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Abstract 

This paper addresses the Capacitated Arc Routing Problem (CARP) using an Ant Colony 

Optimization scheme. Ant Colony schemes can compute solutions for medium scale instances of 

VRP. The proposed Ant Colony is dedicated to large-scale instances of CARP with more than 140 

nodes and 190 arcs to service. The Ant Colony scheme is coupled with a local search procedure and 

provides high quality solutions. The benchmarks we carried out prove possible to obtain solutions 

as profitable as CARPET ones can be obtained using such scheme when a sufficient number of 

iterations is devoted to the ants. It competes with the Genetic Algorithm of Lacomme et al. 

regarding solution quality but it is more time consuming on large scale instances. The method has 

been intensively benchmarked on the well-known instances of Eglese, DeArmon and the last ones 

of Belenguer and Benavent. This research report is a step forward CARP resolution by Ant Colony 

proving ant schemes can compete with Taboo search methods and Genetic Algorithms 

Keywords: Ant Colony, Capacitated Arc Routing 

 

Résumé 

Cet article concerne la résolution du Capacitated Arc Routing Problem avec un algorithme de type 

colonies de fourmis. Il a déjà été prouvé que de tels algorithmes permettaient de résoudre des 

problèmes de VRP de tailles modestes. L’algorithme proposé a pour ambition de résoudre des 

instances de CARP de très grandes tailles comportant plus de 140 nœuds et 190 arcs. La méthode 

proposée est hybridée avec une méthode de recherche locale qui accroît de manière significative la 

convergence vers de bonnes solutions. Nous montrons sur des exemples de la littérature que la 

méthode proposée permet d’obtenir des solutions comparables à celle de la méthode CARPET au 

prix d’un nombre d’itérations relativement élevé. La méthode permet même de concurrencer 

l’algorithme génétique de Lacomme et al. mais elle s’avère plus longue en terme de temps de 

calcul. Toutes les comparaisons ont été réalisées sur les instances de Eglese, DeArmon et sur les 

instances de Belenguer et Benavent. Ce rapport de recherche tente de prouver que les techniques 

d’optimisation à base de colonies de fourmis peuvent concurrencer les méthodes « tabou » ainsi que 

les algorithmes génétiques. 

Mots-clés : colonies de fourmis, tournées sur arcs 
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1   Introduction 

1.1   The Capacitated Arc Routing Problem 

The Capacitated Arc Routing Problem (CARP) is defined in the literature on an undirected network 

G = (V,E) with a set V of n nodes and a set E of m edges. A fleet of identical vehicles of capacity Q 

is based at a depot node s. A subset R of edges requires service by a vehicle. All edges can be 

traversed any number of times. Each edge i  has a traversal cost 0ic and a demand 0iq . The 

CARP consists on determining a set of vehicle trips with minimum total cost. Each trip starts and 

ends at the depot, each required edge is serviced by one single trip, and the total demand handled by 

any vehicle does not exceed Q. The cost of a trip is the sum of the costs of its serviced edges and of 

its intermediate connecting paths. 

Golden B-L. and R.T.Wong [1], Benavent E., V. Campos and A. Corberan, E. Mota [2], Belenguer 

J.M. and E. Benavent [3] have investigated integer linear programming formulations and they have 

proposed lower bounds for the CARP. Since exact algorithms (like the branch-and-bound method of 

Hirabayashi et al. [4]) are limited to small instances (30 edges), larger instances must be tackled in 

practice by heuristic approaches. Powerful greedy heuristics include Path-Scanning [1], improved 

Construct-Strike [5], Augment-Insert [6], Augment-Merge [7] and Ulusoy's tour splitting 

method [8]. Concerning metaheuristics, Li [9] applied simulated annealing and taboo search to a 

road gritting problem, and Eglese [10] designed a simulated annealing approach for a multi-depot 

gritting problem with side constraints. The most efficient metaheuristics published so far are: a 

sophisticated taboo search method (CARPET) of Hertz et al. [11] and a hybrid genetic algorithm 

proposed by Lacomme et al. [12].  

1.2   Ant Colony 

Ant Colony schemes have been successfully applied to numerous combinatorial optimization 

problems including graph coloring [13], Quadratic Assignment Problem (QAP) [14], Traveling 

Salesman Problem (TSP) [15], Vehicle Routing Problem (VRP) [16, 17, 18], Vehicle Routing 

Problem with Time Window (VRPTW) [19]. A presentation of Ant Colony for routing is described 

in [20]. An important result in the field of ant algorithms was published in [21]: Gutjahr gave a 
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formal proof that, under certain conditions, a slightly limited version of the Ant System (called 

Graph-based Ant System) converges to the optimal solution of the given problem with a probability 

that can be made arbitrarily close to 1. 

In the beginning, no collective memory is used and ants use only heuristic information. Pheromone 

deposition is proportional to the fitness that can be defined for minimization objective as the inverse 

of the solution quality or solution cost. As stressed by Donati et al. [22] the fitness may be defined 

in different ways to reflect the optimization objectives: a combination of the travel distance, the 

travel time, the waiting times and so on. This pheromone trail guides ants in their future decision 

making paths with high pheromone concentration more attractive. Since pheromone is not 

permanent but evaporates over time, unused paths become less and less attractive while those 

frequently used attract more ants. During one iteration, the ants construct one solution based on 

heuristic scheme and on the pheromone trails. The pheromone trails are updated using the solutions 

fitness. Local search can also be applied to ant solutions increasing the convergence rate. The 

process is iterated until a lower bound is reached or a maximal number of iterations is carried out. 

The remainder part of the paper is organized as follows. First, an Ant Colony framework with an 

elitist strategy dedicated to the CARP is proposed. Second, an intensive benchmark is provided to 

evaluate the method performances and behavior. 

2 Ant Colony Proposal 

2.1   Notations  

f  number of ants 

ef  number of elitist ants 

   notation used for one ant, its rank and the solution computed by the ant 

maxI  maximal number of iterations 

sn  number of iterations without improvement before pheromone erasing 

ijw  shortest path length from the required arc i  to the required arc j  

dM  shortest path of maximal length between two required arcs: ij
ji

d wMaxM
,

  
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LSp  probability for one ant to experiment a local search procedure 

pp  probability to ignore pheromone trails for combining required arcs 

k  maximal size of 
i  and 

i  

 ,  relative influence of criteria (saving measure of moving to another required arc and 

pheromone attraction)  

F  the weight affected to the ant number   

  the trail persistence, 10    

ijs  saving measure of moving from the required arc i  to the required arc j : 

dijdij MwMs /)(   

ij  existing amount of pheromone from the required arc i  to the required arc j  

 ij  deposit amount of pheromone laid by ant number   when moving from required arc i  to 

required arc j  

L  current value of the solution found by the ant number   

t  taboo list of ant   


i  set of required arcs not in t  and yielding the best savings 


i  set of required arcs not in t  and yielding the best pheromone level 


ijP  probability, for the ant  , to combine the required arcs i  and j  

2.2   Ant Colony Framework 

The network is stored as a directed internal graph using two opposite arcs per edge and one dummy 

loop on the depot. The nodes are dropped out and an arc index list is used. In any solution, each trip 

is stored as a sequence of required arcs with a total cost and a total load. Shortest paths between 

tasks are not stored. The cost of a trip is the collecting costs of its required arcs plus the traversal 

costs of its intermediate paths. The graph and solutions are represented according to the data 

structure described in [12] and with respect to the proposal of Lacomme et al., the solutions are 
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giant tours with no trip delimiters sorted in increasing cost order. The giant tours are split into 

solutions regarding the vehicle constraints, using the Split procedure. 

The ant system framework consists in the following steps (figure 1): 

1. generation of solutions by powerful constructive heuristics dedicated to CARP; 

2. generation of solutions by ants according to pheromone information; 

3. application of a local search to the ant solutions with a fixed probability; 

4. updating the pheromone information; 

5. iterate steps 2 to 4 until the lower bound or some completion criteria are reached. 

 
Generation of the initial set of f  solutions 

1cI  

Repeat 

 Pheromone trails deposit 

 For 1:  to f  do 

  Repeat  

   Select a required arc i  to be serviced next 

   Add i  in the current solution under construction 

   Update the taboo list t  of the ant   

  until ant   has completed a tour 

  with probability LSP , apply Local Search 

  Calculate the solution cost 

  If   is not elitist Then  

    save the solution whatever the cost 

  Else  

    save solution only if a better tour is obtained by ant   

  EndIf 

 EndDo 

 Sort the ants in decreasing cost order 

 If for ant f  no improvement occurs during sn  iterations Then 

  Erase the pheromone trails 

 EndIf 

 1 cc II  

Until (the lower bound is reached) or ( maxII c  ) 

Figure 1. Ant Colony algorithm 
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The population is divided in two sets: ef  elitist ants and eff   non-elitist ants. All ants start at the 

anthill: depot node. Note that for VRP, several authors promote initial assignment of ants at each 

customer node at the beginning of iterations which implies that the number of ants is equal to the 

number of customers [22]. The elitist ants tend to favor the convergence of the algorithm and the 

non-elitist ones attempt to control the diversification process. Whatever the solution cost found by a 

non-elitist ant, it is stored and replaces the previous one. For the elitist ants, the solution is replaced 

only if it is more promising. To decrease the probability of being captive in a local minimum, the 

pheromone is erased when sn  iterations have been performed without improvement (figure 1). 

2.3   Generation of Initial Solutions 

Three well-known CARP heuristics have been used: Path-Scanning [7], Augment-Merge [1] and 

Ulusoy's tour splitting method [8]. The initial set of solutions is completed by random feasible 

solutions. Each solution is composed of one giant tour without the vehicle capacity constraint. This 

giant tour is a list of required arcs linked by shortest paths and the Split procedure [12] breaks this 

tour optimally into trips. Path Scanning algorithm builds one trip at a time. In constructing each trip, 

the sequence of arcs is extended by joining the arcs looking the most promising ones, until the 

vehicle capacity is reached. Possible criteria are minimization of the distance, maximization of 

productivity. Augment-Merge is composed of two phases. First, each required arc is serviced by a 

separate trip. Second, Augment considers the trips one by one, starting with the longest one and 

evaluates the concatenation of trips yielding the largest saving. Ulusoy’s algorithm is composed of 

two steps. The first step relaxes capacity to build a giant tour S containing the required arcs. In a 

second step, S is optimally split into trips under the vehicle capacity constraint using Ulusoy’s 

algorithm. 

2.4   Solution Improvement 

The pheromone update is done using the well-known formula:  

 


n
ijijij 1

.


  with  LFij    (1) 

The contribution level of this global information depends on the quality of the solution. The basic 

weight 1F  denotes that no ant is considered more promising than another one and the same 
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weight (value 1) is affected to each ant. To have a quantity of pheromone laid by ants depending on 

their rank   it is possible to choose:  F . The solution we promote is to consider some graph 

properties and specially the maximal distance between two required arcs. One can suppose the 

objective function is more “chaotic” when large distances occur in the network and it is possible to 

link F  and dM  according to the following formula:  

       1/1/1  fMffMF dd   (2) 

With probability pp , its next required arc is chosen taking into account the unproductive shortest 

path from its current position to another required arc. The following formulae are applied 

respectively with probability pp  and pp1 : 





 


otherwise

jifk
P i

ij
0

/1


   
  (3)   

   
   














 


otherwise

jif 
s

s

P
i

k

ijij

ijij

ij

i

0













 

  (4) 

The first one is similar to the ranking strategy described, for instance, by Bullnheimer [23]. The 

second one uses pheromone trails. 

2.5   Local Search 

To improve the performances of metaheuristics it is a common practice to include a local search 

procedure. Previous published works on Ant Colony for the VRP prove that local search coupled 

with the Ant Colony method considerably improves the solutions quality (see for example [22]). 

The local search scheme dedicated to the CARP and proposed by Lacomme et al. [12] is used to 

improve solution with probability LSp . It is an iterative improvement procedure based on three 

moves:  

1. remove one required arc and reinsert it at another location; 

2. remove two consecutive required arcs and reinsert them at another location; 

3. two-opt moves. 

The local search algorithm detects and performs the first feasible and improving move. This process 

is iterated until no such move is found. The split procedure [8] is applied to get the solution cost. 
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3   Numerical Evaluation 

In this section, we present numerical experiments for the proposed Ant Colony scheme compared to 

the best methods for the CARP including CARPET and the Genetic Algorithm [12, 24]. The 

experiments were carried out on a Pentium III 800 MHz under Windows 2000. The scheme has 

been implemented using Delphi 6. 

3.1   Instances and Ant Colony Scheme Parameters 

The instance and parameters setting is summarized up in table 1. The following extra notations are 

introduced:   the number of required arcs and n the number of nodes. 

Table 1. Instances and parameters 

60f  

10ef  

90.0  

10k  

%50LSP  

%10pp  

200max I  

10sn  

1   

The benchmark has been performed using the well-known instances of DeArmon, Eglese, 

Belenguer and Benavent using the parameters values presented in table 1. For each instance, the 

notations of table 2 are used. To evaluate the performances three experiments have been carried out 

with different seeds for the random generator. Results over three restarts are in column BACO (Best 

Ant Colony Optimization). 

Table 2. Notations used in table of results 

LB  Lower Bound 

C  CARPET algorithm of Hertz 

GW  Golden and Wang’s algorithm 

AM  Augment Merge heuristic 

UL  Ulusoy 

Ant  Ant Colony algorithm 

Time  computation time for I iterations 

BACO best results over three experiments 

Avg Time  average computational time for BACO 

Dev deviation regarding the LB, for a cost x : 
LB

LBx
Dev


  

Av.Dev average deviation regarding the LB 

Nb hits number of optima proved by the method 

I iteration at which the best GA value is found 

GA Genetic Algorithm 
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Grey boxes show solutions equal or better than CARPET and bold denote solutions equal of better 

than Genetic Algorithm ones. Note Lacomme et al. propose a GA with restarts denoted Std MA in 

[24] and results under various settings (Best MA). The GA column in tables refers to Std GA of [24]. 

3.2   Numerical Experiments 

3.2.1   Results on DeArmon's Instances 

The Ant Colony Optimization scheme (table 3) outperforms CARPET for the three experiments. 

Whatever the experiments, the deviation is about 0.34% that is better than CARPET deviation 

(0.50%). Let us note that whatever the experiment, for the Gdb8 instance the lower bound is not 

reached but the value 350 is better than CARPET solution (value 352) and equal to the solution of 

the Genetic Algorithm except for Gdb9, Gdb13 and Gdb23. 

Ant System configuration over iterations.  

The initial population is composed of random solutions and three heuristic solutions. Because no 

optimization has been applied on the initial population, the ant population is well spread from 360 

(best heuristic solution) to 800 (worst random solution). The generation of the initial set of solutions 

provides a high diversification of solutions. Figure 2 gives a graphical representation of ants sorted 

by increasing cost after 20 iterations. The convergence of the algorithm produces stepwise 

modifications of the cost distribution of the ant population and the convergence is initialized. 
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Figure 2. Population distribution after 20 iterations (Gdb9) 
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Table 3. DeArmon's instances 

           Exp.1 Exp.2 Exp.3   

FILE n  LB C Dev GA Dev GW AM UL Ant Dev Time I Ant Dev Time I Ant Dev Time I BACO Dev 

gdb1 12 22 316 316 0.00 316 0.00 350 349 330 316 0.00 0.49 1 316 0.00 0.44 1 316 0.00 0.44 1 316 0.00 

gdb2 12 26 339 339 0.00 339 0.00 366 370 353 339 0.00 1.10 2 339 0.00 2.15 4 339 0.00 2.08 4 339 0.00 

gdb3 12 22 275 275 0.00 275 0.00 293 319 297 275 0.00 0.49 1 275 0.00 0.55 1 275 0.00 0.49 1 275 0.00 

gdb4 11 19 287 287 0.00 287 0.00 287 302 320 287 0.00 0.05 0 287 0.00 0.05 0 287 0.00 0.06 0 287 0.00 

gdb5 13 26 377 377 0.00 377 0.00 438 423 407 377 0.00 1.65 3 377 0.00 4.18 5 377 0.00 0.61 1 377 0.00 

gdb6 12 22 298 298 0.00 298 0.00 324 340 318 298 0.00 1.48 3 298 0.00 1.43 2 298 0.00 0.49 1 298 0.00 

gdb7 12 22 325 325 0.00 325 0.00 363 325 330 325 0.00 0.11 0 325 0.00 0.11 0 325 0.00 0.06 0 325 0.00 

gdb8 27 46 344 352 2.33 350 0.02 463 393 388 350 0.02 171.92 112 350 0.02 68.87 43 350 0.02 151.04 100 350 0.02 

gdb9 27 51 303 317 4.62 303 0.00 354 352 358 306 0.01 330.1 184 309 0.02 125.56 66 309 0.02 146.27 91 306 0.01 

gdb10 12 25 275 275 0.00 275 0.00 295 300 283 275 0.00 0.55 1 275 0.00 0.55 1 275 0.00 0.94 2 275 0.00 

gdb11 22 45 395 395 0.00 395 0.00 447 449 413 395 0.00 5.77 4 395 0.00 9.06 6 395 0.00 7.03 5 395 0.00 

gdb12 13 23 448 458 2.23 458 0.02 581 569 537 458 0.02 1.27 3 458 0.02 3.62 9 458 0.02 3.35 9 458 0.02 

gdb13 10 28 536 544 1.49 536 0.00 563 560 552 542 0.01 26.58 51 544 0.01 1.15 2 544 0.01 0.60 1 542 0.01 

gdb14 7 21 100 100 0.00 100 0.00 114 102 104 100 0.00 0.44 1 100 0.00 0.44 1 100 0.00 0.44 1 100 0.00 

gdb15 7 21 58 58 0.00 58 0.00 60 60 58 58 0.00 0.11 0 58 0.00 0.16 0 58 0.00 0.17 0 58 0.00 

gdb16 8 28 127 127 0.00 127 0.00 135 129 132 127 0.00 2.20 4 127 0.00 2.04 3 127 0.00 15.27 29 127 0.00 

gdb17 8 28 91 91 0.00 91 0.00 93 91 93 91 0.00 0.17 0 91 0.00 0.22 0 91 0.00 0.16 0 91 0.00 

gdb18 9 36 164 164 0.00 164 0.00 177 174 172 164 0.00 1.10 1 164 0.00 1.10 1 164 0.00 0.99 1 164 0.00 

gdb19 8 11 55 55 0.00 55 0.00 57 63 63 55 0.00 0.22 1 55 0.00 0.28 1 55 0.00 0.22 1 55 0.00 

gdb20 11 22 121 121 0.00 121 0.00 132 129 125 121 0.00 8.30 23 121 0.00 4.17 11 121 0.00 54.43 145 121 0.00 

gdb21 11 33 156 156 0.00 156 0.00 176 163 162 156 0.00 3.73 5 156 0.00 8.57 13 156 0.00 11.81 16 156 0.00 

gdb22 11 44 200 200 0.00 200 0.00 208 204 207 201 0.01 2.75 2 200 0.00 34.22 31 200 0.00 4.89 4 200 0.00 

gdb23 11 55 233 235 0.86 233 0.00 251 237 239 235 0.01 6.15 3 235 0.01 2.31 1 235 0.01 12.46 7 235 0.01 

  Av.Dev(%): 0.50  0.17     0.34    0.36    0.36    0.30 

  Nb hits: 18  21     17    18    18    18 
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Figure 3. Population distribution after 100 iterations (Gdb9) 

After 100 iterations, the distribution has changed (figure 3) and ants are concentrated around 

promising values. 

Figure 4 gives the population evolution over iterations. To obtain a legible graphical representation, 

solutions are sorted in increasing cost order. After 50 iterations, there are 9 solutions better than 

Carpet one and a global trend appears to minimize the solution cost. Thanks to the non-elitist ants 

the minimization process continues over iterations (figure 4.c and 4.d) with an important diversity 

of the cost. After 184 iterations, 10 high quality solutions are identified and the population cost is 

spread over 320 and 450. 
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b) Ant population after 50 iterations 
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c) Ant population after 100 iterations 
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d) Ant population after 184 iterations 

Figure 4. Ant population evolution for Gdb9 instance during the first experiment 

Conclusion on DeArmon’s instances 

The results prove the efficiency of the ants regarding both the taboo method CARPET and the 

Genetic Algorithm. For DeArmon’s instances (table 3), the ant optimization scheme ever provides 

solutions equal or better than CARPET solutions and 20 times it provides solutions equal or better 

than the Genetic Algorithm (table 4). 

Table 4. DeArmon's instances 

BACO CARPET GA 

better than 3 0 

equal to 20 20 

worse than 0 3 

3.2.2   Results on Belenguer and Benavent's Instances 

BACO competes with CARPET (table 5) for almost all instances except for Val8C and Val10b, and 

provides better deviations than CARPET as regards the lower bound. 
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Table 5. Belenguer and Benavent's instances 

FILE n  LB C Dev GA Dev BACO Dev Av. Time 

val1a 24 39 173 173 0.00 173 0.00 173 0.00 0.11 

val1b 24 39 173 173 0.00 173 0.00 173 0.00 120.59 

val1c 24 39 235 245 0.04 245 0.04 245 0.04 13.13 

val2a 24 34 227 227 0.00 227 0.00 227 0.00 1.97 

val2b 24 34 259 260 0.00 259 0.00 259 0.00 8.43 

val2c 24 34 455 494 0.09 457 0.00 457 0.00 135.11 

val3a 24 35 81 81 0.00 81 0.00 81 0.00 1.15 

val3b 24 35 87 87 0.00 87 0.00 87 0.00 3.63 

val3c 24 35 137 138 0.01 138 0.01 138 0.01 10.62 

val4a 41 69 400 400 0.00 400 0.00 400 0.00 15.34 

val4b 41 69 412 416 0.01 412 0.00 412 0.00 117.13 

val4c 41 69 428 453 0.06 428 0.00 430 0.00 285.38 

val4d 41 69 520 556 0.07 541 0.04 539 0.04 315.86 

Val5a 34 65 423 423 0.00 423 0.00 423 0.00 49.53 

Val5b 34 65 446 448 0.00 446 0.00 446 0.00 24.30 

Val5c 34 65 469 476 0.01 474 0.01 474 0.01 200.31 

val5d 34 65 571 607 0.06 581 0.02 597 0.05 193.82 

val6a 31 50 223 223 0.00 223 0.00 223 0.00 3.77 

val6b 31 50 231 241 0.04 233 0.01 233 0.01 78.39 

val6c 31 50 311 329 0.06 317 0.02 317 0.02 91.57 

val7a 40 66 279 279 0.00 279 0.00 279 0.00 11.17 

val7b 40 66 283 283 0.00 283 0.00 283 0.00 6.59 

val7c 40 66 333 343 0.03 334 0.00 334 0.00 569.27 

val8a 30 63 386 386 0.00 386 0.00 386 0.00 15.38 

val8b 30 63 395 401 0.02 395 0.00 395 0.00 259.49 

val8c 30 63 517 533 0.03 527 0.02 534 0.03 358.06 

val9a 50 92 323 323 0.00 323 0.00 323 0.00 969.03 

val9b 50 92 326 329 0.01 326 0.00 326 0.00 1076.21 

val9c 50 92 332 332 0.00 332 0.00 332 0.00 1368.47 

val9d 50 92 382 409 0.07 391 0.02 404 0.06 633.98 

val10a 50 97 428 428 0.00 428 0.00 428 0.00 341.81 

val10b 50 97 436 436 0.00 436 0.00 437 0.00 683.42 

val10c 50 97 446 451 0.01 446 0.00 448 0.00 515.79 

val10d 50 97 524 544 0.04 530 0.01 538 0.03 916.10 

  Av.Dev(%): 1.96  0.61  0.90  

  Nb hits: 15  22  20  

CARPET has an average deviation of 1.90%. Over three experiments, the deviation of the ants is 

1.11%, 1.05% and 1.04% and BACO has an average deviation of only 0.90%. For the 34 instances, 

BACO provides solutions equal or better than CARPET for 32 instances (table 6). 

Table 6. Belenguer and Benavent’s instances 

BACO CARPET GA 

better than 17 0 

equal to 15 27 

worse than 2 7 

The three experiments show that the Ant Colony scheme provides very low deviation as regards 

lower bound but its deviation is slightly higher than deviation of the Genetic Algorithm. However, 

BACO competes with the Genetic Algorithm for 27 instances and it is worse for only 7 instances. 

The average deviation of BACO (0.90%) is close to the Genetic Algorithm deviation (0.61%). The 
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computational time remains acceptable: 20 minutes are required for the last instances of the 

benchmark (Val9a - Val10d). This computation duration is two times larger than the execution time 

of the first instances. The first instances are solved in only 2 minutes of computation. 

3.2.3   Results on Eglese's Instances 

Eglese's instances (table 7) are more complex than the previous ones because non-required edges 

are spread in large-scale instances. For example, instances s1-A to s4-C have 140 required arcs and 

190 nodes. 

Table 7. Eglese's instances 

FILE n  LB C Dev GA DEV GW AM UL BACO Dev 
Av 

Time 

e1-A   77  98 3515 3625 0.03 3548 0.01 4115 4605 3952 3548 0.01 70.68 

e1-B   77  98 4436 4532 0.02 4498 0.01 5228 5494 5054 4534 0.02 307.49 

e1-C   77  98 5453 5663 0.04 5595 0.03 7240 6799 6166 5647 0.04 159.12 

e2-A   77  98 4994 5233 0.05 5018 0.00 6458 6253 5716 5018 0.00 470.39 

e2-B   77  98 6249 6422 0.03 6340 0.01 7964 7923 7080 6401 0.02 406.39 

e2-C   77  98 8114 8603 0.06 8415 0.04 10313 10453 9338 8498 0.05 707.39 

e3-A   77  98 5869 5907 0.01 5898 0.00 7454 7350 6723 5934 0.01 609.83 

e3-B   77  98 7646 7921 0.04 7822 0.02 9900 9244 8713 7915 0.04 781.88 

e3-C   77  98 10019 10805 0.08 10433 0.04 12672 12556 11641 10402 0.04 226.66 

e4-A   77  98 6372 6489 0.02 6461 0.01 7527 7798 7231 6520 0.02 616.78 

e4-B   77  98 8809 9216 0.05 9021 0.02 10946 10543 10223 9234 0.05 839.79 

e4-C   77  98 11276 11824 0.05 11779 0.04 13828 13623 13165 11883 0.05 799.26 

s1-A  140 190 4992 5149 0.03 5018 0.01 6382 6143 5636 5049 0.01 1010.53 

s1-B  140 190 6201 6641 0.07 6435 0.04 8631 7992 7086 6541 0.05 2899.76 

s1-C  140 190 8310 8687 0.05 8518 0.03 10259 10338 9572 8561 0.03 2388.90 

s2-A  140 190 9780 10373 0.06 9995 0.02 12344 11672 11475 10368 0.06 4108.04 

s2-B  140 190 12886 13495 0.05 13174 0.02 16386 15178 14845 13676 0.06 5377.59 

s2-C  140 190 16221 17121 0.06 16795 0.04 20520 19673 19290 17115 0.06 3099.32 

s3-A  140 190 10025 10541 0.05 10296 0.03 13041 11957 11956 10619 0.06 1392.07 

s3-B  140 190 13554 14291 0.05 14053 0.04 17377 15891 15663 14264 0.05 6568.64 

s3-C  140 190 16969 17789 0.05 17297 0.02 21071 19971 20064 17797 0.05 3160.04 

s4-A  140 190 12027 13036 0.08 12442 0.03 15321 14741 13978 12868 0.07 8919.24 

s4-B  140 190 15933 16924 0.06 16531 0.04 19860 19172 18612 17090 0.07 6360.03 

s4-C  140 190 20179 21486 0.06 20832 0.03 25921 24175 23727 21314 0.06 4911.44 

  Av. Dev(%): 4.74  2.47     4.11  

  Nb hits: 0  0     0  

The Augment-Merge method, Golden and Wang's heuristic and Ulusoy's algorithm performances 

strongly decrease for these instances (see [12, 24] for details). On DeArmon's instances, the lower 

bound is reached by these heuristics for some instances. This remark remains true for Belenguer and 

Benavent's instances (Val1a). For Eglese's instances, the deviation of the heuristics as regards the 

lower bound is high. CARPET provides an average deviation of 4.74%. BACO provides 15 

solutions equal or better than CARPET ones and 9 solutions worse than CARPET ones (table 8). 

The Genetic Algorithm [12, 24] provides high quality solutions and the average deviation is low: 

2.47%. The Ant Colony scheme provides an average deviation of 4.11% for BACO, which is two 

times worse than the Genetic Algorithm deviation. 

Table 8. Eglese’s instances 

BACO CARPET GA 
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better than 15 0 

equal to 0 3 

worse than 9 21 

Significant enlargement of iterations improves solutions quality. For the small scale Eglese’s 

instances, with 1000 iterations the Ant Colony scheme provides an average deviation of 2.94% 

which is close to the 2.15% of the Genetic Algorithm and better than the 3.84% of the CARPET 

algorithm (table 9). 

Table 9. Resolution of the small scale Eglese's instances with 1000 iterations (one experiment) 

FILE n  LB C Dev GA DEV Ant Dev Time I 

e1-A 77 98 3515 3625 0.03 3548 0.01 3548 0.01 50.59 17 

e1-B 77 98 4436 4532 0.02 4498 0.01 4514 0.02 622.86 214 

e1-C 77 98 5453 5663 0.04 5595 0.03 5632 0.04 2204.31 757 

e2-A 77 98 4994 5233 0.05 5018 0.00 5018 0.00 180.42 50 

e2-B 77 98 6249 6422 0.03 6340 0.01 6406 0.02 2641.44 742 

e2-C 77 98 8114 8603 0.06 8415 0.04 8479 0.05 3023.08 852 

e3-A 77 98 5869 5907 0.01 5898 0.00 5902 0.01 4173.31 965 

e3-B 77 98 7646 7921 0.04 7822 0.02 7853 0.04 3885.45 922 

e3-C 77 98 10019 10805 0.08 10433 0.04 10401 0.04 3630.89 866 

e4-A 77 98 6372 6489 0.02 6461 0.01 6547 0.02 4382.69 901 

e4-B 77 98 8809 9216 0.05 9021 0.02 9214 0.05 1256.58 261 

e4-C 77 98 11276 11824 0.05 11779 0.04 11883 0.05 4222.7 893 

  Av.Dev(%): 3.84  2.15  2.94   

  Nb hits: 0  0  0   

4   Concluding Remarks and Future Research 

This paper presents a resolution scheme for the CARP based on Ant Colony. The Ant Colony 

scheme is competitive with the best methods previously published providing high quality solutions 

in rather short computational time. It outperforms the CARPET algorithm and competes with the 

Genetic Algorithm for small and medium scale instances. The computational time is acceptable but 

the Ant Colony scheme can not compete, for a computational point of view, with the powerful 

Genetic Algorithm. This work is a step forward for the CARP resolution based on Ant Colony and 

proves Ant Colony Scheme competes with Taboo Search and Genetic Algorithms. It strengthens the 

previous published attempt of Doerner et al. [25]. To the best of our knowledge the proposed ACO 

is the first one proposed for the CARP providing high quality results for large scale instances. 

However, the performance of the proposed algorithm does not reach state-of-the-art performance 

and further researches are required to increase the convergence rate and to reduce the computational 

times. 
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