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EPS, Universidad Autonoma de Madrid,
Cantoblanco, Madrid, 28049, Spain

{kostadin.koruchev,david.dominguez,eduardo.serrano,
francisco.rodriguez}@ii.uam.es

Abstract. Following Gardner [1], we calculate the information capac-
ity and other phase transition related parameters for a symmetric Hebb
network with small word topology in mean-field approximation. It was
found that the topology dependence can be described by very small num-
ber of parameters, namely the probability of existence of loops with given
length. In the case of small world topology, closed algebraic set of equa-
tions with only three parameters was found that is easily to be solved.

1 Introduction

There are 1011 neurons in a human brain, each neuron is connected with some
103 other neurons and the mean radius of connection of each neuron is about
1 mm, although some neurons has extent of decimeters [2]. It seems that, at
least in the cortex, there is no critical finite-size subnetwork of neurons. From
this considerations it is clear that the topology of this real neural network is far
from fully connected, uniformly sparse connected or scale free.

All neural networks (NN) process information and therefore the description
of the network in terms of information capacity seems to be the most adequate
one. For a living system it is clear that better information processing provides
evolutionary advantage.

One can expect, that in order to survive, at least to the some extend, the
biological systems are optimal in sense of usage of their resources. Fixing the
number of neurons, the main characteristic that can vary in a real NN is the
topology of the network, that give rise to the intriguing question:

How does the topology of the network interfere on the information charac-
teristics of the network? The first part of this communication [3] investigates
asymmetric small world networks via simulation. Also more complete resume of
the existing publications is given. This article tries to answer partially to the
previous question, using as a model symmetrical Hebb NN with small world
(SW) topology [4] at zero temperature limit.
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If one considers a network of N neurons, there exists a huge number of
2N(N−1)/2 different topologies. If all neurons are connected in the same manner,
the number of possible topologies is still of order of 2(N−1). That makes impos-
sible the exact topology description of the network because the parameters to
describe it are too many. Here we show that actually, the dependence of the
topology of a symmetric NN can be described by only few real numbers, with
clear topological meaning.

The paper is organized as follows: In the following Section, the system is de-
fined and replica-trick solution is given. A zero temperature limit is performed.
The topological dependence is found to be expressed by topological coefficients
ak, that are the probabilities of cycle with given length (k+2). Monte-Carlo pro-
cedure of finding the topological dependence is described, that makes possible to
calculate the dependence on the topology for virtually any topology. It is shown
that the method converges fast enough. In Section 3, a small world topology is
explored. It is shown that the dependence on the SW topology parameters is
trivial. A resume of the results is given in the last section.

2 Replica Trick Equations

We consider a symmetrical Hebb network with N binary neurons each one in
state σi, i ∈ {1...N}. The topology of the network is described by its connectivity
matrix C = {cij |cij ∈ {0, 1}, cij = cji, cii = 0}.

The static thermodynamics of symmetric Hebb neural network in thermody-
namic limit (N → ∞) is exactly solvable for arbitrary topology, provided that
each neuron is equally connected to the others, and site independent solution for
the fixed point exists. Small world topology [4], the case studied in details here,
is of that type. The energy of the symmetric network in state σ ≡ {σi}:

Hs = −
1

2

∑

i,j

cijKijσiσj ; Kij ≡
1

γN

P
∑

µ=1

ξµi ξ
µ
j (1)

defines completely the equilibrium thermodynamics of the system. In the above
equation P is the number of memorized patterns ξ ≡ ξµi and γ is the average
connectivity of the network, that is the fraction of existing links or the largest
eigenvalue of C/N . Kij is defined in the the complementary work [3].

Following Gardner [1], using replica-symmetry trick, in thermodynamic limit
(N →∞) one obtains:

mµ =

〈〈
∫

dz√
2π

e−z2/2ξµ tanhβγ(
√
αrz + m.ξ)

〉〉

ξ

(2)
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√
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〉〉

ξ

(3)
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]

, (4)



where α ≡ P/(γN), β = 1/T is the inverse temperature, mµ are the order
parameters, q is the mean overlap of σi between the replicas and r is the mean
overlap of mµ between the replicas.

The small world topology can be defined as :

Prob(cij = 1) ≡ ωγ + (1− ω)θ(γ − ((i− j +N + γN/2) mod N)/N)), (5)

where ω is the small world parameter defined as p in [4] and θ(.) is the θ-Heaviside
function.

At T → 0, assuming that only one mµ ≡ m differs from zero, that is the
system is in ferromagnetic state, and keeping the quantity G ≡ γβ(1− q) finite,
in the equation (2) the tanh(.) converge to sign(.), in the next equation tanh2(.)
converges to 1− δ(.) and in (4) the expression can be expanded in series by G,
giving:

m = erf(m/
√
2rα) (6)

G =
√

2/(πrα)e−m2/2rα (7)

r =
∞
∑

k=0

(k + 1)akG
k, (8)

where ak ≡ γTr((C/γN)k+2). Note that ak is the probability of existence of cycle
of length k + 2 in the connectivity graph.

The only equation explicitly dependent on the topology of the system is the
equation (8) and the only topology describing characteristics important for the
network equilibrium are ak. As k → ∞, ak tends to γ. Actually, for the small
world topology ∀k > 40, |ak − γ| < 10−2, except for extremely small γ, ω.

The coefficients ak can be calculated using a modification of the Monte-Carlo
method proposed by [1], see Fig. 2,Left. Namely, let us consider k as a number of
iteration and let us regard a particle that at each iteration changes its position
among the network connectivity graph with probabilities defined by the topology
of the graph (small world). If the particle at step k is in node j(k), we say that the
coordinate of the particle is x(k) ≡ j(k)/N . When N → ∞, x(k) is continuous
variable. If n is uniformly distributed random variable between -1/2 and 1/2,
then in step k + 1 the coordinate of the particle changes according to the rule:

x(k + 1) = x(k) + γn mod 1 with probability 1− ω and
x(k + 1) = x(k) + 1n mod 1 with probability ω.
If the particle starts at moment k = 0 form x(0) = 0 and is in position x(k)

at step k then the probability to have a loop of length k + 1, according to the
small world topology is (assuming x(k) ∈ [−1/2, 1/2]):

âk−1 = θ(γ/2− |x(k)|)(1− ω) + ωγ (9)

One can estimate easily the speed of the convergence of 〈âk〉 to ak. As ak
decrease with k, it is sufficient to estimate the error when k is large. But when k is
large, the coordinate at the step k is uniformly distributed in [0, 1) and therefore
the process of selecting âk is Bernoulli process that with probability γ gives value
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Fig. 1. Left: The optimal information capacity per connection i(αo;ω, γ) as a function
of the network topology. Small world parameter ω for different dilutions γ. Right: The
optimal capacity αo. No minima nor maxima are observed.

of (1−ω+ωγ) and with probability (1− γ) gives value ωγ. Therefore, the error
of the calculation behaves as 1/

√
MCtrials. As a practical consequence, using

Monte Carlo method as few as 10000 steps provide good enough (up to 2 digits)
precision for ak ≈ 〈âk〉MCtrials.

The calculation of ak = ak(C) closes the system of Eqs.(6-8) giving the pos-
sibility to solve them in respect of (G,m) for every (ω, γ, α).

The mutual information per neural connection (information capacity) is given
by:

i(m,α) ≡ α

(

1 +
1−m

2
log2

1−m

2
+

1 +m

2
log2

1 +m

2

)

[bits]. (10)

The interesting values of m,α are those of the phase transition
αc : m(ω, γ, αc) = 0;∀α < αc m(ω, γ, α) > 0 and those with maximal in-
formation capacity αo : (di(m,α)/dα)(αo) = 0,m 6= 0. The mean field theory
provides good approximation far from the phase transition point. If αc ≈ αo

then significant differences of the mean-field prediction can be expected.

3 Small World Topology

Fig. 1 show i(αo) and αo. as a function of the topology parameters (γ, ω). In all
the cases monotonicity and smooth behavior in respect to the topological param-
eters is observed. Therefore, a small world topology has no significant impact on
the network performance. Particularly, there is no maxima nor minima of the
capacity i(αo) or αo as a function of the network topology for any intermediate
values of (γ, ω) (except the trivial ones c → 0, ω → 1). In contrast, using sim-
ulations it was shown that in the asymmetrical case there exists maxima of the
information capacity [3].
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Fig. 2. Left: Calculus of ak by random walk in SW topology. The network with its
connection is represented by the gray circle. The height of the surrounding circle rep-
resents the probability of connection of the neuron at position 0. The “particle” moves
at distance shorter then γ/2 with high probability (bold lines) and at large distances
with smaller probability (thin lines). After 5 steps, the probability of existence of circle
with length 6 (a4) is given by the probability of existence of connection between x5

and x0 (dotted line). Right: A typical behavior of the topology dependent coefficients
ak(k)− γ on the index k, for SW topology with γ = 0.001 and ω = 0.15 together with
the regression fit.

The mean field approximation is valid, because for all values of the param-
eters of SW, except the case of fully connected network, it was calculated that
1− αo/αc > 2.5%.

A typical behavior of the coefficients ak, k > 0 in the equation (8) is shown
in Fig. 2,Right. One can see that ak is roughly exponentially falling with the
index k toward γ, that is

ak ≈ (a1 − γ)e−(k−1)η + γ. (11)

By definition, a1 is the probability of having 3-cycle, e.g. the clusterization index
of the graph.

From this observation it follows that in very good approximation the behavior
of the network is described by only 3 numbers: the average connectivity γ, the
clustering coefficient a1 and η.

Substituting the values of ak in the expression of r (8), one obtains:

r = 1 + γ[(1−G)−2 − 1] + (a1 − γ)[(1− e−ηG)−2 − 1], (12)

According to the numerical fitting, the parameters a1 and η depend on γ and
ω as:

η = −0.078 + 0.322γ − 0.985ω + 2.07γ2 − 1.65γω − 0.73ω2 (13)

a1 − γ = exp(−0.413− 1.083γ − 0.982ω + 0.31γ2 − 6.43γω − 3.27ω2). (14)



Of course, one can find more precise numerical approximations for η, a1 − γ,
using more sophisticated approximations. Although the approximation is very
rough, the results for the area of SW behavior of the graph are exact of up to 2
digits.

The equations (6, 7, 12, 13) provide closed system that solves the problem of
small world topology network. This system can be solved by successive approx-
imations.

4 Summary and Future Work

The effect of the topology on the performance of a symmetrical Hebb NN at zero
temperature was found to be dependent only on small number of real parameters
ak, that are the probabilities of having cycle of length k + 2 in the connectivity
graph. The first ak, a0 = 1, because the network is symmetric, the second a1 is
the clustering coefficient of the network and the limit value of ak by large k is
the average connectivity of the network γ. Monte-Carlo procedure was designed
to find this probabilities for arbitrary topology.

Empirical study of ak shows that for a small world topology these coeffi-
cients converge as exponent to its limit value, that makes possible to express
analytically the behavior of SW NN using directly its definition parameters.

Although the replica-symmetry solution for SW is stable, it is not clear if it
is so for different topologies. Curiously, although lacking theoretical background,
the comparison between the simple solution given here and the simulation for
a wide variety of topologies, even asymmetric, is almost perfect. It would be
interesting to find similar, theoretically grounded, framework for calculating the
behavior of general connectivity distribution and asymmetrical networks.

The particular choice of small world topology seems to have little impact
on the behavior (11) of ak. It seams that the this behavior is universal with
large number of rapidly dropping with the distance connectivities. If the mean
interaction radius of each neuron is much smaller then N it is easy to show that
the equation (11) holds exactly.

However, the exact behavior of η and the range of the validity of the approx-
imation (11) deserves future attention. It would be interesting to find how the
parameters just described and the mean minimal path length are connected. It
is clear that η increases with the drop of the mean minimal path length.
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