
 

Deformable Object Matching  
Based on Multi-scale Local Histograms  

N. Pérez de la Blanca1, J.M. Fuertes2, and M. Lucena2 

1Department of Computer Science and Artificial Intelligence 
ETSII. University of Granada, 18071 Granada, Spain 

nicolas@ugr.es  
2Departmento de Informática. Escuela Politécnica Superior. Universidad de Jaén 

Avenida de Madrid 35, 23071 Jaén .Spain 
{jmf,mlucena}@ujaen.es 

Abstract. This paper presents a technique to enable deformable objects to be 
matched throughout video sequences based on the information provided by the 
multi-scale local histograms of the images. We shall show that this technique is 
robust enough for viewpoint changes, lighting changes, large motions of the 
matched object and small changes in rotation and scale. Unlike other well-
known color-based techniques, this technique only uses the gray level values of 
the image. The proposed algorithm is mainly based on the definition of a 
particular multi-scale template model and a similarity measure for histogram 
matching. 

1 Introduction 

In this paper, we approach the problem of matching deformable objects through video 
sequences based on the information provided by the gray level histogram of the local 
neighborhoods of the images. Our approach is traditional in the sense that we shall 
define a template of the object of interest, and we will attempt to find the image 
region that best matches the template. What is new about our approach is the template 
definition and the similarity measure. Deformable object matching/tracking remains a 
very challenging problem mainly due to the absence of good templates and similarity 
measures which are robust enough to handle all the geometrical and lighting 
deformations that can be present in a matching process.  

Very recently, object recognition by parts has been suggested as a very efficient 
approach to recognize deformable object [4][5][1]. Different approaches are used in 
the recognition process from the basic parts, but the matching of salient parts is a 
common task to all approaches. Region and contour information are the main sources 
of information from which the location of a part of an object in an image can be 
estimated (e.g. [17][11][9][10]). Our approach is region-based since gray level 
features better model the type of application that we are interested in. Let us consider 
facial region matching. The main features we use are the local histograms at different 
spatial scales of the image. Furthermore, it is well known that histograms are robust 
features for translation, rotation and view point changes [14] [15] .  

The use of histograms as features of interest can be traced back to Swain & Ballard 
[15] who demonstrated that color histograms could be used as a robust and efficient 
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mechanism for indexing images in databases. Histograms have been used widely in 
object and texture recognition and image and video retrieval in visual databases [13] 
[3] [12]. The main drawback of using the histogram directly as the main feature is the 
loss of the gray level spatial information [12][15]. Recent approaches based on the 
space-scale theory have incorporated the image's spatial information. In [13] 
multidimensional histograms, which are obtained by applying Gaussian derivative 
filters to the image, are used. This approach incorporates the image's spatial 
information with global histograms. In [3], spatial information is also taken into 
account, but using a set of intensity histograms at multiple resolutions. None of the 
above approaches explicitly addresses the local spatial information present in the 
image. The ideas presented in [7], [6] suggest the interest in removing the local spatial 
information in deformable regions matching process. In [8] it is shown that very 
relevant information to detect salient regions in the image can be extracted from local 
histograms at different scales.   

In this paper, by contrast with the above approaches we impose a better 
compromise between spatial information and robustness to deformations.  In our case, 
the matching template for each image region is built as a spatial array, and to each of 
its positions, the gray level histograms (calculated from a growing sequence of spatial 
neighborhoods centered on this position) are associated. Although this spatial 
information is extremely redundant, as we show in the experiment in the case of high 
noise, this redundancy is extremely useful when estimating the correct location of the 
template. On each image, the template is iterated on all the possible locations within 
it. The matching on each image location is the vector of the similarity matching on 
each spatial scale. The optimum (minimum or maximum, according to the similarity 
criterion definition) of this vector defines the saliency value in each image location. 
The set of these values defines a saliency map associated to the image, which is the 
input to the final decision criteria defining the optimum location. 

This paper is organized in the following way: Section 2 introduces the template 
definition and the similarity measure; Section 3 presents the algorithm; Section 4 
shows the experimental results; and finally, Section 5 details the discussion and 
conclusions. 

2 Template and Similarity Measure 

Let R be a region of the image I.  Let Ds(a)={x∈ R | ||x-a||<s, a∈ R, s∈R+ } be the set 
of points inside the region R  to a distance s of the points a. Let Ns={ Ds(a)| Ds(a) ⊂ 
R} be the set of all local discs Ds fully contained inside the region R.. The set {Ns , 
s∈S} represents the information present in the image for the range of scales defined 
by S.  The main drawback of classical template matching methods is the rigidity 
imposed by the spatial disposition of the gray level values of the pixels, which prevent 
the template from adapting to the gray level changes on the surface of the object due 
to lighting or geometrical changes. The template we introduce to characterize a region 
removes this constraint by associating to each pixel a set of histograms instead of only 
one gray level.  Obviously, small changes in the gray level values around a pixel can 
be absorbed inside its histogram.  
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The template associated to a region R  is  then  defined by the set 

T (R) = {V (Ns ), s∈S } (1) 

where V (Ns) represents the set of histograms built up from the set of spatial 
neighborhoods  Ns. 

The next step is to define a similarity measure associated to this template. We have 
considered the following vector-valued similarity distance between two templates 
associated to two regions of the same size 
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Where vi(x,s) defines the gray level histogram calculated at the pixel location  x and 
scale value s and Ms is the number pixel in Ns. The values w(x) weight the error norm 
inversely proportional to the distance of the pixel x to the target region center. In our 
case we have use the radially symmetric function w(x)=(1−x), if 0≤ x ≤1 and 0 if x>1 
to define the weights. Different norms calculating a distance between two dense 
histograms, in matching process, have already been studied [13]. In our case, all the 
local histograms v(x,s) are very sparse since the range of gray levels  present in the 
neighborhood of each pixel is usually very small in comparison with the full range of 
the image. We have experimented with the Minkowski´s norm (M) for  p=1,2 and the 
capacitory discrimination (C), an entropy-based discrimination measured equivalent  
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to a simetrized divergence information (see [16]). 
One important consequence of the histogram sparseness is the need to quantize the 

image gray level range before the similarity distances are calculated.  It is important 
to note that in contrast with the results shown in [15], the bin number after the 
quantization process appears as a relevant parameter. We have tried to estimate this 
number using the statistical criteria developed for optimum bin number estimation 
[2], but unfortunately these estimators do not represent, in general, an adequate bin 
number for the matching process. In our case the bin number used in the experiments 
was fixed by hand. A consequence of the quantization process is the invariance to 
illumination differences less than the bin width. In all of our experiments, we use a 
uniform quantization criterion fixing the length of the interval of the gray levels of the 
image assigned to each bin. The same process is applied to the gray levels of the 
template region. 
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In order to estimate L(T (RT ),T (I )),  the set of possible occurrences of the template 
in an image, we apply the function defined in (2) on each scale and on all the possible 
image locations in which the template region can be embedded within the image.  
These values define the saliency vector-map associated to the image I. The set L is 
defined by the union of all spatial local minima present on each scale of the saliency 
map. 
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where  means D(T (R))(( xITD
TR T),T (Ix)), and the subscript x indicates the 

image point where the template is centered. More sophisticated matching techniques 
can be applied on a subset of these points to decide the best of all of them. 

3 The Algorithm 

The previous steps can be summarized as follows: 

1.- Fix the scale range. 
2.- Build up the template T (RT) of the region template for the prefixed range of 
scales. 
3.- For each image  
      3.1 Build up the template of the i-th image T (Ii) 
      3.2 Calculate the saliency map between T (RT) and T (Ii) 
      3.3 Calculate L  , the union of  all local minima on all scales  for a prefixed 
            neighborhood size. 
4.- Apply a final matching criterion on the set of point L. 

In order to speed up the efficiency of the algorithm we start applying the algorithm 
to a sub-sampled version of the region template and images, where the scale values 
were divided accordingly. In this case, the estimated points and its neighbourhoods 
for a fixed size define the set of point L .  In order to get the maximum accuracy in 
our matching process the step 4 is carried out on the original images. It is also 
important for the efficiency in time to implement the histogram calculation using an 
adaptive process along all the image locations. The most costly step in this algorithm 
is the saliency map calculation on each image location. In this respect and taking into 
account the information redundancy present in the template, the error measure given 
in (2) can only be calculated on a subset of the pixel.  In order to remove the produced 
error by a constant difference in illumination, the template and the target region are 
fixed to the same average value before calculating the error differences. 

4 Experimental Results 

Several experiments have been performed in order to assess the effectiveness of the 
proposed algorithm. Firstly, we focus our experiments to show how robust our 
algorithm is to drastic changes in the object pose. Secondly, we also show how the 
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algorithm is capable of a reasonable level of shape generalization, since with only one 
sample it is possible to successfully track different instances of the same kind of 
object. Thirdly, we show how robust our algorithm is when there are a very large 
change in pose and very hard noise condition. In all the experiments, the final 
decision criterion has been to take the location with the highest saliency measure. In 
all the experiments, the scale range used was s=2,3,4,5,6, which means they are 
circular neighborhoods with diameters ranging from 3 to 11 pixels. In all the 
experiments, the template region is a rectangular sub-image. The background pixels, 
when present, are removed using a binary mask. The bin number was fixed on each 
experiment by hand. The three distances between histograms, M1, M2 and C, were 
used in our experiments. Although no very significant differences were detected 
among them, the Euclidean distance M2 obtained in all the experiemnts the more 
accurate matches. All results shown in this section are referred to the Euclidean 
distance. 

We have used video sequences of human heads in motion for the first two 
experiments, and sequences obtained from the national TV signal for the third 
experiment. The head in motion sequences were captured in 640x480 format by the 
same digital camera, but in different lighting conditions. The aim is to match the eyes 
and the mouth throughout the entire sequences. In our experiments, the template 
region was an instance of the matched object chosen from an image of the sequence.  
However, we also show the results of using the generic template region on different 
image sequence. For reasons of efficiency in our experiments, we reduce the image 
size to the head zone giving 176x224 size images.  

Figure 2 shows the images of a person turning his head from right to left and vice 
versa. In this case, the region templates for the eyes and mouth, respectively, have 
been taken from the region of the right eye and the mouth of one of the central images 
with the head in a front-to-parallel position. Figure 1 shows the two region templates 

 
(a) 

 
(b) 

Fig. 1. a) Template region used for tracking the eyes; 24x16 pixels, b) Template region used for 
tracking the mouth; 36x16 pixels. Both template regions belong to the sequence shown in 
figure 2 

Figure 3. shows the results obtained using generic template regions obtained form 
figure 3 (a) on an image sequence with different expression and very strong changes 
in the point of view of the face. This experiment shows the robustness of the 
algorithm for matching very different instances of the same object. 
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Fig. 2. a) Pieces of relevant images from the eye tracking sequence;. b) Pieces of relevant 
images from the mouth tracking sequence. The white circle indicates the highest saliency point. 
The black circle indicates the second highest saliency point.. The shown images are 50x170 
pixels 

 
Fig. 3. Robustness of the tracking using generic templates; a) Template image; b) The eye 
tracking using the eye template extracted from the image (a); c) The mouth tracking using the 
mouth template extracted from the image (a). The white circle indicates the highest saliency 
point. The black circle indicates the second highest saliency point. The shown images are 
50x170 pixels 

(a) 
 

(b) 

Fig. 4. a) Template region used in the Figure 5. sequence tracking.; 24x16 pixels; b) Binary 
mask used to remove background pixels 
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Fig. 5. a) Four images of the full sequence are shown; b) A subset of relevant details of the 
tracking sequence is shown. The white circle indicates the highest saliency point. The black 
circle indicates the second highest saliency point 

In figure 5 we show a sequence recorded in a bicycle race. The aim is to track the 
bicycle saddle throughout the sequence. Figure 4 shows the template region obtained 
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from one image in the sequence. In this sequence, the fast bicycle motion joined to the 
moving camera produces large changes of the saddle viewpoint.  In this case, the level 
of noise is also very high for several reasons: firstly, the digitalization process reduces 
the images from PAL format to QCIF format; secondly, large lighting changes can be 
observed throughout the sequence; and thirdly, because of the effect of the rain and 
fog present in the scenery (see figure 5 (a)). 

In all the experiments, we have tried with different sampling steps (0-4) on the 
image axis in order to calculate the expression (2). In almost all the images a 
sampling step of 4 pixels in both axes was sufficient to obtain the highest saliency 
value in the best location. However, in some cases with clutter background or large 
changes in geometry or lighting, all the pixels had to be considered. 

5 Discussion and Conclusions 

The first experiment (Figure 2) shows how our algorithm is stable and robust enough 
for viewpoint changes. The right eye, defining the region template, is always matched 
as the best location throughout the entire sequence. We also show how the loss of 
local spatial information has the advantage of matching different instances of the 
same object but with different shapes. The left eye is the second best location in all 
the images. Furthermore, Figure 3 also shows how our template is flexible enough to 
match very different instances of an object. This means that the template definition is 
capable of codifying the relevant information about the object removing the local 
spatial details. In the last experiment (Figure 5), robustness to a non-Gaussian high 
level of noise and drastic changes in the point of view is shown. It is important to 
remark that in this difficult sequence of 150 images only in very few images the best 
location is the second in saliency value.  

In all the experiments we have only considered translation motions of the template 
since our interest is to show that the proposed algorithm is capable of successfully 
matching a large set of different instance of the original template. Of course the 
adding of motions as rotation or scale should improved very much the technique. One 
of the main drawbacks of our algorithm is the loss of the image-plane rotation 
invariance that is present when the full image histogram is considered. The 
approaches given in [13][3] do not present these problems since they consider full 
image histograms. However, in preliminary experiments carried out considering 
global histograms instead of local histograms, poorer results were obtained. In any 
case, a comparative study of all these techniques would be an interesting future line of 
research.  

In order to compare these results with the traditional correlation matching 
algorithms we run the same experiments using this algorithm but we obtained 
completely unsatisfactory results in terms of the object matching position.  

In conclusion, the proposed algorithm represents an efficient generalization of the 
classical matching by correlation algorithm for the case of deformable objects. This 
algorithm enables us to match different instances of the same object obtained from a 
very wide viewpoint range. The loss of the local order imposed by the local histogram 
uses have revealed a high level of robustness in template matching with strong shape 
deformations even in high noise conditions. It has also proved to be robust enough for 
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lighting changes by using histograms with a suitable bin number. Although in theory 
the algorithm is not robust for image-plane rotation and scale, experiments have 
shown that there is also invariance to small rotations and scale. 
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