
Accelerating Database Processing
at e-Commerce Sites

Seunglak Choi, Jinwon Lee, Su Myeon Kim, Junehwa Song, and Yoon-Joon Lee

Korea Advanced Institute of Science and Technology
373-1 Kusong-dong Yusong-gu Daejeon 305-701, Korea

Abstract. Most e-commerce Web sites dynamically generate their con-
tents through a three-tier server architecture composed of a Web server,
an application server, and a database server. In such an architecture, the
database server easily becomes a bottleneck to the overall performance.
In this paper, we propose WDBAccel, a high-performance database server
accelerator that significantly improves the throughput of the database
processing, and thus that of the overall Web site. WDBAccel elimi-
nates costly, complex query processing needed to obtain query results
by reusing previous query results for subsequent queries. This differen-
tiates WDBAccel from other database cache systems, which replicate
a database into multiple conventional DBMS’s and distribute queries
among them. We evaluate the performance of WDBAccel by using the
queries of the TPC-W benchmark. The measurement results show that
WDBAccel outperforms DBMS-based cache systems by up to an order
of magnitude.

1 Introduction

With the explosive growth of the Internet, numerous value-generating services
are provided through WWW. In most e-commerce Web sites, those services
are usually deployed on a three-tier server architecture, which consists of Web
servers, application servers, and database servers. Web contents are dynamically
generated upon a request through such system components. Due to its low scala-
bility and complexity of query processing, a database server is a major bottleneck
to the overall site performance.

We propose a high-performance database server accelerator, called WDBAc-
cel, which significantly improves the throughput of database processing in multi-
tier Web sites (see Figure 1). The main approach of WDBAccel is to cache results
of frequently-issued queries and reuse these results for incoming queries. Upon
a query hit, the query result is immediately served from the cache. WDBAccel
keeps cached results consistent to an origin database by invalidating staled re-
sults. In addition, WDBAccel is designed to use main memory as the primary
storage, minimizing disk operations. Thus, WDBAccel can improve the perfor-
mance of database processing more than an order of magnitude.

WDBAccel differs from other existing DB cache system [6, 11, 9, 1] in that
the primary purpose of WDBAccel is to accelerate the database processing. On

K. Bauknecht, M. Bichler, and B. Pröll (Eds.): EC-Web 2004, LNCS 3182, pp. 41–50, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

42 Seunglak Choi et al.

Client Web
Server

App.
Server WDBAccel DBMS

HTTP

Fig. 1. WDBAccel deployment in an e-commerce Web site

the contrary, the primary purpose of other cache systems is to distribute the
load of database processing into multiple cache nodes. Those systems replicate
a database into multiple nodes and distribute queries among them. In serving
queries, they rely on the underlying DBMS, which executes costly query pro-
cessing to obtain a query result. Thus, the performance of DBMS-based cache
systems is limited by their underlying DBMS.

Our WDBAccel design incorporates three policies that effectively utilize the
limited space of main memory. First, WDBAccel employs the derived matching.
Even when the cache does not store the identical query result, the result for a
query can be derived from one or more previously stored queries. In many Web-
based applications, selection regions of queries tend to overlap each other. Thus,
WDBAccel performs the derived matching by containment checking among se-
lection regions of stored query results. Second, WDBAccel removes the storage
redundancy of the tuples belonging to two or more query results. In many cases,
query results contain identical tuples. Therefore, WDBAccel eliminates such a
storage redundancy by storing query results in the unit of tuples. Third, a cache
replacement policy in WDBAccel evaluates storage cost in a different way from
other Web caching systems. In many systems, the policy considers the size of
cached data items. However, it is not appropriate in WDBAccel due to the tu-
ples shared among multiple query results. WDBAccel considers both the size of
query results and shared tuples.

WDBAccel provides several advantages to database-driven Web sites. The
most competitive advantage is that it drastically improves the throughput of the
Web sites. Second, WDBAccel reduces the total cost of ownership. WDBAccel
is a light-weight system optimized in caching and serving query results. Thus, it
can be deployed even on lower-end H/W system while achieving a high level of
performance. Third, WDBAccel can be easily deployed as a middle-tier solution
between the Web application server and the database server. By supporting
the standard interfaces like JDBC or ODBC, WDBAccel does not require Web
applications to be modified. Forth, the high-performance nature of WDBAccel
reduces the total number of cache nodes managed by an administrator, reducing
administration cost.

This paper is organized as follows. In section 2, we describe the architecture of
WDBAccel. In section 3, we explain technical details including query matching,
cache storage, and cache replacement. In section 4, we evaluate and analyze the
performance of WDBAccel. In section 5, we describe related works and compare
them to our system. Finally in section 6, we present conclusions.

2 System Architecture

WDBAccel is a Web database server accelerator which processes queries deliv-
ered from the front-side Web application servers (WAS’s) on behalf of database

Accelerating Database Processing at e-Commerce Sites 43

servers. It is designed as a middle-tier system which can be deployed between
WAS’s and database servers without extensive modification to either system as
other middle-tier cache systems [6, 11, 9]. To deploy WDBAccel on an existing
e-commerce service system, it is only required to change an existing database
driver to WDBAccel’s driver at the WAS.

WDBAccel is a query result caching system. As mentioned, it stores the re-
sults of previous queries and then serves incoming queries delivered from WAS.
The query result caching is extremely useful when a workload is read-dominant.
The workload of most e-commerce applications is read-dominant. In e-commerce
sites, visitors spend the most time finding and reading some information, e.g.,
product catalogs, news, articles, etc. Update interactions such as ordering prod-
ucts are relatively very infrequent. For example, the TPC-W benchmark [12]1

specifies that the portion of read queries, in an average case, is 80% of the entire
workload. Thus, we can expect that the query result caching will show a high
level of performance in many e-commerce sites.

Figure 2 shows the overall architecture of WDBAccel and the processing
flow. The WAS sends a query to the Query Redirector (QR) (1), then QR checks
whether the given query is read or write. If the query is a write, it sends the query
to the Consistency Maintainer (CM) (A). CM forwards the query to the origin
database server (B) and performs the process to maintain cache consistency.
If the query is a read, then it forwards the query to the Fragment Processor
(FP) (2). FP references the Cache Dictionary (CD) to decide whether the result
for the incoming query can be constructed based on cached fragments (3). A
fragment is a query result stored in a cache. If fragments for the incoming query
are found, FP retrieves the fragments (4). Otherwise, FP sends the query to the
database server (a) and receives the result for the query (b). Then, it forwards
both the query and the query result to the Cache Controller (CC) (c). CC inserts
the query into CD and the query result into the Cache Pool (CP) (d). (When
the cache does not have enough space to store new query results, CC executes a
cache replacement algorithm.) FP constructs and sends the query result to QR
(5). Finally, QR sends the query result to the WAS (6).

CD is a collection of meta information about fragments stored in the Cache
Pool (see Figure 3). Each entry stores meta information on a fragment (e.g.,
selection region, fragment size, and pointer to data). Entries are classified into
different query groups according to the structure of queries. Then, each group
is indexed by selection regions of the queries. The index is used to reduce the
search time for fragments matching a query.

The caching inherently incurs the inconsistency between cached results and
an origin database. If a data element in an origin database is updated, the frag-
ments derived from the updated data will be stale. WDBAccel includes CM
which ensures the consistency. The primary goal of CM is to minimize the con-
sistency overhead. It matches an update against the common parts of many

1 The TPC-W benchmark is an industrial standard benchmark to evaluate the per-
formance of database-driven Web sites. It models an e-commerce site (specifically,
an online bookstore).

44 Seunglak Choi et al.

Cache Pool (CP)

Cache
Dictionary (CD)

Cache Controller
(CC)

(1)

Web Server &
Web Applicatoin Server

Application Interface(JDBC/ODBC for WDBAccel)

(6)

(d)

query processing flow

additional processing flow when a cache miss occurs

DBMS

processing flow for update queries

WDBAccel

Query Redirector (QR)

Fragment
Processor (FP)

Consistency
Maintainer (CM)

(2)

(5)

(3)

(4)

(a) (b)

(c)

(A)

(B)

Fig. 2. WDBAccel architecture and processing flows

queries, not individual queries. Thus, it avoids repeated matching of each query.
In addition, CM ensures strong cache consistency by invalidating affected query
results before the completion, i.e., the transaction commit, of a database up-
date. For some pages, strong consistency is critical to service them always in an
up-to-date version (e.g. the cost of products in Web shopping sites). [5] describes
our consistency mechanism in detail.

3 Technical Details

3.1 Derived Matching

WDBAccel employs the derived matching to maximize the main-memory hit
ratio, i.e., the rate of reusing query results cached in main memory. When WD-
BAccel fails to find an exactly matching fragment, it tries to find one or more
fragments from which a query result can be derived. We give an example of the
derived matching. In this example, a query Q can be derived from the union of
fragments F1 and F2 although Q does not exactly match either F1 or F2.

Accelerating Database Processing at e-Commerce Sites 45

Meta information on fragments

Index

Cache Pool

Fig. 3. Cache Dictionary

Example 1. Given fragments and a query as follows,

F1 : SELECT * FROM ITEM
WHERE I PUB DATE >= ‘01/01/2003’ AND I PUB DATE <= ‘01/20/2003’

F2 : SELECT * FROM ITEM
WHERE I PUB DATE >= ‘01/10/2003’ AND I PUB DATE <= ‘01/30/2003’

Q : SELECT * FROM ITEM
WHERE I PUB DATE >= ‘01/05/2003’ AND I PUB DATE <= ‘01/25/2003’

Q can be derived from the union of F1 and F2 since the selection region of the
union contains the selection region of Q.

WDBAccel utilizes the selection region dependency in order to maximize
finding the derived matching. A selection region dependency is a computational
dependency in selection regions. In example 1, a query Q has the selection re-
gion dependency on a union of a fragment F1 and a fragment F2 in that the
selection region of the union contains the selection region of Q. By investigating
the dependencies among selection regions, WDBAccel is highly likely to find a
derived matching. This is due to the characteristic of the queries used in many
Web-based applications: selection regions from different queries with the same
template tend to overlap each other and may form a hot range. In example 1,
selection regions on I PUB DATE will frequently fall together near to the present
time. This is because customers in an online bookstore prefer to select new books.

When a query is matched by a derived matching, the process of the query
result deriving follows the matching process. For the query result deriving, two
operations, union and trim, are applied to matching fragments. The union opera-
tion is used to merge the matching fragments and to eliminate tuple duplication.
In the Example 1, by the union, the tuples of the matching fragments F1 and
F2 are merged and the duplication of the tuples (‘01/10/2003’ ≤ I PUB DATE ≤
‘01/20/2003’) is removed. We used the selection attributes of tuples to identify
duplicate tuples. They are located in overlapping selection regions among the
matching fragments.

The trim operation is used to cut off the tuples that do not constitute a
query result when matching fragments contain a query. In the Example 1, the
tuples (‘01/01/2003’ ≤ I PUB DATE < ‘01/05/2003’) of the matching fragment
F1 and the tuples (‘01/25/2003’ < I PUB DATE ≤ ‘01/30/2003’) of the matching
fragment F2 is cut off by the trim operation. In order to determine whether a
tuple is a part of a query result, the attribute values of the tuple is compared to
the selection predicates of the query.

46 Seunglak Choi et al.

3.2 Cache Storage

To increase the utilization of a limited cache storage, it is crucial to avoid re-
dundant storage of identical data. Query results can include identical tuples. In
example 1, the tuples located in the overlapping selection region (I PUB DATE,
‘01/10/2003’, ‘01/20/2003’) can be included in both fragments F1 and F2. As
mentioned in section 3.1, overlaps among query results as above are common in
many Web applications.

To remove the redundant storage, WDBAccel identifies overlaps in selection
regions of fragments and eliminates redundant storage of tuples. The storage
policy of WDBAccel stores query results in the unit of tuples. Before storing
each tuple in a new query result, it determines if the tuple already exists in the
cache. This is done by comparing the values of the selection attributes of each
tuple with those of the cached tuples. To speed up the comparison, the policy
scans only the tuples of the fragments overlapping the new query result. Note
that these fragments have already been retrieved in the query matching process.
We refer to the Cache Pool adopting this policy as the Cache Pool in the unit
of Tuples (CPT).

3.3 Cache Replacement

Hit ratio is improved if the cache stores the query results which are frequently
accessed and consume less storage space. Thus, we evaluate the profit of a query
result as follows:

profit(f) =
popularity(f)

s cost(f)

where s cost(f) is the storage cost of a fragment f and popularity(f) represents
the popularity of a fragment f . When a cache space is full, the Cache Controller
evicts the query result with the lowest profit value (called a victim). Usually,
the last access time or the number of accesses are used for popularity. Under
CPT, we consider that some tuples are shared among multiple fragments. We
divide the storage cost of a shared tuple among sharing fragments. In this case,
s cost is computed as follows.

s cost(f) =
∑

ti∈T (f)

size(ti)/n frag(ti)

where T (f) is a set of tuples belonging to a fragment f , size(ti) is the size of a
tuple ti, and n frag(ti) is the number of the fragments containing a tuple ti.

4 Experiments

In this section, we compare the processing capability of WDBAccel with that of
DBMS-based systems by measuring their throughputs.

Accelerating Database Processing at e-Commerce Sites 47

WDBAccel Database
server

TPC-W
Database

Query
Generator

Cache
Pool

(a) WDBAccel

DBMS-based
Cache

(Oracle)
Query

Generator

TPC-W
Database

(b) DBMS-based cache system

Fig. 4. Experimental setup

Experimental Setup. Figure 4 (a) shows the setup for evaluating the WDBAc-
cel system. The Query Generator emulates a group of Web application servers,
generating queries. It runs on a machine with a Pentium III 1GHz, 512MB RAM.
We implemented the prototype of WDBAccel which included all components and
core functions described above. WDBAccel is deployed between the Query Gen-
erator and the database server. WDBAccel runs on the machine with a Pentium
III 1GHz, 512M RAM. For the origin database server, we used Oracle 8i with the
default buffer pool size of 16MB. The database server runs on a machine with
a Pentium IV 1.5GHz, 512M RAM. We populated the TPC-W database in the
database server at two scales: 10K and 100K (cardinality of the ITEM table)2.
All three machines run Linux and are connected through a 100Mbps Ethernet.

Figure 4 (b) shows the experimental setup for evaluating the throughput
of the DBMS-based cache system. The DBMS-based system conceptually con-
sists of the cache-related components and the underlying DBMS. We used the
simplified system by omitting the cache-related components. For the underlying
DBMS, we used Oracle 8i. We also assume that the DBMS-based system achieves
100% cache hit ratio. Thus, the Oracle database is fully populated with the en-
tire TPC-W database. Note that the throughput measured under this simplified
setup will be higher than that taken under a real situation using the DBMS-
based cache systems. Both systems run on the Linux machine with a Pentium
III 1GHz, 512MB RAM and are connected through a 100Mbps Ethernet.

Workload Traces. We used for experiments the trace of the search-by-title
query specified in TPC-W. This query searches for all the books whose titles
include the keyword specified by users. It is the most frequently-used query in
TPC-W; in an average case, its usage frequency constitutes 20% of the entire
TPC-W workload. We believe that the query is frequently used in many e-
commerce sites in general. The following is the query template of the query. We
refer to the search-by-title query as the keyword query.

SELECT TOP 50 I_TITLE, I_ID, A_FNAME, A_LNAME FROM ITEM, AUTHOR
WHERE I_A_ID = A_ID AND I_TITLE LIKE ‘%@Title%’ ORDER BY I_TITLE

Performance Comparison Between WDBAccel and the DBMS-Based
Cache Systems. The experiment was performed through two steps: the fill
phase and the test phase. In the fill phase, we fill the cache space with fragments

2 In TPC-W, the scale of database is determined by the cardinality of ITEM table.

48 Seunglak Choi et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1 2 3 4 5 10

th
ro

ug
hp

ut
 (

re
q/

se
c)

cache size (% of 10175KB)

(a) WDBAccel (10K scale)

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 10

th
ro

ug
hp

ut
 (

re
q/

se
c)

cache size (% of 101750KB)

(b) WDBAccel (100K scale)

0

0.5

1

1.5

2

2.5

10K 100K
TPC-W database scale

th
ro

ug
hp

ut
 (

re
q/

se
c)

16MB

128MB

(c) DBMS-based cache system

Fig. 5. The throughputs for the keyword query

by issuing 100,000 queries. This phase warms up the cache space so that the
throughput can be measured under normal condition, i.e., within a normal range
of cache hit ratio, during the test phase. The cache size of WDBAccel is set to
range from 1% to 10% of the sum of ITEM and AUTHOR table sizes. ITEM and
AUTHOR are the tables which are accessed by the keyword and the range queries.
The sums of two table sizes corresponding to the 10K and 100K scales of TPC-W
are around 10MB and 100MB, respectively. The buffer pool size of the DBMS-
based system is set to 16MB and 128MB.

Figure 5 shows the results for the keyword query. It shows that WDBAccel
outperforms the DBMS-based system by an order of magnitude. This implies
that reusing query results can significantly save the query processing cost. In
ordinary database servers, the keyword query needs a linear search on the ITEM
table. This is because the keyword query uses the LIKE operator, which includes
wild card characters and does a pattern matching. Such a LIKE operator cannot
benefit from the index structure on the attribute I_TITLE. On the other hand,
in WDBAccel, the query processing time increases slightly with the number of
fragments no matter what a query type is. Also, WDBAccel does not require
any disk accesses.

Another interesting observation is that the throughput of WDBAccel rapidly
improves as the cache size increases. With the cache size up to 5%, the origin

Accelerating Database Processing at e-Commerce Sites 49

database server is the bottleneck. In that case, the cache miss ratio (and thus
hit ratio) is an important factor of the throughput. For example, if the cache
miss ratio decreases from 2% to 1%, the throughput will be doubled.

5 Related Work

Recently, several query result caching systems have been reported in the context
of dynamic Web content services. Form-based cache [10] is the first effort for
a query result caching. It extended the URL-based proxy caching for active
proxy query caching with limited query processing capability. The proposed
framework could effectively work for a top-n conjunctive queries generated from
the HTML forms. However, it only addressed keyword queries. Weave [13] caches
data in the unit of XML and HTML pages as well as query results. Weave
focuses on the declarative specification for Web sites through a logical model
and a customizable cache system that employs a mix of different cache policies.
DBProxy [1] employs a conventional DBMS for storing and retrieving query
results like the DBMS-based caching systems. Therefore, its performance could
be limited by the complex query processing of the underlying DBMS. The main
focus of WDBAccel is to efficiently scale the performance of database-driven
Web sites. It provides a framework for a high-performance query result caching
and an efficient storage structure for it.

The HTML caching has also been used to improve the performance of e-
commerce sites. It selects cacheable data in the unit of the whole HTML page or
HTML components which are parts of a HTML page. It then caches the data in
front of Web servers or inside WAS’s. We call the former HTML page caching [8,
3] and the latter HTML component caching [4, 7, 2]. The main advantage of the
HTML caching is that the performance gain on a cache hit is better than that of
others. This is because it saves much or all of the cost of HTML page generation
as well as database processing. However, the HTML page caching is not effective
in caching dynamic pages. HTML component caching can be effective to some
extent in caching dynamic contents. A problem in the component caching is
that it incurs high administration cost; cache administrators should go through
a complex process of marking cacheable and non-cacheable units.

6 Conclusions

We have presented the design and implementation of a high-performance data-
base server accelerator. WDBAccel improves throughput of the database process-
ing, which is a major bottleneck in serving dynamically generated Web pages. To
improve the performance, it reuses previous query results for subsequent queries
and utilizes main memory as a primary cache storage. WDBAccel performs the
derived matching to effectively find a set of query results required to construct a
result of an incoming query. It employs the storage policy that reduces storage
redundancy. In addition, the cache replacement policy takes into account storage
costs of query results and overlaps among them. The experimental results show

50 Seunglak Choi et al.

that WDBAccel outperforms DBMS-based cache systems by up to an order of
magnitude.

References

1. Khalil S. Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan.
DBProxy: A self-managing edge-of-network data cache. In 19th IEEE Interna-
tional Conference on Data Engineering, 2003.

2. Jesse Anton, Lawrence Jacobs, Xiang Liu, Jordan Parker, Zheng Zeng, and Tie
Zhong. Web caching for database applications with oracle web cache. In Proceed-
ings of ACM SIGMOD Conference, 2002.

3. K. Selcuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and Divyakant
Agrawal. Enabling dynamic content caching for database-driven web sites. In
Proceedings of ACM SIGMOD Conference, Santa Barbara, USA, 2001.

4. Jim Challenger, Arun Iyengar, Karen Witting, Cameron Ferstat, and Paul Reed.
A publishing system for efficiently creating dynamic web content. In Proceedings
of IEEE INFOCOM, 2000.

5. Seunglak Choi, Sekyung Huh, Su Myeon Kim, JuneHwa Song, and Yoon-Joon Lee.
An efficient update management mechanism for query result caching at database-
driven web sites. Under submission.

6. Oracle Corporation. Oracle9ias cache.
http://www.oracle.com/ip/deploy/ias/index.html?cache.html.

7. Anindya Datta, Kaushik Dutta, Helen Thomas, Debra VanderMeer, Suresha, and
Krithi Ramamritham. Proxy-based acceleration of dynamically generated content
on the world wide web: An approach and implementation. In Proceedings of ACM
SIGMOD Conference, 2002.

8. Vegard Holmedahl, Ben Smith, and Tao Yang. Cooperative caching of dynamic
content on a distributed web server. In Proceedings of the 7th IEEE International
Symposium on High Performance Distributed Computing, 1998.

9. Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid Pirahesh, Honguk Woo,
Bruce G. Lindsay, and Jeffrey F. Naughton. Middle-tier database caching for e-
business. In Proceedings of ACM SIGMOD Conference, 2002.

10. Qiong Luo and Jeffrey F. Naughton. Form-based proxy caching for database-backed
web sites. In Proceedings of the 27th VLDB Conference, Roma, Italy, 2001.

11. TimesTen Performance Software. Timesten library.
http://www.timesten.com/library/index.html.

12. Transaction Processing Performance Council (TPC). TPC benchmarkTMW (web
commerce) specification version 1.4. February 7, 2001.

13. Khaled Yagoub, Daniela Florescu, Valerie Issarny, and Patrick Valduriez. Caching
strategies for data-intensive web sites. In Proceedings of the 26th VLDB Confer-
ence, 2000.

	1 Introduction
	2 System Architecture
	3 Technical Details
	3.1 Derived Matching
	3.2 Cache Storage
	3.3 Cache Replacement

	4 Experiments
	5 Related Work
	6 Conclusions
	References

