S-ACO: An Ant-Based Approach to
Combinatorial Optimization under Uncertainty

Walter J. Gutjahr

Dept. of Statistics and Decision Support Systems, University of Vienna
walter.gutjahr@univie.ac.at,
http://mailbox.univie.ac.at/walter.gutjahr/

Abstract. A general-purpose, simulation-based algorithm S-ACO for
solving stochastic combinatorial optimization problems by means of the
ant colony optimization (ACO) paradigm is investigated. Whereas in a
prior publication, theoretical convergence of S-ACO to the globally opti-
mal solution has been demonstrated, the present article is concerned with
an experimental study of S-ACO on two stochastic problems of fixed-
routes type: First, a pre-test is carried out on the probabilistic traveling
salesman problem. Then, more comprehensive tests are performed for a
traveling salesman problem with time windows (TSPTW) in the case of
stochastic service times. As a yardstick, a stochastic simulated annealing
(SSA) algorithm has been implemented for comparison. Both approaches
are tested at randomly generated problem instances of different size. It
turns out that S-ACO outperforms the SSA approach on the considered
test instances. Some conclusions for fine-tuning S-ACO are drawn.

1 Introduction

The application of exact or heuristic methods of combinatorial optimization
to real-world problems often faces the difficulty that for a particular problem
solution considered, there is uncertainty on the objective function value achieved
by it. A traditional way to represent uncertainty is by using a stochastic model.
Based on such a model, the objective function becomes dependent not only on
the solution, but also on a random influence, i.e., it becomes a random variable.
Most frequently, the practical aim is then to optimize the expected value of this
random variable.

When the expected value of the objective function can be represented as
an explicit mathematical expression or at least be easily computed numerically,
the solution of the stochastic combinatorial optimization problem needs not to
be essentially different from that of a deterministic problem: The stochastic
structure is then encapsulated in the representation of the expected objective
function, and (possibly heuristic) techniques of deterministic optimization can
be used. Very often, however, it is only possible to determine estimates of the
expected objective function by means of sampling or simulation. This is the
starting point for the area of simulation optimization, which has been a topic
of intense research for several decades, but seems to undergo an interesting and

challenging shift at present, the key features of which have recently been out-
lined by Michael C. Fu [8]. In Fu’s opinion, there is a gap between research in
stochastic optimization concentrated on sophisticated specialized algorithms on
the one hand, and the current boom of integration of optimization routines into
commercial simulation software packages, mainly based on metaheuristics such
as Genetic Algorithms or Neural Nets, on the other hand. Fu argues that tradi-
tional stochastic optimization algorithms are often not (or not easily) adaptable
to complex real-world simulation applications, whereas the mentioned meta-
heuristic approaches, in their stochastic variants, frequently lack methodological
rigor and are not provably convergent.

As a promising candidate of a metaheuristic that holds the potential for
an extension to simulation optimization purposes, Fu explicitly names the Ant
Colony Optimization (ACO) metaheuristic approach as introduced by Dorigo
and Di Caro [6]. To make ACO satisfy these expectations, one would have to fill
the gap mentioned above by developing ACO algorithms for combinatorial op-
timization under uncertainty that are both broadly applicable and theoretically
well-founded. The present article aims at a step in this direction by presenting
first experimental results for S-ACO, an ACO-based general-purpose stochastic
combinatorial optimization algorithm for which the convergence to the optimal
solution has been shown in [11].

Before presenting the S-ACO approach, let us briefly refer to some alterna-
tive techniques. Traditional methods for optimization under uncertainty such as
Stochastic Approximation or the Response Surface Method are not well-suited
for an application in the context of combinatorial optimization. Problems that
are both stochastic and combinatorial can, however, be treated by Sample Av-
erage Approximation [16], Variable-Sample Random Search Methods [14], the
Stochastic Branch-and-Bound Method [18], the Stochastic Ruler Method [2], or
the Nested Partition Method [19]. As approaches drawing from metaheuristic al-
gorithms ideas, we mention Stochastic Simulated Annealing ([12], [1]) or Genetic
Algorithm for Noisy Functions [9].

In the field of ACO, an early paper on a stochastic combinatorial optimization
problem has been published by Bianchi, Gambardella and Dorigo [4], it investi-
gates the solution of the Probabilistic Travelling Salesman Problem (PTSP). For
the PTSP, an explicit formula for the expectation of the objective function value
is known, so the chosen solution technique cannot be generalized to problems
where sampling is necessary to obtain estimates of this expectation. We shall
use, however, the PTSP as a benchmark for pre-tests with our general-purpose
algorithm.

2 Problem Description and Cost Function Estimation

In the S-ACO approach, stochastic combinatorial optimization problems of the
following very general form are considered:

Minimize F(x) = E(f(z,w)) subject to xz € S. (1)

Therein, x is the decision variable, f is the cost function, w denotes the influence
of randomness, E denotes the mathematical expectation, and S is a finite set of
feasible decisions.

It is not necessary that E (f(z,w)) is numerically computable, since it can be
estimated by sampling: For this purpose, draw N random scenarios wi, . ..,wn
independently from each other. A sample estimate is given by

1 XN
EF) = § 3 f) ~B(w) 2)
Obviously, £F(z) is an unbiased estimator for F'(z).

It should be mentioned that, contrary to its deterministic counterpart, prob-
lem (1) is typically nontrivial already for a very small number |S| of feasible
solutions: Even for |S| = 2, except when F(z) can be computed directly, a
nontrivial statistical hypothesis testing problem is obtained (see [18]).

3 Algorithms

3.1 The S-ACO Algorithm

In [11], the algorithm S-ACO indicated in Fig. 1 has been proposed for solving
problems of type (1). SSACO works based on the encoding of a given problem
instance as a construction graph C, a directed graph with a distinguished start
node. (For examples, see section 4.) The stepwise construction of a solution
is represented by a random walk in C, beginning in the start node. Following
the definition of the construction graph encoding given in [10], the walk must
satisfy the condition that each node is visited at most once; already visited nodes
are infeasible. There may also be additional rules defining particular nodes as
infeasible after a certain partial walk has been traversed. When there is no
feasible unvisited successor node anymore, the walk stops and is decoded as a
complete solution for the problem. The conceptual unit performing such a walk
is called an ant.

The encoding must be chosen in such a way that to each feasible walk in
the sense above, there corresponds exactly one feasible solution. (The converse
property that to each feasible solution there corresponds exactly one feasible
walk is not required.) Since, if the indicated condition is satisfied, the objective
function value is uniquely determined by a feasible walk, we may denote a walk
by the same symbol x as a solution and consider S as the set of feasible walks.

When constructing a walk in the algorithm, the probability py; to go from a
node k to a feasible successor node [is chosen as proportional to 74 -7k (u), where
Tyt 18 the so-called pheromone value, a memory value storing how good step (k, 1)
has been in previous runs, and 7 (u) is the so-called wvisibility, a pre-evaluation of
how good step (k,1) will presumably be, based on some problem-specific heuris-
tic. ny(u) is allowed to depend on the given partial walk « up to now. For the
biological metaphors behind the notions “pheromone” and “visibility”, we refer
the readers to the basic texts on ACO, e.g., [7] [6].

In our stochastic context, the computation of the visibility values n;(u) needs
some additional explanation. The difficulty may arise that certain variables pos-
sibly used by a problem-specific heuristic are not known with certainty, because
they depend on the random influence w. This difficulty can be solved either by
taking the expected values (with respect to the distribution of w) of the required
variables as the base of the visibility computation (these expected values are
often directly given as model parameters), or by taking those variable values
that result from a random scenario w drawn for the current round.

Feasibility of a continuation (k,!) of a partial walk v ending with node k is
defined in accordance with the condition above that node [is not yet contained
in u, and none of the (eventual) additional rules specifies [as infeasible after u
has been traversed.

As in some frequently used ACO variants for deterministic problems, we
determine in each round a round-winner. In the stochastic context, we do this
by comparing all walks that have been performed in this round on a single
random scenario w, drawn specifically for this round. We also experimented
with determining the round winner based on several random scenarios, but this
only increased the runtime and did not improve the solution quality.

In an ACO implementation for a deterministic problem, it is always reason-
able to store the best solution seen so far in a special variable. A crucial difference
to the deterministic case is that in the stochastic context, it is not possible any-
more to decide with certainty whether a current solution x is better than the
solution currently considered as the best found, &, or not. We can only “make a
good guess” by sampling: After a current round-winner x has been determined, x
is compared with the solution considered currently as the overall best solution,
Z. This is done based on a sample of N, randomly drawn scenarios used by
both solutions. Also these scenarios are round-specific, i.e., in the next round,
new scenarios will be drawn. The larger NV,,, the more reliable is the decision.
The winner of the comparison is stored as the new “global-best” Z.

Both the solution & considered so far as global-best and the round-winner
are reinforced on each of their arcs by pheromone increments. The parameters
c1 > 0 and co > 0 in the algorithm determine the amount of pheromone in-
crement on global-best and round-best walks, respectively. Experiments showed
that ¢y should be chosen small compared to ¢;, but a small positive co produced
better results than setting cs = 0. The parameters ¢; and ¢, are allowed to
depend on the walks Z resp. x; in particular, it is reasonable to choose them
inversely proportional to the lengths of # resp. x, such that the overall amount
of pheromone increment is constant. (In the construction graphs used in this
paper, all walks have the same lengths, so ¢; and ¢ are chosen as constants.)

In [11], it has been shown that a slight modification of the algorithm S-ACO
of Fig. 1 with co = 0 (only global-best reinforcement) converges, on certain mild
conditions, with probability one to the globally optimal solution of (1). The
essential condition is that the sample size INV,,, grows at least linearly with the
round number m. The mentioned modification consists in an extension of the
pheromone update rule above by a rule that additionally uses a lower pheromone

bound (cf. [20]) of a certain type. In the present paper, we did not apply lower
pheromone bounds.

Procedure S-ACO
set iy = 1 for all (k,1);
for round m=1,2,... {
foranto=1,...,s {
set k, the current position of the ant, equal to the start node of C;
set u, the current walk of the ant, equal to the empty list;
while (a feasible continuation (k,!) of the walk u of the ant exists) {
select successor node [with probability py;, where
0, if (k,1) is infeasible,

Pkl = Tkl * nkl(u) / (Z(k,r) Thr * nkr(u)> R else,

the sum being over all feasible (k,r);
set k =1, and append [to u;

}

set T, = u;

}

based on one random scenario w, select the best walk x out of the

walks x1,...,xs;
if (m =1) set & = x; // & is the candidate for the best solution
else {

based on IV, random scenarios w,, compute a sample estimate
N Non .
E(F(z) - F(2)) = 5 2,0 (f(w,wn) = f(&,w0))
for the difference between the costs of x and z,
if (E(F(z) — F(2)) <0) set & = x;

evaporation: set T = (1 — p) 75 for all (k,1);
global-best reinforcement: set 7y := 7 + ¢; for all (k,1) € &;
round-best reinforcement: set 7y := 75 + co for all (k,1) € x;

}

Fig. 1. Pseudocode S-ACO.

3.2 Stochastic Simulated Annealing

In order to be able to compare the performance of the S-ACO algorithm with
that of an alternative approach, we also implemented the Stochastic Simulated
Annealing (SSA) algorithm described in [12]. SSA follows the philosophy of a
standard Simulated Annealing algorithm. The only difference is that each time
an objective function evaluation is required, which is the case when a current
solution x is to be compared with a neighbor solution ¥, the evaluation is based
on a sample estimate with some sample size N. In our implementations, we
tried to keep equal conditions for S-ACO and SSA. Therefore, in analogy to
S-ACO, the comparative evaluation of x and y in SSA is done by means of

the sample estimate E(F(z) — F(y)), which is used in SSA as the input A for
the probabilistic acceptance rule. As S-ACO, also SSA requires growing sample
sizes N to satisfy theoretical convergence conditions, so we applied comparable
sample size growth schemata to both algorithms. For two reasons, we did not use
advanced SA concepts as reheating: First, also our S-ACO implementation was
kept very basic (in particular, neither visibility values nor pheromone bounds
were used). Secondly, only little experience is available at present about how to
apply more elaborate SA concepts to stochastic problems.

4 Experimental Results

4.1 Pre-Test on the PTSP

In order to get a first impression of the performance of S-ACO and an idea
about suitable parameter choices, it seemed convenient to test the algorithm on
a problem where, for comparison, the exact value of F(x) can be determined,
because a closed formula for the computation of the expectation in (1) exists. A
good candidate for this purpose is the Probabilistic Traveling Salesman Problem
(PTSP) introduced by Jaillet [15]. The PTSP consists in finding a fixed closed
tour containing each of n customer nodes exactly once, such that the ezpected
tour length is minimized, where uncertainty comes from the fact that each cus-
tomer i has only a given probability p; of requiring a visit. A realization of a
tour only contains the subset of customers who actually require a visit, but the
sequence in which these customers are visited is taken from the fixed a-priori
tour z. For the PTSP, it is possible to compute the expected costs F(z) directly,
although by a somewhat clumsy formula containing double sums over double
products. In [4], the homogeneous version of the PTSP where all p; are equal
has been investigated within an ACO context. We experimented with the more
general inhomogeneous version, where the p; may differ from each other.

We tested four different problem instances of sizes n = 9, 14, 29 and 256,
respectively. The distance matrices D = (d;;) were taken from diverse TSP
benchmarks available in the Internet. These data were extended by probabilities
p; drawn uniformly at random in an interval [\, 1] with A = 0.3, 0.4, 0.5 and 0.5,
respectively, to obtain complete test instances. This part of the experiments was
performed on a PC Pentium 933 Mhz, 256 MB RAM.

The 12 parameter combinations resulting from the following values were in-
vestigated for each problem instance: (i) number of ants: s = 50, 500, (ii) evapo-
ration factor: p = 0.05, 0.01, (iii) visibility values: n(u) = 1/(dy;)? with 3 = 2,
3, 4. For the PTSP experiments, we only applied global-best reinforcement, i.e.,
we chose co = 0. The increment ¢; was chosen as 4p.

As the natural construction graph C of the S-ACO implementation for this
problem, we took the complete graph on node set {1,...,n}, where the nodes
represent the customers. Node 1 was taken as the start node.

A sample scenario w is obtained by making for each customer ¢ a random
decision (with probability p;) whether (s)he requires a visit or not (i = 1,...,n).

Let us briefly outline the main findings. The case n = 14 was the largest
for which we were still able to compute the ezact solution of the problem by
the explicit formula, combined with complete enumeration. Using S-ACO, best
results were achieved in this case by the parameter combination s = 50, p = 0.05
and 8 = 2. Already after 1 sec computation time, relatively good solutions (only
1.9 % worse than the optimal solution in the average) were obtained, with only
moderate improvements later.

For the largest instance (n = 256), the optimal solution value is unknown.
Best results were obtained by letting both § = 2 and the number s = 50 of
ants unchanged, but decreasing p to the value 0.01, and increasing the number
of rounds considerably: steepest decrements of the expected cost function were
observed between 5 and 20 minutes after the start of the computation.

An important goal of the pre-test was an answer to the question whether
sample size functions INV,, growing linearly in m, as prescribed by theory, would
turn out as useful. Indeed, the scheme N, = 50 + (0.0001 - n?) - m yielded best
results out of several alternatives, such as omitting the intercept 50, choosing
factors 0.001 or 0.00001, or working with a sample size independent of m. The
proportionality to n? has been chosen to parallel the space complexity O(n?) of
the algorithm. Future work should address the question whether schemes N,
that are only sub-linear in m suffice to give good results.

4.2 The TSPTW with Stochastic Service Times

Our main experimental results concern the Travelling Salesman Problem with
Time Windows and Stochastic Service Times (TSPTW-SST). Let us briefly re-
capitulate this NP-hard problem (cf. [5] and [13]):

As in the ordinary TSP, a set of customers {1,...,n} and a distance matrix
D = (d;;) are given. Distances are interpreted as driving times. Let us imagine
that the travelling person is a service engineer. To each customer %, a time window
[a;, b;] can be assigned, indicating that customer i requests a visit by the service
engineer starting at time t; with a; < t; < b;. Not every customer needs to have
a time window for the visit. The service at customer i takes some time Y;, where
Y; is a random variable with known distribution. After finishing the service at
customer i, the service engineer drives to the next customer on the list given by
the chosen permutation x of customers. The aim is to minimize the total driving
time. As in the case of the PTSP, we restrict ourselves to the fized-routes variant
of the problem: The sequence of customers must be fixed in advance and cannot
be changed when information on actual service times gets available.

We study a variant of this problem where time-window violations are possible,
but penalized by two cost terms (which are added to the driving-time component
of the objective function): If the service engineer arrives at customer ¢ at a time
t; before time a;, (s)he must wait until time a;. This is penalized by a (low)
cost factor C,, multiplied by the waiting time a; — ¢;. If, on the other hand, the
service engineer arrives too late, i.e., at a time ¢; after time b;, a (high) penalty
C}, multiplied by the tardiness ¢; — b;, is incurred.

4.3 Test Instance Generation

To perform a comparative test of S-ACO and SSA, we generated 20 problem
instances of different sizes and different degrees of difficulty at random. In the
case of each problem instance, n customer points were selected uniformly at
random from a square. Distances were computed as Euclidean distances between
these points. It was assumed that traversing an edge of the square takes 10 time
units. For each customer, a random decision was made on wether or not to
assign a time window, using a fixed probability pry for the existence of a time
window. If a time window was assigned, its length was selected uniformly at
random between 6 and 60 time units, and its start time was selected uniformly
at random between time 0 and the maximum time such that the whole time
window was still contained in an interval of 120 time units. The service time
distributions were chosen as uniform distributions on the interval between 2 and
6 time units.

We experimented with the following parameter values: For n, we investigated
the cases n = 10 and n = 20. For prw, we considered the cases prw = 0.25 and
prw = 0.50 if n = 10, and the cases pryw = 0.20 and prw = 0.40 if n = 20.
For each of these four combinations, five random test instances were generated.
For each of the 20 resulting test instances, we performed 20 test runs with each
of the considered algorithms and their variants described below. The penalties
for waiting time and tardiness were set to the values C, = 1 and C; = 20,
respectively. In other words, it was assumed that the cost of waiting one time
unit is considered equal to that of having to drive an additional time unit, and
the cost of being tardy by one time unit is considered as equal to that of having
to drive 20 additional time units.

4.4 Implementation Details and Outcome Evaluation

We chose the construction graph shown in Fig. 2. The start node is the leftmost
node. A visit of node v;; means that the ith visited customer is customer j. The
additional constraint imposed on the walks in this solution encoding is that after
some node v;; has been visited, all nodes vy; get infeasible for the rest of the
walk. (An equivalent solution encoding has been used by Bauer et al. [3] and by
Merkle and Middendorf [17] for scheduling problems.)

Vln V2n Vnn

Fig. 2. Construction graph for the TSPTW-SST.

We did not use visibility values, i.e., we chose 1y = 1.

A sample scenario w is obtained by drawing service times independently
for each customer according to the described uniform distribution, and f(z,w)
is evaluated by simulating the arrival and departure times connected with the
actual tour according to the drawn service times.

Besides the standard implementations of S-ACO and SSA as described in the
previous section, we also experimented with variants of each approach obtained
by the following possible modifications: First, inspired by ideas in [8] and [14],
we also implemented variants where the sample size is not increased according to
a fixed scheme, but computed in an adaptive way: If two solutions x and Z in the
case of S-ACO or two solutions z and y in the case of SSA are to be compared,
the sample size is gradually increased until the absolute value of the sample
estimate of the difference between the two objective function values is larger
than the triple standard deviation of this sample estimate. In other words, we
take the sample size in any case just sufficiently large to reject (at a significance
level of 99.93 %) the null hypothesis that both objective function values are
identical. This saves sampling time in cases where the objective function values
have a large difference anyway, so that it can be decided soon that one of them
is better. The resulting modifications of S-ACO and SSA will be denoted by
S-ACOa and SSAa, respectively.

Second, since it is well-known that metaheuristic tour optimization ap-
proaches can gain from postoptimization by local search, we considered variants
where after the run of the corresponding general-purpose algorithm, a 2-opt lo-
cal optimization procedure is applied to the resulting tour, where each function
evaluation is based on a random sample of size 5000. These variants are denoted
by appending the suffix “+l1s”.

The following parameter values were used: For S-ACO, we executed 2000
resp. 4000 rounds for n = 10 resp. n = 20. We set s = 50, ¢; = 2p, ¢ = 0.02p,
Ny, = 2m. Furthermore, we set p = 0.005 resp. p = 0.002 for n = 10 resp. n = 20.
For SSA, we chose the initial resp. final value of the temperature parameter as
1000 resp. 0.0001, reduced the temperature parameter by 5 % at each iteration,
executed 2n neighbor selections and accept/reject decisions at each temperature
level, and chose the sample size N; at the tth temperature level as 20¢. The
sample size increments for SSACO and SSA were designed in such a way that,
for both algorithms, a final sample size in the same order of magnitude resulted.

To evaluate the solutions produced by the different approaches, a final brute-
force simulation run with sample size N = 10% was applied to each of them. By
computing variances, it was verified that in this way, an accuracy of about one
digit after the decimal point could usually be reached. Only for the n = 10
problems it was possible to determine estimates of optimal solution values by
complete enumeration (CE) within a feasible time (about 4 hours per test in-
stance). The CE runs were based on a sample size of 10000 for each permutation,
so there is no guarantee that the produced values are optimal in an exact sense,
but they certainly give a fairly good estimate of the average difference between
the optimal values and those produced by the metaheuristic approaches.

10

4.5 Results

Table 1 summarizes the results for the four instance parameter combinations and
the eight metaheuristic variants. Each entry contains: (i) the achieved average
cost function value, averaged over the 100 runs in total (5 random instances, each
with 20 test runs), (ii) the computation time (in seconds) for a run, averaged
over the 100 runs, (iii) the superiority counts explained below. The TSPTW-SST
computations were performed on a PC Pentium 2.4 Ghz, 1 GB RAM.

In general, averaging across different problem instances is problematic since
they may have incompatible ranges of cost values (cf. [21]). Note, however, that
in Table 1, averaging has only been performed across different random instances
within the same application class, say, n = 10 and pprw = 0.25. Thus, each
reported cost value has a clear interpretation as an estimate of the expected
cost produced by the considered algorithm if it is applied to a problem instance
randomly selected — according to the given distribution — from the given ap-
plication class. By not re-normalizing the results within an application class, we
give “hard” random test cases (which are of a high practical importance in view
of robustness) their natural weight in comparison with “easy” test cases. Never-
theless, to present also output data that do not depend on aggregation, we have
indicated in Table 1 for how many random test instances of a given application
class the S-ACO variant performed better than the corresponding SSA variant,
and vice versa. F.g., the “superiority count” 4 in the entry for SSACO, n = 10
and prw = 0.25 indicates that S-ACO outperformed SSA in 4 of the the 5 test
instances of this application class. By the parameter-free sign test, based on the
total of the 20 test instances, we judged which S-ACO variant outperformed the
corresponding SSA variant significantly more often than vice versa.

In total, the S-ACO variants produced better results than the SSA variants,
both with and without adaptive sample size, and both in the case of local postop-
timization and that without it. Quantified by the number of test instances for
which a variant of S-ACO outperforms the corresponding SSA variant, this re-
sult is statistically significant at the level 0.05 for the comparisons S-ACOa /
SSAa and S-ACO+l1s / SSA+Is, significant even at the level 0.01 for the com-
parison S-ACOa+ls / SSAa+ls, but only weakly significant (level 0.10) for the
comparison S-ACO / SSA.

Postoptimation by local search improved all variants. However, for the test
cases with n = 10, SSA profited more from this postoptimization than S-ACO
(possibly because the S-ACO variants came already rather close to the optimal
solutions in this case). For the test cases with n = 20, S-ACO profited more
from postoptimization than SSA.

Adaptive sample size did not improve the results in each case. For S-ACO,
it did not even always decrease the runtime, at least not for the smaller test
instances. For the larger test instances, adaptive sample size did save time, and
it achieved about the same level of solution quality. SSA always profited from
adaptive sample size both in solution quality and in runtime, except in the most
“difficult” parameter instance combination, n = 20 and prw = 0.40, where a
slightly worse solution quality resulted.

11
5 Conclusions

A general-purpose algorithm, S-ACO, for solving stochastic combinatorial op-
timization problems has been tested experimentally on two problems of fixed-
routes type, a probabilistic travelling salesman problem (PTSP) and a travelling
salesman problem with time windows and stochastic service times (TSPTW-
SST). Encouraging results have been obtained. In particular, it has been shown
that on the randomly generated test instances for the TSPTW-SST, the S-ACO
algorithm outperformed a stochastic version of simulated annealing (SSA).

Future research should be directed to broader experiments with S-ACO on
diverse other stochastic combinatorial problems in routing, scheduling, subset
selection and many other areas, and to the experimental investigation of modifi-
cations of S-ACO as those outlined in [11], section 6. Furthermore, not only SSA,
but also the other approaches indicated in the Introduction should be included
into the comparative experiments. An especially challenging research topic for
the future is the development of methods for analyzing stochastic combinatorial
problems from a multiobjective point of view. Ongoing research investigates a
possible combination of the S-ACO approach presented here with different ant-
based multiobjective optimization techniques that have been developed in the
ACO literature.

Acknowledgment. The author wants to express his thanks to Christian
Grundner for his help in implementation and test of the PTSP part of the
experiments.

Table 1. Average achieved cost values, runtimes (in sec), and superiority counts.

n =10 n =10 n =20 n = 20
prw = 0.25 prw = 0.50 prw = 0.20 prw = 0.40

CE 52.8 57.0

S-ACO 53.5 5 4| 579 4 51904 33 1| 1384 35 3
S-ACOa 53.6 8 4579 10 5| 89.2 19 2| 139.8 21 2
S-ACO+I1s 53.5 5 3| 578 5 5876 37 3 |136.3 38 4
S-ACOa-+ls | 53.6 8 3| 578 8 5 | 87.2 21 311364 29 5
SSA 57.3 14 1| 59.7 13 0] 955 52 4 | 159.6 56 1
SSAa 57.1 7 0] 59.7 5 01913 15 2| 160.6 14 3
SSA+1s 56.9 13 1| 59.0 13 0] 948 56 2| 159.3 58 1
SSAa-+ls 56.7 7 0 59.0 6 01904 17 2| 1604 17 0

References

1. Alrefaei, M.H., Andradéttir, S., “A simulated annealing algorithm with constant
temperature for discrete stochastic optimization”, Management Sci. 45 (1999),
pp. 748-764.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Alrefaei, M.H., Andradéttir, S., “A modification of the stochastic ruler method for
discrete stochastic optimization”, European J. of Operational Research 133 (2001),
pp. 160-182.

Bauer, A., Bullnheimer, B., Hartl, R.F., Strauss, C., “Minimizing Total Tardiness
on a Single Machine Using Ant Colony Optimization”, Central Furopean Journal
of Operations Research 8 (2000), pp. 125-141.

Bianchi, L., Gambardella. .M., Dorigo, M., “Solving the homogeneous probabilis-
tic travelling salesman problem by the ACO metaheuristic”, Proc. ANTS ’02, 3rd
Int. Workshop on Ant Algorithms (2002), pp. 177-187.

Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M.M., Sounis, F., “VRP
with Time Windows”, in: The Vehicle Routing Problem, P. Toth and D. Vigo (eds.),
STAM Monographs: Philadelphia (2002), pp. 157-194.

Dorigo, M., Di Caro, G., “The Ant Colony Optimization metaheuristic”, in: New
Ideas in Optimization, D. Corne, M. Dorigo, F. Glover (eds.), pp. 11-32, McGraw—
Hill (1999).

Dorigo, M., Maniezzo, V., Colorni, A., “The Ant System: Optimization by a colony
of cooperating agents”, IEEE Trans. on Systems, Man, and Cybernetics 26 (1996),
pp. 1-13.

Fu, M.C., “Optimization for simulation: theory vs. practice”, INFORMS J. on
Computing 14 (2002), pp. 192-215.

Fitzpatrick, J.M., Grefenstette, J.J., “Genetic algorithms in noisy environments”,
Machine Learning 3 (1988), pp. 101-120.

Gutjahr, W.J., “A graph—based Ant System and its convergence”’, Future Gener-
ation Computer Systems 16 (2000), pp. 873-888.

Gutjahr, W.J., “A converging ACO algorithm for stochastic combinatorial opti-
mization”, Proc. SAGA 2003 (Stochastic Algorithms: Foundations and Applica-
tions), eds.: A. Albrecht and K. Steinhofl, Springer LNCS 2827 (2003), pp. 10-25.
Gutjahr, W.J., Pflug, G., “Simulated annealing for noisy cost functions”, J. of
Global Optimization, 8 (1996), pp. 1-13.

Hadjiconstantinou, E., Roberts, D., “Routing Under Uncertainty: An Application
in the Scheduling of Field Service Engineers”, in: The Vehicle Routing Problem,
P. Toth and D. Vigo (eds.), SIAM Monographs: Philadelphia (2002), pp. 331-352.
Homem-de Mello, T., “Variable-sample methods for stochastic optimization”, ACM
Trans. on Modeling and Computer Simulation 13 (2003), pp. 108-133.

Jaillet, P., Probabilistic Travelling Salesman Problems, PhD thesis, MIT, Cam-
bridge, MA (1985).

Kleywegt, A., Shapiro, A., Homem-de-Mello, T., “The sample average approxi-
mation method for stochastic discrete optimization”, STAM J. Optim. 12 (2001),
pp. 479-502.

Merkle, D., Middendorf, M., “Modelling the Dynamics of Ant Colony Optimization
Algorithms”, Evolutionary Computation 10 (2002), pp. 235-262.

Norkin, V.I., Ermoliev, Y.M., Ruszczynski, A., “On optimal allocation of indivisi-
bles under uncertainty”, Operations Research 46 (1998), pp. 381-395.

Shi, L., Olafsson, S., “Nested partition method for global optimization”, Operations
Reseacrh 48, pp. 390-407.

Stiitzle, T., Hoos, H.H., “The MAX-MIN Ant system and local search for the
travelling salesman problem”, in: T. Baeck, Z. Michalewicz and X. Yao (eds.),
Proc. ICEC 97 (Int. Conf. on Evolutionary Computation) (1997), pp. 309-314.
Zlochin, M., Dorigo, M., “Model-based search for combinatorial optimization: a
comparative study”, Proc. PPSN (Parallel Problem Solving from Nature) ’02
(2002), pp. 651-664.

