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Abstract.  Multiple classifier systems based on neural networks can give im-
proved generalisation performance as compared with single classifier systems.  
We examine collaboration in multi-net systems through in-situ learning, explor-
ing how generalisation can be improved through the simultaneous learning in 
networks and their combination.  We present two in-situ trained systems; first, 
one based upon the simple ensemble, combining supervised networks in paral-
lel, and second, a combination of unsupervised and supervised networks in se-
quence.  Results for these are compared with existing approaches, demonstrat-
ing that in-situ trained systems perform better than similar pre-trained systems. 

1 Introduction 

The task of classifying data has been tackled by a number of different techniques.  
One such approach is the use of mixture models, which uses a combination of models 
to summarise a data set comprising a number of modes.  Such mixture models are 
‘parsimonious in the sense that they typically combine distributions that are simple 
and relatively well-understood’  [5] (p.267), of which the mixture-of-experts (ME) 
model is a good example.  Mixture models are based on the assumption that each con-
stituent of the mixture can classify one segment of the input, and that the combination 
is able to classify most, i f not all, of the input.  Such combinations appear intuitive, 
and have been used on a number of pattern recognition tasks, such as identity [6] and 
handwriting recognition [16].  The disadvantage with mixture models is the increase 
in processing time caused by multiple components, however they have a degree of 
elegance in that they combine a number of ‘simple’  classifiers. 

The constituent classifier neural networks of a multiple classifier combination are 
further distinguished as either ensemble or modular; the former refers to a set of re-
dundant networks, whilst the later has no redundancy (of which ME is an example).  
Such multi-net systems (see papers in [12]) typically combine networks in parallel, but 
the sequential combination of networks has also had some success [10].  Whether in 
parallel or in sequence, each constituent network of a multi-net system is combined 
using prior knowledge of how the combination is affected, exemplified by the pre-
training of networks before combination.  The question here is whether techniques 
such as ME, which can learn how to combine networks, offers any improvement over 
individually trained systems?  In the context of multiple classifier systems, it is im-
portant to look at this in-situ learning, defined as the simultaneous training of the con-
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stituent networks, which ‘provides an opportunity for the individual networks to in-
teract’  [9] (p.222).  In this paper we evaluate the use of in-situ learning in the parallel 
and sequential combination of networks to help assess this as a general approach to 
learning in multi-net systems. 

2 In-situ Learning in Multi-net Systems 

In this paper we consider two multi-net systems that exploit in-situ learning [3].  The 
first is a simple ensemble (SE) trained in conjunction with early stopping techniques: 
the simple learning ensemble (SLE).  The second is a novel system consisting of a 
group of unsupervised networks and a single supervised network that are trained in 
sequence: sequential learning modules (SLM). 

Simple Learning Ensemble: There have been two contrasting examples of in-situ 
learning in ensembles.  Liu and Yao [8] defined the negative correlation learning al-
gorithm for ensembles that trains networks in-situ using a modified learning rule with 
a penalty term, whereas Wanas, Hodge and Kamel’s [14] multi-net system combines 
partially pre-trained networks before continuing training in-situ.  Whilst we agree 
with Liu and Yao that in-situ learning is important, our work differs from theirs and 
Wanas et al ’s in two respects: first we use the same data set to train all of the net-
works, rather than using data sampling, and second we use early stopping to promote 
generalisation through assessing the combined performance of the ensemble, instead 
of introducing a penalty term to the error function, exploiting the interaction between 
networks [9].  Our approach is based upon the SE, but with each network trained in-
situ.  We use the generalisation loss [11] early stopping metric to control the amount 
of training based upon the measured generalisation performance. 

Sequential Learning Modules: Sequential in-situ learning is a difficult area to de-
velop for supervised classification because it depends upon having an appropriate er-
ror to propagate back through each network in sequence.  This issue is apparent in the 
development of multi-layer, single network systems, where an algorithm such as 
backpropagation is required to assign error to hidden neurons.  Bottou and Gallinari 
[2] discussed how error can be assigned to sequential networks in multi-net systems, 
but assumed that each such network used supervised learning.  Our approach is to use 
unsupervised networks in sequence coupled with in-situ learning so that no such error 
is required, only an appropriate input to each network.  We employ networks that use 
unsupervised learning in all but the last network to give an overall supervised system, 
but which does not propagate back error.  This approach also allows unsupervised 
techniques to be used to give a definite classification through the assignment of a 
class by the last network. 

3 Evaluating In-situ Learning with Classification 

The classification of an arbitrary set of objects is regarded as an important exemplar 
of learnt behaviour.  We use well-known data sets [1], which have been used exten-
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sively in benchmarking the performance of classification systems, observing the be-
haviour of the proposed systems.  We use the arti ficial MONK’s problems [13] to test 
generalisation capability, whilst the Wisconsin Breast Cancer Database (WBCD) [15] 
is used to test pattern separation capability using real-li fe data (Table 1). 

Table 1.  Details of data sets used for experiments.  For the MONK’s problems, the validation 
data set includes the training data, which is also used for testing. 

Data Set I nput Output Training Validation Testing Examples/Class % Notes 
MONK 1 6 1 124 432 - 50:50  
MONK 2 6 1 169 432 - 67:33  
MONK 3 6 1 122 432 - 47:53 5% misclassified 
WBCD 9 2 349 175 175 66:34 16 missing values 

SLE systems consisting of from 2 to 20 multi-layer perceptrons (MLPs) trained us-
ing backpropagation were constructed to determine the effect of ensemble complexity 
on generalisation performance.  Each network within the ensemble had the same net-
work topology, but to generate diversity in the networks, each was initialised with dif-
ferent random real number weights selected using a normal probability distribution 
with mean 0, standard deviation 1.  The backpropagation with momentum algorithm 
was used with the Logistic Sigmoid activation function, using a constant learning rate 
of 0.1 and momentum of 0.9. 

For the SLM systems, we restrict ourselves to combining a self-organising map 
(SOM) [7] and a single layer network employing the delta learning rule.  Neither of 
these is capable of solving a non-linearly separable classification problem; our hy-
pothesis is that an in-situ trained combination of these can solve these more complex 
problems.  The basic SOM algorithm was used on a rectangular map of neurons, with 
a Gaussian neighbourhood and exponential learning rate.  To ensure that the output of 
the SOM can be combined with the single layer network, the output is converted into 
a vector by concatenating the winning values from each of the neurons, with ‘1’  asso-
ciated with the winning neuron and ‘0’  for all other neurons.  The single layer net-
work using the delta learning rule had a constant learning rate of 0.1, and a binary 
threshold activation function. 

Table 2.  The number of input, hidden and output nodes per data set for each of the constituent 
networks used for the single network and ensemble systems (hidden nodes selected as in [13]). 

System MONK 1 MONK 2 MONK 3 WBCD 
MLP 

MLP (ES) 

SE (ES) 

SLE (ES) 

6-3-1 6-2-1 6-4-1 9-5-2 

In order to understand the generalisation performance of the SLE and SLM sys-
tems, we compare the percentage test responses against those generated for single 
MLPs trained with and without early stopping, as well as simple ensembles formed 
from 2 to 20 MLPs pre-trained with early stopping.  The architecture used for the 
various systems is shown in Table 2 and Table 3.  Each of the systems underwent 100 
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trials to estimate the mean performance, training either for a fixed 1000 epochs, or 
with early stopping (ES) for a maximum of 1000 epochs. 

Table 3.  The different architectures used for the SLM system, shown as the topology of the 
SOM and the single layer network.  For the SOM this is the number of inputs and nodes in the 
map.  For the single layer network this is the number of input and output nodes.  

System MONK 1 MONK 2 MONK 3 WBCD 
6-5x5: 25-1 6-5x5: 25-1 6-5x5: 25-1 9-5x5: 25-2 

6-10x10: 100-1 6-10x10: 100-1 6-10x10: 100-1 9-10x10: 100-2 SLM 

6-20x20: 400-1 6-20x20: 400-1 6-20x20: 400-1 9-20x20 400-2 

3.1 Experimental Results 

For each of the benchmark data sets, Table 4 shows the percentage mean number of 
correct test responses for the MLP, SE, SLE and SLM systems.  Only the configura-
tion of each system giving the highest mean test percentage is shown. 

Table 4.  Results for systems with the highest mean test response, with the number of networks 
/ SOM configuration and mean test response, with standard deviation. 

MONK 1 MONK 2 MONK 3 WBCD 
System 

Nets Test % Nets Test % Nets Test % Nets Test % 

MLP 1 84.44 ± 12.15 1 66.29 ± 35.21 1 83.39 ± 47.57 1 95.90 ± 3.93
MLP (ES) 1 57.13 ± 8.74 1 65.21 ± 2.68 1 63.10 ± 6.83 1 82.34 ± 9.61
SE (ES) 3 55.75 ± 7.70 18 66.25 ± 0.81 18 66.03 ± 23.10 20 91.94 ± 1.69
SLE (ES) 20 90.21 ± 6.16 20 69.49 ± 1.24 19 78.57 ± 4.69 20 92.95 ± 1.06
SLM 10x10 75.63 ± 4.78 20x20 75.09 ± 26.06 10x10 84.10 ± 1.76 20x20 97.63 ± 0.83

First we note that for the MONK 1 and 2, the SLE system gives a comparatively 
better generalisation performance when a relatively large number of networks are 
combined, with the performance of the SE decreasing with successively more net-
works.  Here a more complex in-situ trained system gives better generalisation, in 
contrast to the far less complex pre-trained system.  For MONK 3 and WBCD, the 
SLE improves upon the early stopping MLP and SE systems, but not the fixed MLP 
trained for 1000 epochs.  The improvement in generalisation performance can be at-
tributed to the increased training times experienced by the SLE algorithm with in-
creasing numbers of networks as compared with the MLP with early stopping sys-
tems.  For example, for MONK 1 with 2 networks, the maximum number of epochs is 
27 (excluding outliers), which increases to 521 epochs for 20 networks.  However, all 
these are less than the fixed 1000 epochs for the MLP systems, yet give a similar level 
of performance. 

For the SLM system, we note that the sequential combination of networks success-
fully learns to solve each non-linearly separable task.  This is perhaps surprising given 
that neither is individually capable, and despite the somewhat complex nature of the 
SLM systems with relatively high numbers of neurons.  For MONK 2, 3 and WBCD, 
the SLM system out-performs the other single network and multi-net systems.  For 
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MONK 1 the results are better than both the SE and MLP with early stopping, but do 
not improve upon the SLE or fixed MLP. 

The results for the SLM also show how the number of neurons within the SOM af-
fects the overall performance of the system, perhaps in a similar way to the number of 
hidden neurons in an MLP.  Here, increasing the map size tends to give both im-
proved training and generalisation performance, reaching a peak commensurate with 
over-fitting.  For MONK 1 the response for the 10x10 map is better than for the 
20x20 map, despite giving a 100% training response, as compared with the 10x10 re-
sponse of 89.65%.  Furthermore, increasing the map size also produces more reliable 
solutions in that the standard deviation decreases, whilst still maintaining a similar 
level of generalisation performance. 

3.2 Discussion 

These preliminary results are encouraging, and demonstrate that in-situ learning in 
parallel and sequential combinations of networks can give improved generalisation 
performance, as demonstrated by the results for SLE, and especially the SLM sys-
tems.  Putting these into context with other reported results shows that they compare 
well, but it is recognised that some further investigation is required. 

For the MONK’s problems, optimal generalisation results have been reported with 
100%, 100% and 97.2% for MONK 1, 2 and 3 respectively [13].  For the SLE sys-
tems the maximum values are 98.4%, 74.5% and 83.1%, and for the SLM systems 
84.7%, 81.0% and 87.5%, showing that, whilst there is a small spread of values, fur-
ther tuning is required to improve the maximum.  Here, of interest is the way in which 
the results demonstrate the use of unsupervised learning in a modular system, giving a 
significant improvement in generalisation as compared with existing supervised tech-
niques (MONK 2 and 3).  For the WBCD data set, the SLM system with a mean of 
97.63% again out-performs the SE, and is comparable to other multi-net systems such 
as AdaBoost with 97.6% [4].  Further work is required to assess the properties of 
these techniques with other data sets, and especially how the combination of unsuper-
vised and supervised learning can be further exploited for classification tasks. 

4 Conclusion 

In this paper we have explored whether the use of simultaneous, in-situ learning in 
multi-net systems can provide improved generalisation in classification tasks.  In par-
ticular, we have presented results for in-situ learning in an ensemble of redundant 
networks, and the in-situ learning in a sequential system, the latter of which builds 
upon the principle that ‘simple’  networks combined in a modular system are parsimo-
nious, through the combination of supervised and unsupervised techniques. 
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