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Abstract. Iceberg cubing is a valuable technique in data warehouses.
The efficiency of iceberg cube computation comes from efficient aggrega-
tion and effective pruning for constraints. In advanced applications, ice-
berg constraints are often non-monotone and complex, for example, “Av-
erage cost in the range [01, d2] and standard deviation of cost less than
B”. The current cubing algorithms either are efficient in aggregation but
weak in pruning for such constraints, or can prune for non-monotone con-
straints but are inefficient in aggregation. The best algorithm of the for-
mer, Star-cubing, computes aggregations of cuboids simultaneously but
its pruning is specific to only monotone constraints such as “COUNT (x)
> ¢”. In the latter case, the Divide and Approximate pruning technique
can prune for non-monotone constraints but is limited to bottom-up
single-group aggregation. We propose a solution that exhibits both ef-
ficiency in aggregation and generality and effectiveness in pruning for
complex constraints. Our bounding techniques are as general as the Di-
vide and Approximate pruning techniques for complex constraints and
yet our multiway aggregation is as efficient as Star-cubing.

1 Introduction

Data Warehousing and OLAP technologies require summarised and subject-
oriented views to data for better and faster high level analysis and decision
making. To this purpose, data is modelled multi-dimensionally. In a multi-
dimensional model, dimensions such as Product and Customer-Group describe
the subjects of interest; the measure such as total sales is the target of analysis
in terms of dimensions.

A data cube generalises the SQL Group-By operator [6] to compute Group-
Bys of all combinations of dimensions. Each Group-By is a cuboid which com-
prises a set of groups grouped by the same dimensions. For example, (a1,b1, ¢1,d1)
is one of the groups in the cuboid ABCD. Note that upper case letters denote
dimensions and cuboids while subscripted lower-case letters denote dimension-
values and groups. The cuboid-lattice in Figure 1 for the cube on dimension A,
B, C, and D shows the parent and child relationship between cuboids. Since a
parent cuboid has more grouping-dimensions than a child cuboid, a group in the
parent cuboid is a sub-group of some group in the child cuboid. For example,
(a1bicy) is a sub-group of (a1by).
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Fig. 1. A cuboid lattice

Given a dataset of k dimensions where each dimension has a cardinality
of p, potentially the cube has (p + 1)* groups. Given an aggregate function,
cubing is to compute all groups in the data cube for answering queries on ag-
gregations. SUM() COUNT() MIN() MAX(), and AVG() are common SQL aggre-
gate functions. Cubing algorithms [11, 10, 3, 8] exploit the advantage of shared-
computation by computing each child-cuboid from a parent cuboid. This ag-
gregation strategy is refered to as top-down computation. The Multiway Array
Cube [10] is the most efficient among these algorithms.

Iceberg cubes [2] were proposed to compute only interesting groups that
meet users information need. Users specify iceberg constraints on the aggregate
values of groups and only satisfying groups are computed. Iceberg constraints
can be either monotone or non-monotone [2]. A monotone constraint possesses
the property that if a group fails the constraint, so do all its sub-groups '.
The monotone property is commonly used for pruning in iceberg cubing [2].
BUC [2] and H-cubing [7] are current iceberg cubing algorithms which apply
the divide-and-conquer approach where groups are computed before their sub-
groups. Such an aggregation strategy is called bottom up with respect to the
cuboid lattice. Pruning for monotone constraints can be easily applied to the
bottom up approach.

Star-cubing [4] is the most efficient iceberg cubing algorithm. It makes use of
shared computation as in Multiway Array Cubing [10] and incorporates pruning
for monotone constraints. It is shown that Star-cubing is more efficient than
BUC and H-cubing. However, the optimisation in Star-cubing is specific to only
monotone constraints such as “COUNT (x) > §”.

The diversity of users’ information needs means that practical constraints
are often complex and non-monotone, such as constraints with AVG or SD
(StandardDeviation). Iceberg cubing for complex non-monotone constraints is
challenging due to the difficulty of pruning. Recently, Wang et al. [9] proposed
an algorithm Divide and Approzimate for pruning for non-monotone constraints.
The pruning techniques however are only suitable for BUC like bottom-up single
group oriented computation. A more detailed analysis of Divide and Approxi-
mate pruning is provided in Section 4.

In this work, we propose the iceberg cubing algorithm Bound-cubing, which
incorporates bounding techniques for pruning with complex non-monotone con-
straints. It is not only general and effective in pruning but also well suited for
an efficient top-down shared aggregation strategy. Importantly, little overhead is
incurred by bounding. Our experiments show that Bound-cubing is marginally
more efficient than Star-cubing in computing iceberg cubes with monotone con-

! In the literature, this is also called anti-monotone.



straints; it significantly outperforms the Divide and Approximate algorithm [9]
for non-monotone constraints.

2 Bounding Aggregate Functions for Pruning

In this section, we describe our bounding techniques for pruning. We aim at
pruning with general constraints of the form “f(x) op §”, where f(x) is an ag-
gregate function, op is the comparison operator > or <, and J is a threshold.
We will focus on bounding for a single constraint; this can be easily extended
to multiple constraints. The main idea of bounding is to bound the aggregation
values of a set of groups from the same values used for computing the aggrega-
tions of the groups. The derived bounds can be used to prune the set of groups
at once.

In cube computation, aggregate functions are categorised into Distributive,
Algebraic, and Holistic functions, based on how a group can be aggregated from
its sub-groups [6].

— Distributive: An aggregate function F' is distributive if for a group g, F'(g)
can be aggregated from the values of F(gs), where g5 groups are g’s sub-
groups. Aggregate functions SUM, COUNT, MIN, and MAX are distributive.

— Algebraic: An aggregate function F is algebraic if for a group g, F(g) can
be computed from a known M number of intermediate aggregations of g’s
sub-groups by some aggregate functions. For clarity, we call these aggregate
functions in F' local aggregate functions. Aggregate functions AVG, SD, MaxN,
MinN, and CenterOfMass are algebraic. Taking AVG as an example, AVG
= “SUM(SUM(m))/SUM(COUNT (x))”, where m is the measure. Note that
distributive functions are a special case of algebraic functions, where M =
1 with a single local aggregate funciton being F'.

— Holistic: There is no fixed number of intermediate aggregate values that can
aggregate a group for a holistic function. RANK is a holistic function. There
exists no known computation methods other than computing the aggregation
from the raw data hence they are not considered in this work.

Given a cube defined on k dimensions, the data cube core [6] refers to the
k-dimensional groups. In the context of a cube, the data cube core are the
base units of aggregation which can be further aggregated to compute other
aggregations in the whole cube [6]. For example, given CUBE(A, B, C) with
SUM, the groups (a1, b;, ¢;) for some i can be aggregated to compute SUM((a1,
b;)), all of which can in turn be aggregated to compute SUM((a1)). We extend
this definition to define the core of a set of groups with super and sub-group
relationship, which is the basis for bounding.

Definition 1. (The core groups and the group-Core) Given a group g and the
set of its sub-groups Sy, the group-Core of g and Sy, denoted as Cg4, are the set of
sub-groups in Sy that have the mazimum number of grouping-dimensions. Each
group in C4 is a core group denoted as ge.



All later discussions are implicitly within the context of g and S,. Also, FV and
FT denote the upper and lower bound of a distributive or algebraic function F
for g and S, respectively. The symbols +ve and -ve denote positive and negative.

Like the data cube core, g. groups are the base units of aggregations, a set
of g. groups can be aggregated to compute g or a group in Sy. Therefore, the
largest and smallest aggregations of F' that can possibly be produced by any
subset of C, are the common bounds of F' for g and S,.

While the set of base units can be any set of higher dimensional sub-groups
of g. groups for g and every group in Sy, the g. groups are the most aggregated
base units. Most stringent pruning by bounding is achieved with g. groups.

It is clear that exhaustively checking all subsets of C, is infeasable. Further-
more, there are multiple local aggregate functions in a algebraic function F' . We
formally define the boundability of an aggregate function as follows.

Definition 2. An aggregate function F is boundable if (1) the bounds for F are
made up from the boundary-values of every local aggregate function f; and (2)
enumerating the subsets of C, is unnecessary in deriving the boundary-values of
every f. The boundary-values of f include the mazx +ve, min +ve, max -ve, and
min -ve values of f. The appropriate boundary-value of each f for bounding F
1s based on the context of the arithmetic operations f is in.

2.1 Bounding Distributive Functions

All distributive functions are boundable since (1) the boundary-values of the
single f prodce the bounds of F' and (2) they can be derived with a single scan
of C4. The bounds in terms of the set of g. groups of all distributive functions
for +ve and -ve measures are listed in Table 1.

F FY FE

SUM |if 3 SUM(g.) > 0, SUM( SUM(gc) ), where |if 3 SUM(g.) < 0, SUM( SUM(g.) ), where
SUM(g.) > 0; otherwise, MAX(SUM(g.)) |SUM(g.) < 0; otherwise, MIN(SUM(g.))

COUNT|SUM(COUNT (g.)) MIN( COUNT(gc))
MAX  |[MAX(MAX(g.)) MIN(MAX(g.))
MIN  |[MAX(MIN(g.)) MIN(MIN(g.))

Table 1. The upper and lower bounds of all distributive functions

2.2 Bounding Algebraic Functions

Bounding covers algebraic functions that apply only the basic arithmetic oper-
ations (+, —, %, and /) on their local aggregate functions.

The boundability of algebraic functions is illustrated by the following two
examples. Assume the measure can be +ve or -ve and let s and ¢ be the local
aggregate values sum and count at g. groups.

Ezample 1. (A boundable algebraic function) The algebraic function AVG =
SUM(s)/SUM(c). The max +ve of SUM(s) and the min +ve of SUM(¢) derive
AVGY. Also both the max +ve SUM(s) and the min +ve SUM(¢) are boundable,
as is shown in Table 1. AVG is boundable.



Ezample 2. (An unboundable algebraic function) The algebraic function (1/AVG)
= SUM(¢)/SUM(s). The max +ve of SUM(¢) and the min +ve of SUM(s) derive
(1/AVG)Y. Unfortunately, the min +ve of SUM(s) comes from some combinations
of g. groups which cannot be determined by a single scan of C,. (1/AVG) is
unboundable.

2.3 Optimisation for the expression “SUM(a) /SUM(4b)”

We optimise the common expression “SUM(a) / SUM(+4b)” which exists in many
algebraic functions, including AVG, CenterOfMass, and VAR (SD). For example,
VAR = SUM(s?)/SUM(c) — 2 x (SUM(s)/SUM(c))? + SUM(s)/SUM(c) where
s2, s, and ¢ are the square of sum, sum and count values at g. groups and
SUM(c) is always positive. The function contains three expressions of the form

SUM(a)/SUM(+b).

Theorem 1. (Bounding the expression E = SUM(a)/SUM(+b)) Given E, let
a; and b; be two intermediate aggregate values a and b in the it" g. group and
b; is always positive. Then EV = MAX(a;/b;) and E* = MIN(a;/b;).

Due to space constraints, the formal proof is omitted. The optimised EV and E*
are more stringent than the general techniques presented in Section 2.2. We use
AVG to lifustrate that the optimisation achieves more strigent bounding. AVGY
is SUM(s)Y /SUM(c)" with the techniques in Section 2.2, and it is MAX(a/b)
with the optimisation. Since SUM(a)V > a; and SUM(b)* < b; for any a; and
bi, SUM(a)V /SUM(b)" > MAX(a/b).

In the next section, we present an efficient aggregation strategy which can
easily identify C, for incorporating bounding during computation.

3 Top-Down Multiway Aggregation

We adopt a strategy where multiple cuboids are aggregated simultaneously. The
Group-Bounding Tree (GB-tree) is built to directly represent multiple cuboids.
The simultaneous computation of multiple remaining cuboids in a data cube
involves the construction of sub-GB-trees. Bounding with C, are incorporated
for pruning branches while building a sub-GB-tree.

3.1 The Group-Bounding Tree

A Group-Bounding Tree (GB-tree) of an aggregation F for a k-dimensional
dataset comnsists of a root node and k levels of branch nodes, each of which
corresponds to a dimension. A node contains a dimension-value, one or more in-
termediate aggregate values for F', and the links to its child nodes. An example
GB-tree on dimensions A, B, C, D, and E for AVG is presented in Figure 2.



Fig. 2. Group-Bounding Tree

Groups and sub-groups in the GB-tree In a GB-tree, a group g is repre-
sented by the nodes of g’s last grouping dimension-values on the branches con-
taining all of ¢g’s grouping dimension-values. A sub-group of g is represented on
a subset of g’s branches that contain the additional grouping-dimension-values
of the sub-group. In the example, (al,b1) is a sub-group of (al) but not of
(b1). Two observations are made:

Observation 1 On a GB-Tree, the branch from the root to a node is a unique
combination of dimension-values. Each node represents a unique group and a
descendent node its sub-group.

Observation 2 The leaf nodes under a group g are g’s sub-groups having the
largest number of grouping-dimensions. They are the g. groups of g and S.

3.2 The Multiway Aggregation Strategy

Building a GB-tree simultaneously computes many groups. In the example,
groups in cuboids ALL, A, AB, ABC, ABCD, ABCDE are computed. For
the remaining cuboids, each non-leaf dimension of the GB-tree is dropped to
construct a sub-GB-tree; and each non-leaf dimension that is below the last
dropped dimension of a sub-GB-tree is subsequently dropped to further con-
struct sub-GB-trees. When dropping a dimension D on a GB-tree, the branches
below each d; (d; € D) are amalgamated to form the new set of descendent levels
of the parent of the dropped dimension.

Each sub-GB-tree computes the set of child cuboids at the levels below the
last dropped dimension; they share the prefix dimensions before the last dropped
dimensions. Let a group grouped by the prefix dimensions be a prefix group;
groups subsequently aggregated are all its sub-groups.

In our example, the sub-trees of the original tree are BCDE (—A), ACDE
(-B), ABDE (—C), and ABCE (—D) where the last dropped dimension is
indicated in (). The tree ACDE, whose last dropped dimension is B and the
prefix dimension is A, computes the cuboids ACDFE, ACD, and AC; they are all
sub-groups of some a;. The cuboids ADE and AD computed by further dropping
C of ACDE sub-tree are also sub-groups of some a;.

The recursive construction of sub-trees by dimension-dropping computes all
cuboids. The Bound-cubing Algorithm is shown in Figure 3.



Global Input: GB-tree T of a k-dimensional dataset, ¢ =constraint.
/T .prefixCuboid= ) and T'.last-droppedD = 0
Output: Bound-cubing(T")
Algorithm Bound-cubing(T) {
foreach (g € T')// g is a group on a node of T
if(constraintCheckingOK(g)) output g;
subTrees = T'.dropDimensions();
foreach (sT € subTrees) Bound-cubing(sT);
}
Procedure dropDimensions() {
subTrees = (;
foreach (i € {last-droppedD +1, ..., k} )
create sub-tree sTj;
foreach (gp € prefixCuboid)// foreach prefix group
if(boundCheckingOK(gp))
sT;.amalgamate(gp, D;);//amalgamate branches of g, below D;
sT; . last-droppedD= i;
sT;.prefixCuboid= prefixCuboid U {V D; | j € {1 ...i—1}}
subTrees = subTrees U sT;;
return subTrees;

Fig. 3. Bound-Cubing Algorithm

The computation strategy diagram for CUBE(A, B, C, D, E) is shown in
Figure 4. The cuboids in each rectangle are computed simultaneously from a
single GB-tree.

ABCDE, ABCD, ABC, AB,A, ALL

= |8 = -D
BCDE, BCD,BC, B [ACDE, ACD, AC } [ABDE, ABDJ ABCE

-B ~C -D
[CDE,CD, c} [BDE, BDJ BCE

Fig. 4. The Aggregation Strategy for all cuboids

Stringent Bounding for Pruning A sub-GB-tree computes sub-groups of
some prefix group g,. The leaf nodes of g, are the g. groups of g, and its sub-
groups. Pruning using g. groups of g, can be directly applied when building a
sub-GB-tree. The branches under failed g, are trimmed so that they do not par-
ticipate in generating sub-trees. To ensure effective pruning, when constructing
the next level sub-trees, the prefix groups are updated and the new g, groups
are used for pruning. To illustrate, the prefix groups on ACDE tree is A; by
dropping D, ACE tree is formed which computes the cuboid ACE. The prefix



groups become AC and the ACE groups at the leaf level become the new g.
groups.

4 Related Work

We discuss the two most related work, the Divide-and-Approximate [9] and
Star-cubing [4] iceberg cubing algorithms.

Divide and Approximate-cubing (D&A pruning) While bounding can
handle some algebraic functions with local aggregations of both signs in x and
/ operations, they cannot be handled by D&A [9]. The constraint “ SUM/MAX?”
cannot be approximated by D&A pruning when SUM and MAX can be both pos-
itive and negative values, but they can be bounded. Moreover, in D&A pruning,
the approximator can only be derived from some group g with a sub-group of
g, gs, that is grouped by all dimensions and can prune only the groups that are
sub-groups of g and super-groups of gs. This suggests that in the simultaneous
computation of multiple cuboids, it is difficult to locate the specific groups that
can be pruned by the derived approximator on the tree before the groups are
actually computed.

Star-cubing Both the Star-tree and the GB-tree are inspired by the H-tree [7].
Star-cubing uses star-nodes which represent all non-frequent dimension-values
to reduce the size of the Star-tree. It is shown in [4] that for monotone con-
straints, star nodes significantly improve the efficiency of iceberg cubing. It is
briefly mentioned that star nodes can also be incorporated for non-monotone
constraints such as those involving AVG. However, this may involve consider-
able additional cost. Star nodes can be easily incorporated in Bound-cubing for
monotone constraints.

Bound-cubing and Star-cubing share the spirit of multiway computation of
cuboids [10]. In Star-cubing, with a traversal of the Star-tree, only the group at
the root and the groups of the cuboid at the leaf level are computed. Bound-
cubing computes multiple cuboids at multiple levels of the GB-tree at once while
multiple Star-trees need to be built in Star-cubing.

5 Experiments

Two datasets are used for our experiments. One is real world data consisting of
88443 tuples taken from the 1990 US census [12]. The dataset has 61 attributes.
We extracted the 10 attributes with discrete domains as dimensions such as
group-quarters-type, marital-status, and occupation, with cardinalities between
6 to 10. The measure is total-income. The other is the OLAP benchmark re-
lational tables TPC-R [1]. We constructed a single joined relation to derive a
multidimensional dataset consisting of 1 million tuples with 10 dimensions, with
cardinalities between 2 and 25.

We examine two aspects of Bound-cubing separately. First, the aggregation
strategy of Bound-cubing is compared with Star-cubing. Second, the bounding



techniques are compared with D&A for pruning effectiveness. For fair compari-
son, we have implemented all three algorithms and applied the same implemen-
tation optimisations whenever applicable. Our experiments were conducted on
a PC with an Intel Pentium R 4, 1.70 GHz CPU and 512M main memory, run-
ning Red Hat Linux7.2. All programs are written in C++4. All data structures
required can fit in memory. The runtime measured excludes the I/O time.

5.1 Bound-cubing vs. Star-cubing

To evaluate the aggregation cost of Bound-cubing, we compare it with Star-
cubing using the monotone constraint “COUNT(x) > ¢”. The runtime of both
algorithms on both datasets are recorded at different count thresholds and
shown in Figure 5. Bound-cubing is consistently faster than Star-cubing on both
datasets at all count thresholds. Bound-cubing is slightly more efficient than
Star-cubing. This can be attributed to the more simultaneous aggregation in
Bound-cubing.

4

Census 88443 Tuples, D:10 200 TPCR 1000000 Tuples, D:10

— 1807, +— Star-Cubing.
Star-Cubing. 0.
N A
ST 4---4 Bound-Cubing Bound-Cubing

160 A,

Run Time(sec)
Run Time(sec)

140

kA,
120 e

T T T
200 400 600 800 1000 2000 4000 6000 8000 10000
Count Threshold Count Threshold

Fig. 5. Bound-cubing vs Star-cubing for Count Threshold

5.2 Bound-cubing vs. D&A cubing

We compare Bound-cubing with D&A cubing on the non-monotone constraint
“AVG(m) > «”. Their performance is shown in Figure 6 Two observations are
made: (1) Bound-cubing is always significantly more efficient than D&A cub-
ing at all thresholds. The improvement is 2 to 15 times on census dataset and
7 times on TPCR dataset. The performance gain is attributed to the simul-
taneous aggregation and bounding for pruning. (2) While the threshold of the
constraint increases, Bound-cubing becomes faster. Surprisingly, the runtime of
D&A does not decrease with larger thresholds. This suggests that the overhead
of pruning increases with the increase in the constraint threshold. In contrast,
bounding techniques have low overhead and the efficiency gains always outweigh
the overhead incurred in pruning.

6 Conclusions and Future work

We have developed effective techniques that bound the aggregate values of
groups. The bounding techniques are general and can prune for complex non-
monotone constraints defined with distributive and algebraic functions. We have
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Fig. 6. Bound-cubing vs D&A for AVG Threshold

also developed an efficient computation strategy on the Group-Bound tree that
computes multiple cuboids simultaneously. In terms of cube computation, our
contribution is a general approach for dealing with complex non-monotone con-
straints. The approach incurs little overhead and fits nicely with the multiway
aggregation strategy.
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