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Abstract. This paper proposes a self-adaptive scope allocation scheme
for labeling dynamic XML documents. It is general, light-weight and can
be built upon existing data retrieval mechanisms. Bayesian inference is
used to compute the actual scope allocated for labeling a certain node
based on both the prior information and the actual document. Through
extensive experiments, we show that the proposed Bayesian allocation
model can practically and significantly improve the performance of the
conventional fixed scope allocation models.

1 Introduction

It is increasingly expected that XML [1] will become the de facto standard
of the Web, ultimately replacing HTML. An XML document consists of data
enclosed by user defined tags, and its nested tree structure is described by DTD.
Figure. 1 shows an example of an XML document and figure. 2 illustrates the
corresponding DTD.

To allow efficient querying of XML data, each node in the XML data trees
is typically given a unique label, such that given the labels of two nodes, we can
determine whether one node is an ancestor of the other. Till now, many indexing
structures have been proposed to process structural queries efficiently based on
certain coding schemes [9,13,4]. [9] ”stitches” the binary twigs to obtain final
results based on range labeling scheme. [4] improves [9] by using a stack-based
algorithm to efficiently join root-to-leaf paths. [13] treats both document and
query as sequences, and matches the query as a whole unit when querying.

However, to fully evolve XML into a universal data representation and ex-
change format, the capability of modifying XML document is indispensable. It
thus arises an important aspect to XML indexing: how to support dynamic data
insertion, deletion, and update with corresponding index structure.

Cohen et al. [6] firstly proposed a dynamic labeling scheme for XML docu-
ments to support updating operations. The children of a node v have the label
concatenated with the string s attached to their incoming edge. Given s(1)=0,
to obtain s(i+1), the binary number represented by s(i) is increased 1 and if the
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<prices>

<book>

<title>Algorithms</title>

<information>

<source>bstore2.example.com</source>

<price>31.99</price>

</information>

</book>

<book>

<title>Data on the Web</title>

<information>

<source>bstore2.example.com</source>

<price>34.95</price>

</information>

<author>Serge Abiteboul</author>

<author>Peter Buneman</author>

<author>Dan Suciu</author>

</book>

<book>

<title>TCP/IP Illustrated</title>

<information>

<source>bstore2.example.com</source>

<price>65.95</price>

</information>

<author>W. Richard Stevens</author>

</book>

</prices>

Fig. 1. Example of an XML Document

<!ELEMENT prices (book*)>
<!ELEMENT book (title?, information+, author*)>
<!ELEMENT information (source, price)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT source (#PCDATA)>
<!ELEMENT title (#PCDATA)>

Fig. 2. Example of DTD
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representation of s(i)+1 consists of all ones, its length is double. The problem
with this approach is that the size of labeling will grow fast with the increase of
degree of the nodes for its the dependency on the fan-out of a node.

State-of-the-art research efforts [13,14,9] have been proposed to cope with
the problem of allocating scope for dynamic XML documents. [9,14] considered
to give some extra scope while allocating the labels. But as for how much to
allocate, they did not address it. [13] considered to allocate scope for each node
on the basis of the probability of its occurrences from statistical information.
The deficiency is that the probability of allocating space for a certain node is
fixed and is considered as a constant. To summarize, these methods are not
self-adaptive to real document environment where the probability of a node’s
occurrence varies in difference XML documents.

In this paper, we improve the conventional scope allocation scheme using
Bayesian inference technique. Combining the prior information (i.e DTD and
statistical information) and the actual documents, better performance in scope
allocation for dynamic XML documents is achieved. we propose Bayesian Alloca-
tion Model (BAM), a general, self-adaptive scope allocation model that addresses
the above important challenges for dynamic XML data. It is general, light-weight
and can be adapted to existing data retrieval mechanisms [5,4,8,16,7,13,9]. The
scope allocated for each node depends on the probability it will be updated. Thus
we can guarantee a better performance than the traditional allocation methods
when updating.

Outline of the Paper. The rest of the paper is organized as follows. Our
proposed method, Bayesian allocation model, is introduced and theoretically
proved in section 2. The corresponding algorithms are shown in section 3. The
performance is demonstrated in section 4 through a set of experiments. Finally,
our work is concluded in Section 5.

2 Bayesian Allocation Model

Notations: Let u be a node in a DTD, which has t child nodes. Let nodetypei

denote the type of the ith child node (1 ≤ i ≤ t), which occurs xi times under

the node u in corresponding XML document.
∑t

i=1 xi = z, where z equals to
the total number of children under node u. Assume all sibling nodes of different
nodetypei occur independently with probability θi. Let θ̄i denote estimators of
θi, which can be obtained from semantic of our XML document or the statistics
of a sample dataset. Let n denote the range scope allocated for the z nodes
under node u. In the paper, n = c × z, where c denotes the range enlarging
factor.

2.1 Scope Allocation Overview

The scope allocation scheme works as follows; 1) parse DTD to obtain prior
information for each name type; then during the breadth first traversal of an
XML document, embed the tree into a complete K-ary tree, 2) root node of an
XML document is put in level 0 and labeled 1 in the complete K-ary tree; 3) for
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each non-leaf node, calculate the number of children, denoted as z, and the types
of its children, denoted as t ; 4) allocate scope for each child node using Bayesian
allocation model in lth level below its parent, satisfying l ≥ dlogk(c × z)e, c
denotes a range enlarging factor; 5) repeat 3) and 4) till breadth-first traversal
finishes.

2.2 Bayesian Allocation Model

Self-adaptive Bayesian allocation model is proposed to allocate scope for dy-
namic XML documents on the basis of K-ary tree and Breadth-First Traversal.
Pre-allocating scope for dynamic XML data is a natural solution. The core of
Bayesian allocation model is on efficiently allocating scope for each node in ac-
tual dynamic XML documents in a self-adaptive manner.
Bayesian Allocation Model. The core of our work is on estimating prob-
ability θi. In ViST [13], Haixun Wang et al. calculate θi only from available
DTD or statistics from sample set of XML documents, and consider θi as a con-
stant, which is fixed without considering the actual documents. Our objective
is self-adaptively allocating dynamic scope for each node according to its actual
probability in each document, not just using a fixed constant probability, which
is simply calculated from DTD or sample set of datasets.

Our proposed Bayesian allocation model considers θi as a random variable
not a constant, and chooses a proper prior distribution for θi, which reflects the
observer’s beliefs about the proper value θi may take, and then updates these
beliefs on the basis of the actual data observed. Thus estimators of θi can accord
with the real world data in a self-adaptive manner. To summarize, the heuristics
guiding the allocation model is that the more child nodes of nodetypei a node u
has, the more likely for these child nodes being updated.

Given a node u with t children in a DTD. Each of them occurs xi times, i
= (1, ..., t), in the corresponding XML document. xi may be zero in an actual
XML document if a certain node is optional in DTD. Assume 1) all sibling nodes
of different nodetypei occur independently with probability θi ( i=1, ..., t) and
2) the probability of data insertion/deletion on these nodes occurs according to
the same probability. Thus, given scope range n for the z nodes in an XML
document, if we know θi (i = 1, ..., t) for the z nodes, a natural idea is that
we allocate scope for each node type according to probability θi. For instance, if
all the sibling nodes with nodetypei occur xi times under a node u, and update
probability is θi, then we allocate nθi

xi
for each node with nodetypei.

In general our Bayesian allocation model is based on the following hypothesis
below:

– Sibling nodes of different nodetypei occur independently with probability θi

(i=1, 2, ..., t), where t denotes the node name types in the correspond DTD.
And all data insertion/deletion/update on the nodes of different nodetypei

occurs independently with the same probability θi.
– θi is a random variable ,we use π(θi) to denotes prior distribution of θi ,

which reflects our beliefs about what values parameters θi may take. We
assume that θi is a beta(αi, βi) distribution
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Whether or not using prior distribution in statistical inference is not only a
problem of mathematical technic but a problem of philosophy [3] as well. Thus we
do not discuss necessity of using prior distribution here, and use it by the way of
Bayesian inference theory. However, how to choose prior distribution is another
problem. We choose beta distribution as prior distribution because: 1) density
curve of beta distribution is plane curve when α � 1, β > 1, and 0 ≤ value of
beta distribution ≤ 1, matching the definition of probability. Thus we consider
θ̄i, prior information of θi, as mean value of beta distribution, which means that
the probability of nodei occurs around θ̄i is greater than in other zone, matching
our hypothesis; 2) from lemma 1 we know posterior distribution θi|xi is also a
beta distribution which is convenient to compute the posterior estimators of θi.
Using other prior like norm distribution will result in complicated monte carlo
simulations and the computational complexity. In fact, using beta distribution
as prior distribution of parameter θi in binomial distribution is very common in
practice [3].
Theoretical Proof. In our model we consider sample information of θi as oc-
currence times xi under a certain node u since we assume a node with nodetypei

occurs with same probability θi in our hypotheses. From the Hypotheses xi

observes binomial distribution, denoted as b(z, θi). The updating procedure is
performed using Bayesian theorem, which states that the posterior distribution
θi|xi, representing our beliefs on the observed data, is proportional to the prod-
uct of the prior distribution and the likelihood function.

The following two lemmas are proved for the correctness of our Bayesian
allocation model:

Lemma 1 Assume π(θi) is beta(αi, βi) (αi � 1, βi > 1), and sample informa-
tion variable xi ∼ b(z, θi) (binomial distribution) with parameter θi. Thus, the
posterior distribution function p(θi|xi) is also a beta(α∗

i , β
∗
i ) distribution, and

beta(αi, βi) is called conjugate prior distribution. We have the following result:

E(θi|xi) = λiE(xi|θi) + (1− λi)
xi

z

where
E(xi|θi) =

αi

αi + βi

Proof : Given
π(θi) ∼ beta(αi, βi)

and it’s density function

π(θi) =
Γ (αi + βi)

Γ (αi)Γ (βi)
θαi−1

i (1− θi)
βi−1

because xi is binomial distribution, density function of xi given parameter
θi is:

f(xi|θi) = Cxi
z θxi

i (1− θi)
z−xi , where0 ≤ θi ≤ 1

Thus, according to Bayesian theorem posterior distribution of θi is:
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p(θi|xi) =
f(xi|θi)π(θi)

∫ 1

0
f(xi|θi)π(θi)dθi

=
θαi+xi−1

i (1− θi)
z+βi−xi−1

∫ 1

0
θαi+xi−1

i (1− θi)z+βi−xi−1dθi

= kiθ
xi+αi−1
i (1− θi)

z+βi−xi−1)

where

ki =
Γ (αi + xi)Γ (βi + z − xi)

Γ (αi + βi + z)

hence:
p(θi|xi) ∼ beta(αi + xi, βi + z − xi)

and:

E(θi|xi) =
αi + xi

αi + βi + z
=

αi

αi + βi
λi + (1− λi)

xi

z

= E(θi)λi + (1− λi)
xi

z

where

λi =
αi + βi

αi + βi + z

λi reflects on the importance balance between prior information and sample
information.

Lemma 2 Assume prior distribution π(θi), sample information xi and square
loss function L(δi, θi) is given. The Bayesian estimators of θi, δπ(xi), is the
expectation (or mean value) of posterior distribution π(θi|xi) which is written
as:

δπ(xi) = E(θi|xi)

Proof : The posterior risk of any decision function δi = δ(xi) given square loss
function is :

E((δi − θi)
2|xi) = δ2

i − 2δiE(θi|xi) + E(θ2
i |xi)

obviously the function value is minimized iff :

δi = E(θi|xi)

From Lemma 1 we know that

δi =
αi + xi

αi + βi + z
= E(θi)λi + (1− λi)

xi

z

In our model we assume that E(θi) = θ̄i which means that the prior probability
of node i occurs around θ̄i is greater than in other zone. And from lemma 1 we
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get posterior expectation of θi .So we use E(θi|xi) as estimators of θi according
to Lemma 2.

Let λi = 0.5, which implies that importance of prior information is the same
as that of sample information. Let θ

′

i denote estimators of θi given prior infor-
mation θ̄i. From Lemma 1 and Lemma 2, we have:

θ
′

i =
1

2
θ̄i +

1

2
∗

xi

z
(1)

Eq(1) proves that the prior information and posterior information both con-
tribute to the final probability a node will be updated, which is better than
ViST allocation method which only utilizes prior information only.

3 Algorithms

We call the above process of allocating scope in a complete K-ary tree with
Bayesian allocation model Bayesianization. After a brief description of how to
compute the prior information from DTD, we present Algorithm
Bayesianization and Algorithm BayesInference which describe the labeling
process that combines with the Bayesian theorem in detail. Figure. 3 gives an
example of our proposed Bayesian allocation model. We show how to compute
these pi (i=1, 2, 3, ...) in the following section.

R: range of siblings

[ ][ ][ ][ ]

typename1

(m, R*p1)
tyepname2

(m+R*p1, R*p2)
tyepname3

(m+R*(p1+p2), R*p3)
typename4

(m+R*(p1+p2+p3), R*p4)

[ ]... ...

Fig. 3. Example of Bayesian Allocation Model

3.1 Prior Information

Prior information about the occurrence probability of all the children below a
node u in DTD, denoted by p̄DTDu

, is defined as follows:

p̄DTDu
= (p̄c1

, p̄c2
, ..., p̄ct

)

where t is the number of different child nodes u has. Each p̄ci
, i = 1, 2, ...,t,

can be computed based DTD Table.1, which defines the proportion of the scope
among the different cardinality.

For example, the value 0.08 at (?, +) in Table 1 specifies the proportion
relationship 0.08:1 between child node type with ”?” and child node type with
”+”. Also the proportion 1.25:1 between child node type with ”+” and the one
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with ”*”. Thus we have 0.08:1:0.8 having three child nodes with type ”?”, ”+”
and ”*”. Notice that the data in Table. 1 can be calculated from the statistic
information of the sample XML documents.

Actually, table.1 reflects our belief on prior information. (a|b) is transformed
into (a,b) to minimize the computational complexity. Consider, for example,
given <!ELEMENT book (title?, information+, author*)>, the proportion
among these three nodetypes is 0.08:1:0.8, to normalize, p̄title? = 0.08

0.08+1+0.8

= 0.043, p̄information+ = 1
0.08+1+0.8 = 0.532 and p̄author∗ = 0.8

0.08+1+0.8 = 0.425.

Therefore, p̄DTDbook
= (0.043, 0.532, 0.425).

Table 1. Prior information on the cardinality proportion

* + ?
* 1 0.8 10
+ 1.25 1 12.5
? 0.1 0.08 1

3.2 Algorithms

As we can see in Algorithm Bayesianization and Algorithm BayesInference,
our specific Bayesian allocation model is light-weight and self-adaptive for each
node in the XML document tree (Line 1 - 11 in Algo.BayesInference). The
time complexity of the algorithms is O(n), depending on the number of the
nodes in a tree, and the space complexity is linear as well. It implies that our
algorithm guarantees both time and space complexity efficiency while allocating
self-adaptive scope for each node, which is not provided by the previous methods.
The performance results are shown in section 4.

Algorithm Bayesianization

Input: T: Data tree of XML document; Queue: queue of nodes; pDTD : the DTD
prior distribution generated

1.
Output: BAM Allocated Document
2. Queue.insert(T.root)
3. while (!Queue.empty())
4. do u ← Queue.fetch()
5. list ← listofchildren(u)
6. z ← numofchildren(list)
7. t ← typeofchildren(list)
8. BayesInference(p̄DTDu

, z, t, list)
9. Queue.insert(list)

Algorithm BayesInference

Input: p̄DTDu
: prior information of node u; z: number of child nodes; t: number

of child node types, list: list of nodes
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Output: BAM allocated scope of u
1. level = dlogk(c× z)e
2. n = klevel

3. for i ← 1 to t

4. do pi ←
p̄DT Dui

+xi/z

2
5. subrangei ← n × pi

6. for j ← 1 to z in list
7. do subrangenodej

← subrangei / ti

8. seqnumnodej
← (

∑i−1
1 subrangei +

∑j−1
1 subrangenodej

)

Consider, for example, given <!ELEMENT book (title?, information+, au-
thor *)>, we get pDTDbook

= (0.043, 0.532, 0.425). If in an actual XML document,
a node named ”book” has 1 ”title” child node, 2 ”information” child nodes, how-
ever, 10 ”author” child nodes. Suppose the range enlarging factor is 100, thus we
allocate scope 13*100 = 1300 (n = c × z, section 2) for these 13 child nodes. Thus
their actual probability should be <0.0599 = ((0.043 + 1

13 )/2), 0.4198 = ((0.532

+ 2
13 )/2), 0.5971 = ((0.425 + 10

13 )/2) >, and the scope allocated for each node
are 0.0599*1300 = 77 for ”title” node, 0.4198 * 1300 = 545 for ”information”
nodes, and 0.5971 * 1300 = 776 for ”author” nodes. We notice that the allocation
scopes of these three nodes accord to their actual occurrence probability.

4 Performance Experiments

4.1 Experiments

The experiments were conducted on a PC with Pentium III CPU 1.2GHZ and 512
MB main memory. We implemented the proposed method Bayesian allocation
model and the conventional fixed allocation scheme for comparison purpose. Our
synthetic XML documents are generated using Sun XML instance generator [12]
utilizing various DTDs, i.e. ACM Sigmod Record DTD [2], and public XML
benchmark database XMARK [15].
Update Performance. We focus on studying the update performance in dynamic
XML documents. We generate 200 XML documents with maximum depth 8
for experiments. Five different experiments are performed with different range
enlarging factors. In the experiments, we respectively set the range enlarging
factor c = 50, 75, 100, 125 and 150 for these documents in the set of experiments.
We then implement an allocation scheme similar to ViST and our allocation
scheme tailored to ViST. In ViST, it allocates scope for each type of child nodes
directly from DTD without constructing trie-like tree. However, for comparison
purpose, we first construct the trie-like tree physically, and then apply BAM to
allocate scope for each node in the trie-like tree.

In the experiments, we randomly choose m nodes the datasets we gener-
ated. Suppose each nodei (i = 1, ..., m) has t different node name types. Firstly
we compute the prior information for each nodei from the corresponding DTD,
denoted as p̄DTDnodei

= (p̄1, p̄2, ..., p̄t). Then we use t independent beta dis-
tribution to generate t random numbers, denoted as (r1, r2, ..., rt). We can
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Fig. 4. Insert ratio vs. failure ratio

prove that 0 ≤ r1, r2, ..., rt < 1. Thirdly we generate the insertion/deletion

probability for each node type: pi = ri

s , where s =
∑t

i=1 ri, which obeys our
hypotheses and is fair to both ViST and ViST with BAM when the probability
of insertion/deletion is concerned. Finally we random generate the position a
node should be inserted/deleted.

We define that a ”failure” occurs when a position has been allocated during
inserting, and an ”overflow” when pre-allocated space for a certain node is used
up. During the experiments, we record the ”failure”times. eq(2) and eq(3) are
presented to clarify the experimental results shown in figure 4.

failureratio =

{

1, when ”overflow” occurs,
timesfailure

timesinsert
, otherwise.

(2)

insertratio =
timesinsert

Spacefree
(3)

We can see that BAM improves at least 49.34% comparing to the conventional
ViST method, for the scope allocated for each node accords to the probability it
would be updated, which further depends not only on the prior information, i.e.
statistical information from sample datasets, but combining the actual probabil-
ity of its occurrence as well. Especially, when the probability of inserting/deleting
a node in an XML document is much greater than the average prior information,
BAM performs much more better than ViST method.
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5 Conclusion

In the paper, we propose a general self-adaptive labeling scheme for dynamic
XML documents. We show that Bayesian allocation model can easily be adapted
to the state-of-the-art data retrieval methods to provide support for dynamic
XML documents. Through the experiments, we demonstrate that it can ef-
ficiently support updating for the dynamic XML documents, at least 49.34%
better than the conventional methods, while not affecting their original query
speed.
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