Skip to main content

A Learning Algorithm with Gaussian Regularizer for Kernel Neuron

  • Conference paper
Advances in Neural Networks – ISNN 2004 (ISNN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3173))

Included in the following conference series:

Abstract

Abstract. In support vector machine there exist four attractive techniques: kernel idea to construct nonlinear algorithm using Mercer kernels, large margin or regularization to control generalization ability, convex objective functional to obtain unique solution, and support vectors or sparseness to reduce computation time. The kernel neuron is the nonlinear version of McCulloch-Pitts neuron based on kernels. In this paper we define a regularized risk functional including empirical risk functional and Gaussian regularizer for kernel neuron. On the basis of gradient descent method, single sample correction and momentum term, the corresponding learning algorithm is designed, which can realize four ideas in support vector machine with a simple iterative scheme and can handle the classification and regression problems effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  2. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (1999)

    Google Scholar 

  3. Scholkopf, B., Smola, A.J.: Learning with Kernels - Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  4. Scholkopf, B., Smola, A., Muller, K.-R.: Nonlinear Component Analysis as a Kernel Eignvalue Problem. Neural Computation 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  5. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Muller, K.-R.: Fisher Discriminant Analysis with Kernels. Neural Networks for Signal Processing IX, 41–48 (1999)

    Google Scholar 

  6. Suykens, J.A.K., Vandewalle, J.: Least Squares Support Vector Machines. Neural Processing Letters 9, 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  7. Xu, J., Zhang, X., Li, Y.: Large Margin Kernel Pocket Algorithm. In: Proceedings of 2001 International Joint Conference on Neural Networks, pp. 1480–1485. IEEE Press, New York (2001)

    Google Scholar 

  8. McCulloch, W.S., Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics 5, 115–131 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  9. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Representations by Back- Propagating Errors. Nature 323(9), 533–536 (1986)

    Article  Google Scholar 

  10. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, San Diego (1999)

    Google Scholar 

  11. Xu, J., Zhang, X., Li, Y.: Kernel Neuron and its Training Algorithm. In: Proceedings of 8th International Conference on Neural Information Processing, vol. 2, pp. 861–866. Fudan University Press, Shanghai China (2001)

    Google Scholar 

  12. Tikhonov, A.N., Arsenin, V.Y.: Solution of Ill-Posed Problem. W. H. Wanston, Washington (1977)

    Google Scholar 

  13. Pault, D.C., Nowlan, S.J., Hinton, G.E.: Experiments on Learning by Back Propagation. Technical Report. CMU-CS-86-126, Carnegie-Mallon University (1986)

    Google Scholar 

  14. Saito, K., Nakano, R.: Second Order Learning Algorithm with Squared Penalty Term. Neural Computation 12(3), 709–729 (2000)

    Article  Google Scholar 

  15. Evgeniou, T., Pontil, M., Poggio, T.: Regularization Networks and Support Vector Machines. In: Smola, A.J., Bartlett, P.L., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 171–204. MIT Press, Cambridge (2000)

    Google Scholar 

  16. Girosi, F., Jones, M., Poggio, T.: Regularization Theory and Neural Networks Architectures. Neural Computation 7(2), 219–269 (1995)

    Article  Google Scholar 

  17. Reed, R.: Pruning Algorithms - A Survey. IEEE Transactions on Neural Networks 4(5), 740–747 (1993)

    Article  Google Scholar 

  18. Ishikawa, M.: Structural Learning with Forgetting. Neural Networks 9(3), 509–521 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, J., Zhang, X. (2004). A Learning Algorithm with Gaussian Regularizer for Kernel Neuron. In: Yin, FL., Wang, J., Guo, C. (eds) Advances in Neural Networks – ISNN 2004. ISNN 2004. Lecture Notes in Computer Science, vol 3173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28647-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28647-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22841-7

  • Online ISBN: 978-3-540-28647-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics