
Formal Verification
of BPEL4WS Business Collaborations

Jesús Arias Fisteus, Luis Sánchez Fernández, and Carlos Delgado Kloos

Telematic Engineering Department
Carlos III University of Madrid

Avda. Universidad, 30
28911 Leganés, Madrid, Spain
{jaf,luis,cdk}@it.uc3m.es

Abstract. Web services are a very appropriate communication mech-
anism to perform distributed business processes among several organ-
isations. These processes should be reliable, because a failure in them
can cause high economic losses. To increase their reliability at design
time, we have developed VERBUS, a framework for the formal verifica-
tion of business processes. VERBUS can automatically translate busi-
ness process definitions to specifications verifiable in several available
tools. It is based on a modular and extensible architecture: new process
definition languages and verification tools can be added easily to the
framework. The prototype of VERBUS presented in this work can verify
BPEL4WS process specifications, by translating them to Promela. The
Promela specifications are verified with the well known model checker
Spin. In this paper we describe the general architecture of VERBUS and
how BPEL4WS specifications are translated and verified. The explana-
tion is completed by describing what types of properties can be verified
and providing an overview of the implementation.

1 Introduction

Inter–organisational business processes are a key technology for business to busi-
ness collaborations. Nowadays many enterprises have automated their internal
business processes with workflow technologies. They have now a new challenge:
the automation of their collaborations with partner enterprises, in open and very
dynamic environments, to accelerate their business in a cost–effective manner.
Web services are a promising technology to support these type of collabora-
tions [1, 2]. It is an XML–based middleware technology that provides RPC–like
remote communication, using in most cases SOAP over HTTP.

Web services provide a state–less communication mechanism: WSDL can
specify remote operations and their input and output parameters, but not the
relations between several operations. Business processes have a state. Therefore,
new languages are necessary to execute business processes on top of Web ser-
vices. Several languages have been used to model these business processes [2].
They are often called choreography languages, because they specify the order in

K. Bauknecht, M. Bichler, and B. Pröll (Eds.): EC-Web 2004, LNCS 3182, pp. 76–85, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Formal Verification of BPEL4WS Business Collaborations 77

which the activities of the process must be executed. The most important are
BPEL4WS [3], BPML [4] and ebXML BPSS [5]. Among them, only BPEL4WS
is specific for Web services. The Web Services Choreography Working Group of
the World Wide Web Consortium (W3C) is also currently developing a new Web
services choreography language.

Complex business collaborations require the specification of complex business
processes. Specificating complex processes is error prone, due to concurrency in
the execution of activities, the possibility of communication errors, faults in
remote systems, etc. Enterprises can only trust in this technology if the cor-
rectness of the processes can be ensured, because a failure in them can cause
high economic losses. In this work we present VERBUS (VERification for BUSi-
ness processes), a system for automatic verification of business processes using
model–checking. Its main objective is to help process designers to ensure the
correctness of the defined processes. The current prototype receives an input
BPEL4WS process specification and a set of properties that the designer wants
to verify. Then the system automatically translates the specification to a for-
mal specification language and verifies it using a model–checker. If a property is
found to be false, the system gives a counter–example to the designer. VERBUS
is modular and extensible: new process definition languages and verification tools
can be easily added to the framework.

Several works have been done previously on business processes verification.
Woflan [6] is a Petri–Net based verification tool. It can perform verifications on
workflow definitions, and was integrated with several commercial workflow man-
agement systems. In [7] formal semantics are defined for UML activity diagrams
to allow the verification of workflow processes defined with these formalisms.
It uses the SMV model checker. A framework for the verification of Web ser-
vices is proposed in [8]. It can perform analysis on a Web service described with
DAML-S by translating the description to a Petri–Net based model.

None of these works can be applied to BPEL4WS processes. The results
of these works are specific, both in terms of process modelling language and
verification tool. However, VERBUS proposes a framework in which several pro-
cess definitions languages and verification tools can be integrated, based on a
common intermediate formal model. This formal model is very simple, but can
represent complex semantics like the fault handling mechanism of BPEL4WS in
a straightforward way, as showed in the next sections.

This paper is organised as follows. Section 2 makes a brief introduction to
BPEL4WS. Section 3 describes the main architecture of VERBUS. Section 4
explains how VERBUS translates BPEL4WS processes to its formal model. Sec-
tion 5 explains the possibilities that VERBUS offers for performing verifications.
Finally, the main conclusions of this work are summarised.

2 Modelling Business Processes with BPEL4WS

Business Process Execution Language for Web Services (BPEL4WS) [3] is an
XML notation for specifying business process behaviour based on Web services.



78 Jesús Arias Fisteus, Luis Sánchez Fernández, and Carlos Delgado Kloos

BPEL4WS other languages

VERBUS formal model

SPIN (promela) other verification tools

Layer 2: FORMAL MODEL

Layer 1: VERIFICATION MODEL

Layer 3: DESIGN MODEL

Fig. 1. Architecture of the VERBUS framework

It was developed by Microsoft, IBM, BEA, Siebel Systems and SAP. It allows the
specification of executable processes and business protocols. An executable pro-
cess defines the behaviour of a participant in a collaboration. A business protocol
defines the message exchange of all the participants involved in a collaboration.

BPEL4WS provides basic activity structuring (sequential and parallel com-
position, conditional execution and loops), variables, hierarchical activity com-
position with scopes, Web services based communication (invocation of remote
Web services operations and providing Web services operations to remote sys-
tems), event handling and fault and compensation handling mechanisms.

Activities are executed in the context provided by a scope. Each scope con-
tains activities and data. All the activities contained in a scope share the same
context. Scopes can be hierarchically nested. The root of the hierarchy is the
process, that can be viewed as a special scope. It can contain any number of
children scopes. Each scope can contain also children scopes, and so on. Scopes
store data in variables, that can be accessed by any activity contained by this
scope, or any scope nested in it.

Scopes are also important for fault and compensation handling. The fault
handling mechanism is very similar to the Java exception handling mechanism.
An activity can throw faults to notify an error in its execution. Faults can be
handled by a scope or, if not, they are re–thrown to the next enclosing scope.
Section 4.4 explains this in detail. The compensation mechanism allows the spec-
ification of transactional behaviour for business processes. Each scope can define
a compensation handler to make the rollback of the actions that were executed
by the scope. This handler is executed when the scope has successfully completed
but it must be compensated due to faults that occurred in other scopes.

3 The VERBUS Framework

VERBUS is a modular and extensible framework for the verification of business
processes. It proposes an architecture with three layers, as showed in Fig. 1.
The design model (layer 3) deals with the design of business processes, using
specification languages like BPEL4WS or BPML, for example. The formal model
(layer 2) deals with the specification of processes using a formal model. VERBUS
defines its own formal model for this layer, based on Finite State Machines
(FSMs). The verification model (layer 1) deals with the verification of business
processes. Several general–purpose verification tools can be placed in this layer,
such as Spin [9] or SMV [10].



Formal Verification of BPEL4WS Business Collaborations 79

Layer 3 specifications are translated to formal (layer 2) specifications us-
ing automatic translation tools. There is one tool for each layer 3 language.
Layer 2 specifications are also translated to verification languages using auto-
matic translation tools. There is one tool for each verification language, because
each verification tool has normally a specific input language. Layer 2 is an in-
termediate layer that increases the modularity and extensibility of the system,
by disconnecting the design and verification layers. Thus, only one translation
tool is needed when introducing a new verification tool in the framework, and
it will be available to specifications defined in any language in the design layer.
The same applies to the introduction of new layer 3 languages.

The current prototype of VERBUS implements two translation tools. One
of them translates a BPEL4WS process specification to a formal specification.
The other translates a layer 2 specification to a Promela [9] specification, that
can be verified with the model–checker Spin.

3.1 The VERBUS Formal Model

The formal model used in the layer 2 of VERBUS is based on FSMs. It is briefly
presented here. Its formal definition is given in [11].

A process is composed by a set of attributes and a set of transitions. At a given
moment, each attribute has a value within a set of possible values. The value
of all the attributes of the process at a given moment establishes its state. The
process progresses from one state to another by means of transitions. A transition
is a pair of states (origin and destination) that defines a possible progress of the
process. The process starts at an initial state. Then it fires transitions, until it
reaches a state that is not in the origin of any transition. This state implies the
completion of the process and is called a final state.

The FSM of a business process has normally many transitions. In order to
avoid defining them explicitly, VERBUS represents them with functional tran-
sitions. A functional transition is defined by two predicates: domain and action.
The domain defines a set of states that are origin of transitions. The action de-
fines how these origin states change to obtain the final states. Therefore a func-
tional transition represents a set of transitions that share a similar behaviour.

The concepts of entity, entity type and activity are introduced as notational
elements, to make specifications more readable. However, they do not affect the
basic formalism. An entity type is a group of typed fields (boolean, enumerated
or integer types). An entity is an instance of an entity type. Each field of an
entity type generates as many attributes as times its data type is instantiated.
An activity is a logical unit for grouping related functional transitions.

4 Translating BPEL4WS to the VERBUS Formal Model

The translation of BPEL4WS specifications to the formal model is the most
complex functionality of VERBUS. This section summarises how it is done.
The translation of sequences and the fault–handling mechanism were selected



80 Jesús Arias Fisteus, Luis Sánchez Fernández, and Carlos Delgado Kloos

<xsd:complexType name="Order">
<xsd:sequence>

<xsd:element name="productId"
type="xsd:string" />

<xsd:element name="colour">
<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:enumeration value="white"/>
<xsd:enumeration value="red"/>
<xsd:enumeration value="blue"/>
<xsd:enumeration value="black"/>

(...)
</xsd:complexType>
<message name="OrderMessage">

<part name="urgent" type="xsd:boolean"/>
<part name="order" type="tns:Order"/>

</message>
<variable name="order"

messageType="tns:OrderMessage"/>

enttype OrderMessage {
urgent: boolean;
order__productId: abstract;
order__colour: enum (white, red, blue,

black);
}
entity order: OrderMessage;

Fig. 2. Mapping between BPEL4WS variables and VERBUS entities

as representative examples of how the translation is performed. The current
prototype of VERBUS can translate also any of the other activities. In the web
page of the VERBUS project (http://www.it.uc3m.es/jaf/verbus) there are
several examples that show how VERBUS translates these other activities.

4.1 Variables

BPEL4WS variables are mapped to VERBUS entities. Each variable is an in-
stance of a data type defined by a WSDL message, an XML element or an XML
Schema type. First, the data type is transformed to an entity type. Then it is
instantiated as an entity. Simple data types are transformed to VERBUS data
types if possible (boolean, enumerated and integer), or declared as abstract
otherwise. Complex data types are transformed by recursively transforming their
components. Fig. 2 shows an example. The message type OrderMessage has two
parts: urgent and order. The part urgent is a simple type and so it is translated
to a boolean field in the VERBUS entity type. The part order is a complex type:
the sequence of the elements productId (string) and colour (enumerated data
type). It is translated to two fields, one for each element.

4.2 Activities

The execution of each BPEL4WS activity instance is controlled by a life–cycle.
Depending on the type of activity two different life–cycle types were identified
in this work. The general life–cycle is used for activities that can have han-
dlers (process, scope and invoke). The simple life–cycle is used for the other
activities. Both life–cycle types are represented in Fig. 3.

Each activity is mapped to an entity and several functional transitions. The
entity represents the state of the activity in its life–cycle. The functional transi-
tions represent the way the activity can progress through its life–cycle and how



Formal Verification of BPEL4WS Business Collaborations 81

NOT_STARTED

RUNNING

begin

COMPENSATED

compensate_end

COMPENSATING

compensate_begin

COMPLETED

fault_handler_end

FAULTED

F_CANCELLING
complete fault_cancelling_end

fault_cancelling_begin

CANCELLING

cancel_end

cancel_begin

CANCELLED

fault_handler_faulted
NOT_STARTED

RUNNING

complete

COMPLETEDCANCELLED

cancel

begin

Fig. 3. Life–cycle for activities. The general life–cycle is on the left and the simple life–
cycle is on the right. States are labelled with uppercase letters and transitions with
lowercase letters. States containing a black dot can be final states of the life–cycle

it affects to the attributes of the process. The concrete functional transitions of
each activity depend on its activity type. However, there are several rules that
are common to almost all activities.

Activity instances have always a begin transition, that represents the begin-
ning of their execution. Its domain represents the preconditions of the activity.
Normally it is a condition that checks the state of other activities (depending
on the type of its parent activity), and its own state (it must be not started).
Its action changes the state of the activity to running.

Activity instances have normally a complete transition also, that represents
the end of their execution. Its domain checks that the activity is in running state.
Depending on the activity type, it may include other conditions. Its action puts
the activity in complete state, and can change also attributes of the process to
represent the effects of the activity execution.

If an activity has a non–deterministic behaviour then it is normally modelled
with several mutually–exclusive functional transitions. Each of them represents
a different behaviour of the activity. Examples of non–deterministic behaviour
are pick activities, activities that can throw faults, receive or invoke activities
that can receive messages with different data, etc.

4.3 Sequence Activity

The BPEL4WS sequence activity can contain one or more inner activities, that
must be executed in sequential order. Given an activity in the sequence, it can
begin its execution only if its preceding activity has been completed. The se-
quence itself is completed when its last inner activity has been completed.



82 Jesús Arias Fisteus, Luis Sánchez Fernández, and Carlos Delgado Kloos

<sequence name="main">
<receive name="init" .../>
<switch name="switch">...</switch>
<scope name="end">...</scope>

</sequence>

activity main_act_2 {
transition begin {

domain: {main_act_2_lc__.state=not_started}
action: {main_act_2_lc__.state=running}}

transition complete {
domain: {(main_act_2_lc__.state=running &

end_act_11_lc__.state=completed)}
action: {main_act_2_lc__.state=completed}}

}
activity init_act_3 {
transition begin {

domain: {(main_act_2_lc__.state=running &
init_act_3_lc__.state=not_started)}

action: {init_act_3_lc__.state=running}}
transition complete {...}
}
activity switch_act_4 {
transition begin {

domain: {(init_act_3_lc__.state=completed & ...)}
action: {(switch_act_4_lc__.state=running & ...)}}

... }
activity end_act_11 {
transition begin {

domain: {(switch_act_4_lc__.state=completed & ...)}
action: {end_act_11_lc__.state=running}}

... }

Fig. 4. Mapping a BPEL4WS sequence. The examples is abbreviated to highlight the
most important conditions and transitions

This behaviour is modelled by adding a condition to the domain of the begin
transition of each inner activity and a condition to the domain of the complete
transition of the sequence activity. The condition added to the first inner activ-
ity states that the sequence activity must be in running state. The condition
added to the other inner activities states that the previous activity must be
in completed state. The condition added to the complete transition of the se-
quence activity states that the last inner activity must be in completed state.
Fig. 4 shows an example.

4.4 Fault Handling

BPEL4WS has a powerful fault–handling mechanism. The process, scope and
invoke activities can contain fault handlers. When a fault is thrown in a given
activity, a handler in the immediately enclosing scope, process or invoke is
selected, based on the fault name and variable type. Before the handler is exe-
cuted, all the running inner activities of this scope are cancelled. If no handler
is appropriate, then the whole scope is cancelled, and the fault is re–thrown
to the next enclosing scope. A fault that reaches the process level causes the
cancellation of the whole process.

To manage the fault–handling mechanism, several attributes are added to
the general life–cycle entity type. One of them is boolean and its value is true
when a fault has occurred in the activity. The other is enumerated, and its value



Formal Verification of BPEL4WS Business Collaborations 83

specifies which is the selected handler when a fault has occurred. The activity
contained in each fault handler checks these variables as a precondition for its
execution.

The cancellation mechanism is needed to implement fault–handling. It is
implemented in VERBUS in this way: a scope that must be cancelled puts itself
in fault-cancelling state. Its inner activity has a transition that cancels itself
if the scope is in fault-cancelling state. In a similar way, if this activity has
inner activities, they detect this cancellation and cancel themselves, and so on.
The scope has a transition that puts itself in faulted state when none of its
inner activities is running. At this moment the activity of the fault handler is
allowed to start its execution. When this activity completes its execution, the
scope puts itself in completed state.

4.5 Prototype Implementation

The current prototype of VERBUS is mainly composed by a BPEL4WS to
VERBUS translator and a VERBUS to Promela translator. It is based on the
BPEL4WS specification version 1.1 [3]. It was developed in Java and uses the
open source libraries Xerces, Xalan and WSDL4J. The prototype works in com-
mand line, but a graphical user interface is currently under development. It will
incorporate a graphical editor of BPEL4WS processes.

The main lack of the current prototype is the compensation mechanism,
because of the complexity associated with it: a copy of all the variables must be
saved for each completed activity instance, because they must be compensated
using the value that variables had when they were completed. While loops even
make this more complex, because multiple instances of each inner activity can be
created. This feature will be handled in future versions of VERBUS, by storing a
copy of attributes for each completed activity. This will increase the complexity
of the verification, and therefore a configurable parameter will be added to limit
the maximum number of activity instances.

5 Verification of Processes

The main goal of VERBUS is the verification of business process specifications.
VERBUS allows the modeller to state properties that must be true for a given
process specification, and checks whether these properties are true or false for
it. If some property is found to be false, VERBUS gives a counterexample. From
the point of view of the formal layer, properties are expressed with boolean
predicates about the value of the attributes of the process. The current prototype
of VERBUS can verify several types of safety and liveness properties:

– Invariants : an invariant is a predicate that must be true in every reachable
state. From the point of view of the BPEL4WS process, invariants look like
for every state if the activity named “init” is running, the part “urgent” of
the global variable “order” must have a false value. The counterpart property
in the formal model layer is: !(init act 3.state=running & order).



84 Jesús Arias Fisteus, Luis Sánchez Fernández, and Carlos Delgado Kloos

– Goals : a goal is a predicate that must be true in every reachable final state.
I.e. the predicate must be true whenever the process stops its execution.
VERBUS adds automatically one goal to ensure that the process and all
the activities are in a valid final state of their life–cycle (not started,
completed, cancelled or compensated) when the process reaches a final
state. Thus any dead–lock or process block is detected. Goals like when the
process completes its execution the part “urgent” of the global variable “or-
der” must have a false value can detect functional errors in specifications.

– Transition pre and post–conditions : given a transition, a pre–condition
(post–condition) is a predicate that must be true always immediately before
(after) the execution of the transition. An example is: immediately before
the activity named “init” completes its execution the part “urgent” of the
global variable “order” must have a true value.

– Activity reachability analysis : VERBUS can detect transitions that can not
be executed in any trace of the process. Thus activities that can never be
started are detected, for example.

– Properties defined with LTL: VERBUS can check properties expressed in
LTL (Linear Temporal Logic). Using LTL the modeller can specify temporal
causalities like if the part “urgent” of the global variable “order” has a true
value, then sometime in the future it must have a false value.

Formal layer specifications can be translated to Promela in a very straightfor-
ward way. The generated Promela specifications have a main do loop, in which
all the transitions of the process are defined. The domain of each transition acts
as a guard, and appears before the action. There is an else statement that
breaks the loop when no transition can be selected (process completion). After
the loop, there is an assertion for each goal property. Assertions for invariants are
placed in a concurrent Promela process. Assertions for pre and post–conditions
are placed before or after the action of each transition. In [11] this translation is
explained in more detail.

6 Conclusions

This work presents VERBUS, a modular and extensible framework for automatic
business process verification. It proposes an architecture with three layers: the
design layer, the formal layer and the verification layer. The formal layer is a
business process specification model based on the FSMs formalism. It disconnects
process description languages and verification languages. Process definitions (de-
sign layer) can be automatically translated to specifications in the formal layer.
These specifications can be automatically translated to specifications in the ver-
ification layer and verified using verification tools.

Works had been done previously on business processes verification, but they
can not be applied directly to BPEL4WS compositions. They use specific process
description languages and verification tools. On the contrary, VERBUS provides
an open framework in which several process description languages and verifica-
tion tools can be integrated.



Formal Verification of BPEL4WS Business Collaborations 85

The implementation of a prototype of VERBUS has demonstrated the fea-
sibility of the framework. The prototype is mainly composed by two translation
tools. The first one translates BPEL4WS specifications to the formal model. The
second one translates formal model specifications to Promela specifications, that
can be verified using Spin. The VERBUS formal layer can model the flow control
primitives commonly used in business processes. It is even expressive enough to
model the complex fault handling and cancellation mechanisms of BPEL4WS.

As future work, this first prototype will be completed by implementing the
BPEL4WS compensation mechanism. Support for new process specification lan-
guages like BPML and verification tools like SMV will be added to VERBUS.

Acknowledgements

This work is partially supported by the Spanish Science and Technology Ministry,
in the project TIC2003-07208 “Infoflex”.

References

1. Jae-yoon Jung, W.H., Kang, S.H.: Business Process Choreography for B2B Col-
laboration. IEEE Internet Computing 8 (2004) 37–45

2. Aissi, S., Malu, P., Srinivasan, K.: E-business process modeling: the next big step.
IEEE Computer 35 (2002) 55–62

3. Andrews, T., Curbera, F., Dholakia, H., et al.: Business Process Execution Lan-
guage for Web Services. Version 1.1 Specification. (2003) Available at http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel.

4. Arkin, A.: Business Process Modelling Language. Business Process Management
Initiative. (2002)

5. ebXML Business Process Team: ebXML Business Process Specification Schema.
Version 1.01. (2001) Available at http://www.ebxml.org/specs/ebBPSS.pdf.

6. Aalst, W.M.P.: Woflan: A petri-net-based workflow analyzer. Systems Analysis –
Modelling – Simulation 35 (1999) 345–357

7. Eshuis, R.: Semantics and Verification of UML Activity Diagrams for Workflow
Modelling. PhD thesis, University of Twente (2002)

8. Narayanan, S., McIlraith, S.: Simulation, Verification and Automated Composition
of Web Services. In: Proceedings of the Eleventh International World Wide Web
Conference, Budapest, Hungary (2002)

9. Holzmann, G.J.: The Spin model checker. Addison-Wesley (2003)
10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
11. Fisteus, J.A., Marin, A., Delgado, C.: VERBUS: A Formal Model for Business

Process Verification. In: Proceedings of the 2004 IRMA International Conference,
New Orleans, USA (2004)


	1 Introduction
	2 Modelling Business Processes with BPEL4WS
	3 The VERBUS Framework
	3.1 The VERBUS Formal Model

	4 Translating BPEL4WS to the VERBUS Formal Model
	4.1 Variables
	4.2 Activities
	4.3 Sequence Activity
	4.4 Fault Handling
	4.5 Prototype Implementation

	5 Verification of Processes
	6 Conclusions
	References

