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Abstract. The complex admissibility conditions for reformulated function in
Karayiannis model is obtained based on the three axioms of radial basis func-
tion neural network. In this paper, we present an easier understandable assump-
tion about vector quantization and radial basis function neural network. Under
this assumption, we have obtained a simple but equivalent criterion for admis-
sible reformulation function in Karayiannis model. We have also discovered
that Karayiannis model for vector quantization has a trivial fixed point. Such
results are useful for developing new vector quantization algorithms.

1   Introduction

It is well known that vector quantization is a data compression method, which encodes
a set of data points into a reduced set of reference vectors. In the literature, many
vector quantization strategies are proposed. One common way to design vector quan-
tizer is based on cluster analysis. Therefore, many researchers studied cluster analysis
and vector quantization together, e.g. in [1]. In [2], Karayiannis proposed an axio-
matic approach to soft learning vector quantization and clustering based on
reformulation. In this paper, this model is called Karayiannis model. As indicated in
[2], Karayiannis model leads to abroad family of soft learning vector quantization and
clustering algorithms, including FCM [3], fuzzy learning vector quantization (FLVQ)
[4], entropy-constrained learning vector quantization (ECLVQ) [5], and so on.
   Based on Karayiannis model, many variations for radial basis neural networks are
proposed, see [6]. In the previous research, reformulated function plays a pivotal role
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in constructing numerous reformulated radial basis function neural networks (RRBF).
The admissibility condition for reformulated function is obtained based on the three
axioms of radial basis function neural network (RBF). However, such three axiomatic
requirements are not easily understood, especially in mathematical form. In this paper,
we obtain an efficient criterion for admissible reformulation function in Karayiannis
model based on a novel assumption of RBF and vector quantization, which is proved
to be equivalent to the complex admissibility conditions for reformulated function in
Karayiannis model.
   The remainder of this paper is organized as follows: In Section 2, RBF, vector
quantization and Karayiannis model are briefly related. In Section 3, a novel and in-
tuitive assumption about RBF and vector quantization is proposed, which leads to a
necessary condition for Karayiannis model to perform well. Moreover, we prove that
such a condition is equivalent to the complex admissibility conditions for reformulated
function in Karayiannis’s model. In the final section, we draw the conclusion.

2   RBF, Vector Quantization, and Karayiannis Model

It is well known that the number and the centers of radial basis functions play an im-
portant role in the performance of RBF neural networks. Similarly, the size of code-
book and the reference vectors are the key to vector quantization. Therefore, it is
natural to establish a connection between vector quantization (in particular, LVQ) and
RBF, see [2][6]. As noted in [6], a mapping can be the basis for constructing LVQ
algorithms and RBF networks, more details can be found in [6]. In the following, we
will describe this mapping.

Let X={x1, x2, …, xn} be a s-dimensional data set, v={v1,v2,…,vc} is the codebook,
the centers (or prototype). Karayiannis defines a mapping RRs →  as below:

( )( )∑ =
−+= c
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where ( )xf  and ( )xg  are everywhere differentiable functions of ( )+∞∈ ,0x  and 

denotes the Euclidean norm. Obviously, selecting appropriate ( )xf  and ( )xg  is very

important for the performance of LVQ and RBF.
In order to tackle this issue, Karayiannis made the following assumption about RBF

in [6]: an RBF is a composition of localized receptive fields, and the locations of these
receptive fields are determined by the centers. And he also observed the three facts
about RBF as following:

1. The response of RBF’s to any input is positive.
2. When the centers are considered as the centers of receptive fields, it is ex-

pected that the response of any RBF becomes stronger if an input ap-
proaches its corresponding center.

3. The response of any RBF is more sensitive to an input as this input ap-
proaches its corresponding center.

Based on the above three observations, the three axioms of Karayiannis model are
presented. In the following, we briefly introduce Karayiannis model.
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By observing that the FCM and ECFC algorithms correspond to reformulation
functions of the same basic form, Karayiannis [2] proposed a family of functions in
the general form as follows:
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Obviously, (1) is a basis to develop (2).  As Karayiannis noted, minimization of
admissible reformulation functions (2) using gradient descent can produce a variety of

batch LVQ algorithms. The gradient of R with respect to iv is:
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Hence, the update equation for the centers can be obtained as:
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αη , where iη  is the learning rate for the pro-

totype iv , and ( ) ( )2

ikkik vxgSf −′′=α  is the competition function.

Then the LVQ algorithms can be implemented as follows:
Set the generator )(xf , the initial centers { }civi ≤≤10, , the termination limit

ε , the maximum number of iteration L , and t=1
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the set centers obtained after the ( )1−t -th iteration, ti ,η  is the learning rate at itera-
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Step 2. If ε<− −1,,max titii vv , or l> L , then stop; else l=l+1 and go to step 1.

where ,1, −tiη  are learning rates between 0 and 1.

According to the above three axioms, Karayiannis found that the properties of ad-
missible competition functions should satisfy the following three axioms:

Axiom 1: if c=1, then 11 =kα , nk ≤≤1 ;

Axiom 2: 0≥ikα , ci ≤≤1 , nk ≤≤1 ;

Axiom 3: If 0>−>− qkpk vxvx , then qkpk αα < , qp ≠∀ .

According to Axiom 1-3, Karayiannis proved the following theorem.
Theorem 1 (Karayiannis, [2]): Let X={x1, x2 ,…, xn}

sR⊂ be a finite set of feature
vectors which are represented by the set of c<n prototypes V={v1, v2, …, vc}

sR⊂ .
Then the function R defined by (2) is admissible reformulation function of the first
(second) kind in accordance with the axiomatic requirements 1-3 if ( )xf  and ( )xg

are differentiable everywhere functions of ( )+∞∈ ,0x  satisfying ( )( ) xxgf = , f (x)

and g(x) are both monotonically decreasing (increasing) functions of x, and ( )xg′  is a

monotonically increasing (decreasing) function of ( )+∞∈ ,0x .
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Obviously, the condition of admissible functions for Karayiannis model is too com-
plex. In other words, it is not easy to judge whether or not a function is admissible for
Karayiannis model, and Karayiannis himself also made many efforts to study more
specific admissible reformulation function for Karayiannis model, see [2], [7], [8].

In Section 3, we present a simple assumption about vector quantization and RBF,
which leads to a more efficient criterion for selecting function ( )xf .

3   A Simple Assumption About RBF and Vector Quantization

When encoding or vector quantization, it is expected that all reference vectors are
different. For example, Buhmann & Kuhnel thought that configurations with degener-
ate reference vectors are inadmissible in [9]. Similarly, the centers of receptive fields
of RBF networks are not expected to be coincidental. However, many soft learning
vector quantization algorithms (like ECLVQ) can output degenerate reference vectors,
i.e. coincidental reference vectors. Therefore, it is naturally supposed that degenerate
reference vectors are not the stable solution of vector quantization algorithms. The
similar assumption has been used for clustering algorithms, see [10], [11], and [12].

For brevity, let Ω  denote all fixed points of Karayiannis model, then it includes the
saddle points and attractive points. A saddle point is unstable, i.e. not able to stand
sufficiently small disturbing. All attractive points are stable. Therefore, the degenerate
reference vectors are stable if they are the attractive points of Karayiannis model. It is
better if Karayiannis model has no degenerate reference vectors, but unfortunately, it
is easy to prove that xvci i =≤≤∀ ,1  is a fixed point of Karayiannis model, where

nxx
n

k k∑ =
=

1
. Therefore, the output of Karayiannis model will be x  with a great

probability if xvci i =≤≤∀ ,1  is stable. Obviously, it is not the case we hope to face.

What measure can we take to avoid such happening? First, we need to do is to find a
criterion to judge whether a fixed point is stable for Karayiannis model. Theorem 2
offers such a criterion.
Theorem 2: If ( ) 0, <′′∀ xfx  then xvci i =≤≤∀ ,1  is a stable fixed point of Karay-

iannis model, i.e. xvci i =≤≤∀ ,1  is a strict local minimum of R.

Proof:  See Appendix A.
As analyzed above, it is unacceptable for xvci i =≤≤∀ ,1  is a stable fixed point of

Karayiannis model. Therefore, it is a natural requirement for Karayiannis model that
( ) 0, ≥′′∀ xfx . It seems inconsistent with Theorem 1, but we indeed have Theorem 3.

Theorem 3: ( )xf  and ( )xg  are differentiable everywhere functions of ( )+∞∈ ,0x

satisfying ( )( ) xxgf = , and both monotonically decreasing (increasing) functions of x,

and ( )xg ′  is a monotonically increasing (decreasing) function of ( )+∞∈ ,0x  if and

only if f(x) and g(x) are differentiable everywhere functions of ( )+∞∈ ,0x  satisfying

( )( ) xxgf =  and ( ) 0>′′ xf .

Proof:  See Appendix B.
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Apparently, Theorem 3 verifies that the new criterion is simple but equivalent to
the complex condition in Theorem 1. Moreover, Theorem 2 tells us that our criterion
has its own meaning totally different from three observations on radial basis functions.
It also opens a new door to understand the properties of radial basis function net-
works. As a matter of fact, the optimality test for Karayiannis model is obtained, too.

4   Conclusions and Discussions

In [2], Karayiannis proposed a soft learning vector quantization based on
reformulation. The complex admissibility conditions for reformulated function in
Karayiannis model is obtained based on the three axioms of radial basis function neu-
ral network. Based on an easier understood assumption about vector quantization and
radial basis function neural network, we obtained a simple but equivalent criterion
about admissible reformulation function in Karayiannis’s model. Moreover, we have
found the optimality test for Karayiannis model, and discovered that Karayiannis
model for vector quantization has a trivial fixed point. Such results are also useful for
constructing new vector quantization algorithms.
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Appendix A: Proof of Theorem 2
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By straight calculation, the second term of the Taylor series expansion of R  on the
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Appendix B: Proof of Theorem 3
As ( )( ) xxgf = , ( )( ) ( ) 1=′′ xgxgf , obviously, we have 0≥∀x ( ) 0≠′ xf , and

( ) 0≠′ xg . According to Darboux’s Theorem, we know that ,x∀ ( ) 0>′ xf , otherwise

,0>∀x ( ) 0<′ xf . It is easy to prove that ( )xf ′ <0 if and only if ( )xg′ <0 or that

( )xf ′ >0 if and only if ( )xg ′ >0.  Noticing that ( )( ) ( )( ) ( )( ) ( ) 02 =′′′+′′′ xgxgfxgxgf ,

we have ( ) 0>′′ xf  if and only if 
( )
( ) 0<
′
′′

xg

xg
.                                                               
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