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Abstract. Nowadays many researchers use GARCH models to generate
volatility forecasts. However, it is well known that volatility persistence,
as indicated by the sum of the two parameters G1 and A1[1], in GARCH
models is usually too high. Since volatility forecasts in GARCH mod-
els are based on these two parameters, this may lead to poor volatility
forecasts. It has long been argued that this high persistence is due to
the structure changes(e.g. shift of volatility levels) in the volatility pro-
cesses, which GARCH models cannot capture. To solve this problem, we
introduce our GARCH model based on Hidden Markov Models(HMMs),
called HMM-GARCH model. By using the concept of hidden states,
HMMs allow for periods with different volatility levels characterized by
the hidden states. Within each state, local GARCH models can be ap-
plied to model conditional volatility. Empirical analysis demonstrates
that our model takes care of the structure changes and hence yields bet-
ter volatility forecasts.

1 Introduction

Volatility analysis of financial time series is an important aspect of many financial
decisions. For example, fund managers, option traders and etc., are all interested
in volatility forecasts in order to either construct less risky portfolios or obtain
higher profits. Hence, there is always a need for good analysis and forecasting of
volatility.

In the last few decades, many volatility models have been put forward. The
most popular and successful models among these are the autoregressive condi-
tional heteroskedasticity (ARCH) models by Engle [2] and extended to general-
ized ARCH (GARCH) by Bollerslev [3]. Their success stems from their ability to
capture some stylized facts of financial time series, such as time-varying volatility
and volatility clustering. Other volatility models include the stochastic volatility
(SV) models and etc..

Although standard GARCH models improve the in-sample fit a lot com-
pared with constant variance models, numerous studies find that GARCH mod-
els give unsatifactory forecasting performances, see [4]. Andersen and Bollserslev
[5] pointed our that GARCH models give good volatility forecasting by increas-
ing the data sampling frequecy, such as intra-day data. Increasing the sampling
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frequency may also lessen the effect of the structure changes. Our research work,
however, focus on the commonly used inter-day data. Hence the effect of struc-
ture changes is unavoidable.

In our paper we argue that the usually overstated volatility persistence in
GARCH models may be the cause of poor forecasting performances. And many
researchers show that this well-known high persistence may originate from the
structure changes in the volatility processes, which GARCH models cannot cap-
ture. For example, Lamoureux [1] demonstrated that any shift in the structure
of financial time series(e.g. the shift of unconditional variance) is likely to lead
to misestimation of the GARCH parameters in such a way that they imply too
high a volatility persistence.

One approach for modelling volatility structure changes is to use a Hamilton
type regime switching (RS) model [6]. The earlier RS applications [7] tend to
be rigid, where conditional variance is a constant within each regime. Recent
extensions by Cai [8] apply an ARCH specification into the RS model to allow
conditional variance to be time dependent.

Our goal is to solve the problem of excessive persistence in original GARCH
models by introducing Hidden Markov Models to allow for different volatility
states (periods with different volatility levels) in time series. And also, within
each state, we allow GARCH models to model the conditional variance. As a
result, our model is more parsimonious than Cai [8] because they use an ARCH
class specification in each regime. The resulting HMM-GARCH model indeed
yields better volatility forecast compared to original GARCH models for both
artificial data and real financial data, in-sample as well as out-of-sample.

The overview of this paper is as follows. In section 2, we will formally define
our HMM-GARCH model. In section 3, we will give a detailed description of
the data, methodology and the empirical results of our volatility forecasting
experiments. Finally, our conclusion is in section 4.

2 HMM-GARCH Model

2.1 GARCH Models

First, let us consider a time series Y , and observation yt (t = 1, 2, . . . , T ) is the
value of Y at time step t. Here we consider the GARCH(1,1) models, which are
adequate for modelling volatilities in most financial time series (see [9]). The
GARCH(1,1) model is as follows:

yt = C + εt (1)

σ2
t = K + G1σ

2
t−1 + A1ε

2
t−1 (2)

In the conditional mean model Eq.(1), each observation yt consists of a condi-
tional mean C, plus an uncorrelated, white noise innovation εt. In the conditional
variance model Eq.(2), the conditional variance σ2

t consists of a constant K, plus
a weighted average of last period’s forecast, σ2

t−1, and the last period’s squared
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innovation ε2t−1. Also we need K > 0, G1 > 0 and A1 > 0 to ensure a positive
conditional variance σ2

t . A convenient way to express the innovation is εt = Ztσt,
where Zt is an i.i.d. process with zero mean and unit variance. For the parameter
estimates of the GARCH(1,1) model, the likelikhood functions have been maxi-
mized by using the BFGS optimization algorithm in the MATLAB optimization
routines.

2.2 Hidden Markov Models

The basic concept of a Hidden Markov model is a doubly embedded stochastic
process with an underlying stochastic process (the state sequence) that is not
observable or hidden. The state sequence is a Markov process and it is called
hidden because it can only be observed through another stochastic process (ob-
servation sequence), where each observation is a probabilistic function of the
corresponding state.

We now define the notation of an HMM [10] which will be used later. Given
the time series Y , an HMM is characterized by the following: 1) N, the number
of states in the model. In our model the states refer to different variance levels.
We denote the state set as S = {S1, S2, · · · , SN}, and the state at time t as
qt, qt ∈ S. 2) The state transition probability distribution A = {aij} where
aij = P [qt = Sj |qt−1 = Si], 1 ≤ i, j ≤ N . 3) The observation probability
distribution B. 4) The initial state distribution π. For convenience, we used the
compact notation λ = (A, B, π) to indicate the complete parameter set of the
model.

Given the form of the HMMs, the goal is to find the best model for a given
time series through optimally adjusting model parameters (λ = (A, B, π)).

2.3 HMM-GARCH Model

Our model is a hybrid model of the original GARCH models and HMMs.
First, we use HMMs to divide the entire time series into regimes with different

volatility levels. The return of the time series is assumed to be modelled by
a mixture of probability densities and each density function corresponds to a
hidden state with its mean and variance. Viterbi algorithm [10] in HMMs is
used to find the state sequence in the time series. Then we get the subsets of
original time series corresponding to different states (volatility levels).

Second, within each regimes, we allow GARCH models with different param-
eter sets to model the local conditional variance as:

yt = Ci + εt (3)

σ2
t = Ki + Gi

1σ
2
t−1 + Ai

1ε
2
t−1 (4)

where i denotes the state of the time series at time t. Ki, Gi
1 and Ai

1 are the
parameter sets of local GARCH models related to state i.

Third, for the volatility forecast σ2
t of the global model, we need to predict

the state i of time series at time t + 1 (next state). To make the prediction of
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the next state, we define αt(i) = P (y1, y2, ..., yt, qt = i|λ), we can then estimate
the probability of next state in terms of the transition probabilities aij as:

P (qt+1 = j|y1, y2, · · · , yt, λ) =
P (y1, y2, · · · , yt, qt+1 = j|λ)

P (y1, y2, · · · , yt|λ)
(5)

=
∑N

i=1 αt(i)aij∑N
j=1(

∑N
i=1 αt(i)aij)

(6)

where αt(i) can be estimated from the forward-backward algorithm [10].
After the next state i at time t + 1 has been determined as above, we can

choose the corresponding local GARCH model with parameter sets Ki, Gi
1 and

Ai
1 to make volatility forecast.

3 Volatility Forecast Evaluation and Comparison

3.1 Data and Methodology

We used both artificial data sets and real financial data sets in our volatility fore-
cast experiments. We considered both the in-sample forecasting performances
and the out-of-sample forecasting performances.

First, we used artificial data because we know the exact regime switching
processes in the time series in order to testify if our model solve the problems
of excessive persistence in original GARCH models. We generated an artificial
data set of total length 550 that switches between two GARCH processes. The
diagonal elements aii of the transition matrix A are a11 = 0.98 and a22 = 0.96.

Second, to test if our model is useful in practice, we used real financial data
sets (stock return time series) in our experiments. All 5 stocks are chosen from
the Hang Seng Index (HSI) components with stock ID: 1, 3, 11, 17, 179 (from
2001/02/01 to 2003/05/01), a total of 550 days.

For all data sets, we use the rolling window in the experiments, 500 obser-
vations (about 2 years) were employed for training and in-sample evaluation
purposes. The next observation was used for out-of-sample evaluation purposes.

3.2 Empirical Results and Evaluation

Since the actual volatility at time t is not observable, we need some measures
of volatility to evaluate the forecasting performance. In this paper we use the
standard approach suggested by Pagan and Schwert [7]. A proxy for the actual
volatility σ̂2

t is given by
σ̂2

t = (yt − y)2 (7)

where y is the mean of the time series over the sample period.
Mean Squared Error (MSE), a commonly used method in the literature, is

used in this paper:

MSE = T−1
T∑

t=1

(σ̂2
t − σ2

t )2 (8)
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Table 1 and 2 below show the evaluation results. We use a two-state HMM-
GARCH model in our experiments. In both tables, t-v represents true value, HG
stands for HMM-GARCH model and o-G stands for original GARCH model. s1

and s2 indicate the two states with low and high volatility levels, respectively.
MSE1 is the in-sample MSE while MSE2 is the out-of-sample MSE. The aster-
isks (*) means the results is significant at the 10% level.

Table 1. MSE for the artificial data set and the true parameter sets compared with
those obtained from HMM-GARCH model and original GARCH models.

models C K G1 A1 G1+A1 MSE1 MSE2

t-v (s1) 1 · 10−3 1 · 10−5 0.20 0.10 0.30 / /
(s2) 1 · 10−3 5 · 10−5 0.60 0.30 0.90

HG (s1) 1 · 10−3 1 · 10−5 0.35 0.16 0.51 0.83 0.35
(s2) 1 · 10−3 7 · 10−5 0.65 0.32 0.97 ·10−5 ·10−7∗

o-G 1 · 10−3 2 · 10−5 0.58 0.41 0.99 0.93 0.43
·10−5 ·10−7∗

Table 2. MSE for the stock return data sets and the parameter sets obtained from
HMM-GARCH model and original GARCH models. (We ignore C, K here because we
only care about the volatility persistence for real financial data.)

stock models G1 A1 G1+A1 MSE1 MSE2

001 HG (s1) 0.88 0.00 0.88
(s2) 0.06 0.00 0.06 0.13 · 10−5 0.03 · 10−5∗

o-G 0.80 0.12 0.92 0.14 · 10−5 0.04 · 10−5∗
003 HG (s1) 0.55 0.11 0.66

(s2) 0.47 0.00 0.47 0.49 · 10−7∗ 0.16 · 10−7∗
o-G 0.60 0.13 0.73 0.51 · 10−7∗ 0.18 · 10−7∗

011 HG (s1) 0.88 0.00 0.88
(s2) 0.01 0.00 0.01 0.11 · 10−6 0.01 · 10−6∗

o-G 0.90 0.06 0.96 0.13 · 10−6 0.03 · 10−6∗
017 HG (s1) 0.93 0.02 0.95

(s2) 0.03 0.00 0.03 0.16 · 10−4 0.02 · 10−4∗
o-G 0.67 0.29 0.96 0.20 · 10−4 0.03 · 10−4∗

179 HG (s1) 0.57 0.00 0.57
(s2) 0.07 0.00 0.07 0.74 · 10−5∗ 0.07 · 10−5∗

o-G 0.95 0.02 0.97 0.82 · 10−5∗ 0.12 · 10−5∗

The results above show that HMM-GARCH model recovers the switching
processes between two different volatility regimes with different volatility per-
sistence (G1 + A1). However, the original GARCH models can not capture such
volatility structure changes and always show a very high volatility persistence.
As a result, we can see that HMM-GARCH model gives better volatility fore-
casts because the MSE of HMM-GARCH model is significantly smaller than the
original GARCH models for most of the time.
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4 Conclusion

This paper is based on the well-known fact that the volatility persistence of
widely-used GARCH models is usually too high so that original GARCH mod-
els give poor volatility forecasts. And one possible reason for this excessive per-
sistence is the structure changes (e.g. shift of volatility levels) in the volatility
processes, which GARCH models cannot capture.

Therefore, we developed our HMM-GARCH model to allow for both different
volatility states in time series and state specific GARCH models within each
state. Our model shares the basic regime-switching concept of other recent RS
applications (see [8], and [11]), and is more parsimonious in each state by allowing
GARCH type heteroskedasticity.

The empirical results for both artificial data and real financial data show
that the excessive persistence problems disappear in our model. And as a result,
the forecasting performance of our model outperforms original GARCH models
for both in sample and out-of-sample evaluation. These results suggest that it
is promising to study volatility persistence in more detail, including the hidden
regime-switching mechanisms, to improve volatility forecasts in future research.
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