ant colony-based 
algorithms, a set of artificial agents moves on the graph which represents the instance 
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of the problem. While moving they build solutions and modify the problem represen-
tation by adding collected information. This process continues until almost every 
agent will eventually choose the same optimal path. Studies have shown that agents 
learn about the state of the environment continuously and very effectively, and can 
search for specific items of information in a large search space. In addition, the artifi-
cial ants are equipped with a local heuristic function to guide their search through the 
set of feasible solutions.  

The Proposed Swarm Agent Model 

The objective of our searching paradigm is to find the top L-best sentences in the 
contextual segmentation model and return good decisions for dynamic re-structuring 
of the contextual word-lattice.  The main concept in the algorithm is based on generat-
ing populations of swarm agents able to navigate in the search space in a distributed 
manner and intelligently find the best sub-lattice structure representing the top L-best 
sentences. Two types of swarm-based agents are proposed in our model: the Forward 
agent (F-agent) and the Backward agent (B-agent). The Forward agent (F-agent) is 
modeled as a small moving object, handling a small stack memory and capable of 
exploring the search space based on the local knowledge of the neighbouring nodes, 
and which can apply a local updating process to the environment. At any time step, 
the F-agent at node i has to choose a neighboring node j to move to. It samples a ran-
dom number q. If q ≤ q0 , then the best forward word-node is chosen (exploitation) 
according to equation (1), otherwise a word neighboring node is chosen according to 
equation (2) (bias exploration): 
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where: 

τ(i,u) is the pheromone trail of edge (i,u), 
η(i,u) is the bi-gram probability from word node i to node u. 
Sk(i) is the set of nodes that remain to be visited by agent k positioned on 

node i (to make the solution feasible), 
ψ(u) is the word-node probability calculated as follows: 

ψ(u) = ϕ(u) . ϑ(u), where ϕ(u) is the probability of recognition of
candidate word u, and ϑ(u) is the probability of frequent use in the
BNC dictionary. 

β is a parameter which determines the relative importance of phero-
mone versus  bi-gram cost (β>0), 

q is a random number uniformly distributed in [0,1], 
q0 is a parameter ( 0 ≤ q0 ≤ 1 ) which determines the relative importance 

of  exploitation versus exploration, 
J is a neighboring word-node selected according to the probability 

distribution, called a random-proportional rule, given in the follow-
ing equation:  

(1) 
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When building the agents tours, the chosen edges are guided by both heuristic 
information and pheromone information. The state transition rule resulting from 
Equations (1) and (2) favour the choice of nodes (word segments) connected by 
highly transition probability (highly correlated) words with a greater amount of 
pheromone.  While constructing a tour, the swarm F-agent apply a local updating. It 
changes the pheromone level on its visited nodes (or edges) by applying the local 
updating rule as follows: 

τρτρτ 0),()1(),( +−= jiji     (3) 

where τ0 is the initial pheromone level and 0 < ρ < 1 is the pheromone evaporation 
parameter. The effect of the local updating rule is to make the desirability of edges 
change dynamically in order to shuffle the tour. If ants explore different paths, then 
there is a higher probability that one of them will find an improving solution than if 
they all search in the narrow neighbourhood of the previous best tour. Every time an 
ant constructs a path, the local updating rule will make its visited edges’ pheromone 
diminish and become less attractive. Hence, the nodes in one ant’s tour will be chosen 
with a lower probability in building other ant’s tours. As a consequence, ants will 
favor the exploration of edges not yet visited and prevent the convergence to a com-
mon path. A Backward swarm agent (B-agent) is modeled in the same way; a moving 
object, handling a stack memory and which is able to apply a global updating. The 
global updating rule is performed after all swarm-agents in the population have com-
pleted their tours. In order to make the search more directed, global updating is in-
tended to provide a greater amount of pheromone to highly likelihood sentences and 
reinforce them. Therefore, only the globally L-best swarm-agents that found the L-
best solutions (the most highly probable sentences) up to the current iteration of the 
algorithm are permitted to deposit pheromone.  

The B-agent (corresponding to each of the L-best tours) traverses the same rout of 
its corresponding F-agent in the opposite direction and the pheromone level is modi-
fied according to the global updating rule which is proportional to the fitness of the 
corresponding tour. The fitness Γ of a candidate solution  is estimated as follows: 
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where η(i,u) is the bi-gram probability (transition) from node i to node u, ϕ(u) is the 
probability of recognition of word string u, and ϑ(u) is the a priori probability of that 
word. γ is a scaling coefficient. The solution length lψ is represented as the number of 

segmented words in the solution ψ. This length lψ depends on the location of segmen-

tation points in the proposed sentence. The main objective of the globally updating 
rule is to increase pheromone on word-nodes (edges) of the current L-best tours and 
decrease pheromone on other edges. The pheromone level is modified according to 
the following equation:  
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where Γ(ψ) is the fitness of the corresponding sentence belonging to the L-best global 
best sentences ψgb (tours) found up to the current iteration. σ ( 0 < σ < 1 ) is the 
pheromone evaporation rate. 

The Dynamic Re-structuring of Contextual Lattices  

The proposed paradigm returns good decisions concerning lower probability segments 
enabling further re-segmentations and re-combinations to take place. The re-
segmentation request of the intelligent SISOCL Layer can take three forms: 

–  Split(*p). This feedback request ask for splitting a word-string p into two 
new word segments. An example is shown in figure 4. 

–  Merge(*p1, *p2). This request ask for the generation of a new word corre-
sponds to merging two word strings p1 and p2 (figure 5). 

–  Adjust(*p1, *p2). This request ask for the generation of two new word-
nodes resulting from adjusting the segmentation point between two words 
strings p1 and p2. An example is shown in figure 6. 

 

 a  b 

 c  d 

 v 

 a  b 

 c  d 

 v 

 V’ 

 v” 

(a) (b) 

 

 a  b 

 c  d 

 f 

 e 

 a  b 

 c  d 

 f 

 e 

 x 

(a) (b) 

 
Fig. 4.  (a) intermediate node v the Splitting Fig. 5.  (a) intermediate nodes e and f, (b) node 
of node v into v’and v’’ x resulting from Merging e & f 

 a  b 

 c  d 

 f 

 e 

 a  b 

 f 

 e  e’ 

 f’ 

(a) (b) 

 

Fig. 6. (a) intermediate nodes e and f, (b) nodes e’ and f’ are resulting from Adjusting the seg-
mentation points between e & f 
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Experiments and Results 

In this section we present the results of our main experiments. We show that the pro-
posed iterative method of jointly optimizing a lexicon, segmentation, and language 
model not only results in better sentence segmentation but also improves the reduc-
tion in the search space of the hypothesis model. The Word-Lattice models are trained 
using a dataset of 6,318 words with more than 800 occurrences in the whole 100M-
word British National Code (BNC). Sets of electronic texts (e-texts), which are pro-
duced by Gutenberg Project (one of the Internet’s oldest producer of free electronic e-
texts) are used in the training process. The first part of our work, we have designed 
and produced a toolkit, which is a set of C++ software programs designed and imple-
mented to facilitate textual document modeling work. Some of the designed tools are 
used to process general textual data into: word frequency lists and vocabularies, word 
bi-gram models, and bi-gram-related statistics. For the purpose of experimentation 
with the proposed searching paradigm we designed our own vocabulary language 
model and care has been taken to construct these test models so as to verify the per-
formance of the search engine accurately. For the purpose of scoring, we used the a 
priori probabilities and the recognition probabilities of each segmented word (word 
segment) and the bi-gram transition probabilities that represent correlation between 
word segments [10]. Synthetic data is created by adding different hypothesis to each 
state in the model. To specify the improving in the quality of the solution, we used the 
probability factor g*, defined as: g* = q ( q – q’ ) , where q is the probability of the 
best solution up-to time of consideration, and q’ is the probability of the 2nd best solu-
tion. In figures 7 and 8, we compare the performance of our proposed algorithm with 
two randomized local search algorithms: Simulated Annealing (SA) and a hybrid two-
Phase Optimization (2PO) [11].  

Figure 7 tests the performance over the time. Both our proposed algorithm and the 
2PO algorithm converge faster than SA. In figure 8, we studied how well the algo-
rithms scale with the problem size. In order to simulate situations where there is a 
limited time for optimization, each algorithm was terminated after a constant execu-
tion time of 120 seconds even if it did not converge. For larger problems, SA is inef-
fective since it does not have enough time to freeze. Although 2PO does not converge 
either, it still manages to find good solutions even for big problem sizes. In figure 9, 
we compare the running time of the proposed SISOCL algorithm with the stack de-
coder A* algorithm [12], Viterbi algorithm [10,13], SA, and 2PO algorithms, for 
different lattice sizes.  

As observed from the figure, the swarm-based algorithm (SISOCL) is very robust 
for large graph sizes. Its running time grows with a smaller rate than the other com-
pared algorithms. On the other hand, the running time of the 2PO algorithm grows 
with a smaller rate than SA. The ratio between the running time of SA and 2PO in-
creases with the increase in the number of relations in the large lattice joins the word 
states. This can be explained by the fact that the 2PO starts with a local minimum. 
The systematic A* algorithm has a high run-time cost which limits its applicability for 
large problems. This can be explained by the fact that the A* algorithm works in a 
best-first search of the lattice looking for the highest probability path, and hence the 
highest probability sentence. So, as the number of states and relations increase, the 
running time grows exponentially, rendering exhaustive optimization inapplicable. 
Figure 10 shows the increase in the probability of the best and 2nd best solution corre-
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corresponding to dynamic changes in the word-lattice model relative to re-
segmentation processes. As shown in the chart, we obtained fast improvement. This 
means that the proposed approach is intelligent enough such that coming back with 
good decisions for the re-segmentation points, and hence achieve fast improvement in 
identifying the best segmentation pattern with maximum likelihood.  

Figure11 illustrates the changes in the relative probability versus the number of re-
segmentations for different word-lattice sizes. As observed from the figure, the pro-

Fig. 7. The change in the likelihood of the best solution versus simulation time for different
algorithms in comparison (swarm-based, SA and 2PO), for a word-lattice graph of size 35. 

 

Fig. 8.  Likelihood probability of the best solution versus problem size 
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posed searching paradigm first converges to the most likelihood solution. Then, deci-
sions for re-segmentations take place. This is represented as a rapid increase in the 
relative probability, rapidly reaching values close to 1. So, the relative error decreases 
dramatically according to the dynamic re-configuration of the word-lattice structure. 
Good re-segmentation decisions are taken such that improvements of solutions takes 
place very fast even for large graph sizes. 

 

 

Fig. 9.  Convergence time for different Word-lattice sizes 

 

Fig. 10. Improving the probability of the Best segmentation pattern versus number of re-
segmentation  

Summary and Conclusions 

A pattern recognition architecture has been proposed using hierarchical constraint 
lattices, backtracking, and a swarm-based search strategy. This has been implemented 
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and found to be highly effective and to scale well with large attributed lattice struc-
tures. If the lattice consists of a limited number of states, application of systematic 
algorithms, like A*, is efficient. As the number of states increases, however, the run-
ning time of these systematic methods grow exponentially, rendering exhaustive op-
timization inapplicable. The main strengths of the proposed algorithm are its robust-
ness and the intelligent nature of the agents in exploring new search areas. Another 
potential advantage of such a paradigm is the ability to explore new good solutions in 
large size graphs and dynamically adapt to the changes in the hypothesized model. 
The simulation study for different word-lattice graphs demonstrates that the proposed 
algorithm is highly robust and very efficient in the sense of yielding fast and high-
quality solutions. The results show that the method can easily remove a large set of 
specific false sub-paths with excellent run time performance and that highly probable 
sentences are computed early in the search. 

 

Fig. 11.  Relative probability versus no. of re-segmentations for different word-lattice sizes 
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