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Abstract. Finite automata and regular languages have been useful in
a wide variety of problems in computing, communication and control,
including formal modeling and verification. Traditional automata do not
admit an explicit modeling of time, and consequently, timed automata [2]
were introduced as a formal notation to model the behavior of real-time
systems. Timed automata accept timed languages consisting of sequences
of events tagged with their occurrence times. Over the years, the formal-
ism has been extensively studied leading to many results establishing
connections to circuits and logic, and much progress has been made in
developing verification algorithms, heuristics, and tools. This paper pro-
vides a survey of the theoretical results concerning decision problems
of reachability, language inclusion and language equivalence for timed
automata and its variants, with some new proofs and comparisons. We
conclude with a discussion of some open problems.

1 Timed Automata

A timed automaton is a finite automaton augmented with a finite set of (real-
valued) clocks. The vertices of the automaton are called locations, and edges are
called switches. While switches are instantaneous, time can elapse in a location.
A clock can be reset to zero simultaneously with any switch. At any instant,
the reading of a clock equals the time elapsed since the last time it was reset.
With each switch we associate a clock constraint, and require that the switch
may be taken only if the current values of the clocks satisfy this constraint.
Timed automata accept (or, equivalently, generate) timed words, that is, strings
of symbols tagged with occurrence times. Let IR denote the set of nonnegative
real numbers, and let Q denote the set of nonnegative rational numbers. A
timed word over an alphabet X' is a sequence (ag, o), (a1,t1) - - - (ak,tr), where
each a; € X, each t; € IR, and the occurrence times increase monotonically:
to < t; < --- < t. The set of all timed words over X' is denoted T X*. A timed
language over X is a subset of T X*.

The untimed word corresponding to a timed word (ao, to), (a1,t1) - - - (ak, tx)
is the word aga; - . . a obtained by deleting the occurrence times. The untimed
language untime(L) of a timed language L consists of all the untimed words
corresponding to the timed words in L. For an alphabet X, we use X'¢ to denote
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Y U {e} (where € is not in X), and for a subset X’ C X, and a timed word
w = (ag,to), (a1,t1) - -+ (ax, tx) over X, the projection of w over X’ is obtained
from w by deleting all (a;, ;) such that a; ¢ X'. The projection operation extends
to timed languages as well.

To define timed automata formally, we need to say what type of clock con-
straints are allowed as guards. For a set X of clocks, the set &(X) of clock
constraints g is defined by the grammar

g=z<c|c<z|z<c|lc<z|gAg

where x € X and ¢ € Q. A clock valuation v for a set X of clocks assigns a
real value to each clock; that is, it is a mapping from X to R. For6 e R, v + ¢
denotes the clock valuation which maps every clock z to the value v(z) + §. For
Y C X, v[Y := 0] denotes the clock valuation for X which assigns 0 to each
z € Y, and agrees with v over the rest of the clocks.

A timed automaton A over an alphabet X is a tuple (V,V°, V¥, X, E), where

— V is a finite set of locations,

— VO C V is a set of initial locations,

— VF CVis a set of final locations,

— X is a finite set of clocks,

~ ECV x X x &(X) x2X x V is a set of switches. A switch (s,a,g,\,s’)
represents an edge from location s to location s’ on symbol a. The guard g
is a clock constraint over X that specifies when the switch is enabled, and
the update A C X gives the clocks to be reset to 0 with this switch.

The semantics of a timed automaton A is defined by associating an infinite-state
automaton S4 over the alphabet X' UIR. A state of S4 is a pair (s,v) such that
s is a location of A and v is a clock valuation for X. A state (s,v) is an initial
state if s is an initial location (i.e. s € V°) and v(z) = 0 for all clocks z. A state
(s,v) is a final state if s is a final location (i.e. s € V). There are two types of
transitions in S4:

Elapse of time: for a state (s,v) and a time increment § € R, (s, v) A (s,v+
d).

Location switch: for a state (s,v) and a switch (s,a, g, ), s') such that v sat-
isfies the guard g, (s,v) = (s',v[\ := 0]).

For a timed word w = (ag, to), (a1,t1) - - - (ag, tx) over X¢, a run of A over w is
a sequence

t t1—t to—t
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such that go is an initial state of S4. The run is accepting if qx11 is a final state
of S4. The timed automaton A accepts a timed word w over X if there exists
a timed word w' over X¢ such that A has an accepting run over w' and the
projection of w' to X is w. The set of timed words accepted by A is denoted
L(A).



Fig. 1. A non-complementable timed automaton
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e,x=1,2:=0

Fig. 2. e-transitions increase expressiveness

A timed language L C T'X* is said to be timed regular if there exists a timed
automaton A such that L(A) = L. The closure properties of timed regular
languages are summarized below:

Theorem 1. The set of timed regular languages is closed under union, inter-
section, and projection, but not under complementation [2].

The closure under union and intersection is established by extending the classical
product construction to timed automata. Closure under projection is immediate
since switches can be labeled with e.

For the non-closure under complementation, we give a new proof here. Let
Y ={a,b}. Let L be the timed language consisting of timed words w containing
an a event at some time ¢ such that no event occurs at time ¢ + 1. The (non-
deterministic) timed automaton shown in Figure 1 (with initial location s; and
final location s3) accepts L.

We claim that L, the complement of L, is not timed regular. Consider the
timed language L' consisting of timed words w such that the untimed word of
w is in a*b*, all the a events happen before time 1, and no two a events happen
at the same time. Verify that L' is timed regular. Observe that a word of the
form a™b™ belongs to untime(L N L') iff m > n. Since timed regular languages
are closed under intersection, the untimed language of a timed regular language
is regular (see Section 2), and the language {a"b™ | m > n} is not regular, it
follows that L is not timed regular.

Unlike classical automata, e-labeled switches add to the expressive power of
timed automata [10]. For example, the automaton of Figure 2 accepts timed
words w over {a} such that every occurrence time is an integer and no two a-



events occur at the same time. This language cannot be accepted by a timed
automaton if e-labeled switches are disallowed: if the largest constant in a timed
automaton A is ¢ and A does not have e-labeled switches, then A cannot distin-
guish between the words (a,c + 1) and(a,c + 1.1).

The more recent definitions of timed automata also admit labeling of each
location with a clock constraint called its invariant, and require that time can
elapse in a location only as long as its invariant stays true [23]. While this is a
useful modeling concept to enforce upper bounds (without introducing “error”
locations), it does not add to the expressive power.

Timed languages can also be defined using timed state sequences: a timed
state sequence is a mapping from a prefix of the reals to a finite alphabet that
can be represented by a sequence (a,,Io)(a1,l1) ... (ag, Ir), where I, I1,... I
is a sequence of adjoining intervals (e.g. [0,1.1)[1.1,1.2](1.2,1.7)). Timed state
sequences can be generated by timed automata in which locations are labeled
with observations [23,3]. This dual view does not change the core results, but
some expressiveness results do differ in the two views [34].

2 Reachability and Language Emptiness

2.1 Region Automata

Given a timed automaton A, to check whether the language L(A) is empty, we
must determine if some final state is reachable from an initial state in the infinite-
state system S4. The solution to this reachability problem involves construction
of a finite quotient. The construction uses an equivalence relation on the state-
space that equates two states with the same location if they agree on the integral
parts of all clock values and on the ordering of the fractional parts of all clock
values. The integral parts of the clock values are needed to determine whether
or not a particular clock constraint is met, whereas the ordering of the fractional
parts is needed to decide which clock will change its integral part first. This is
formalized as follows. First, assume that all the constants in the given timed
automaton A are integers (if A uses rational constants, we can simply multiply
each constant with the least-common-multiple of all the denominators to get
an automaton with the same timed language modulo scaling). For any ¢ € IR,
(6) denotes the fractional part of §, and || denotes the integral part of §;
0 = |0] + {d). For each clock z € X, let ¢, be the largest integer ¢ such that x is
compared with ¢ in some clock constraint appearing in a guard. The equivalence
relation 22, called the region equivalence, is defined over the set of all clock
valuations for X. For two clock valuations v and g, v = p iff all the following
conditions hold:

1. For all clocks z € X, either |v(z)| and |u(z)]| are the same, or both v(x)
and p(x) exceed c,.
2. For all clocks z,y with v(z) < ¢, and v(y) < ¢y, (v(z)) < (v(y)) iff (u(z)) <

(1(y))
3. For all clocks z € X with v(z) < ¢, (v(z)) = 0 iff (u(x)) = 0.



A clock region for A is an equivalence class of clock valuations induced by 2.
Note that there are only a finite number of regions, at most k!-4* - IT,c x (c, +1),
where k is the number of clocks. Thus, the number of clock regions is exponential
in the encoding of the clock constraints.

The key property of region equivalence is its stability: for any location s, and

clock valuations v and v’ such that v = v/, (a) for any § € R, if (s, v) RN (s,v+9)

1

then there exists ¢’ € IR such that (s, ') LR (s,v'+4d") and (v+9) = (V' +4'), and
(b) for every label a € X¢ and state (¢, ), if (s,v) = (t, ) then there exists '
such that (s,2') 5 (t, ') and p = p'. Thus, if two states are equivalent, then an
a-labeled discrete switch from one can be matched by a corresponding discrete
switch from the other leading to an equivalent target state, and if the automaton
can wait for § units in one state, then it can wait for ¢’ units, possibly different
from 4, resulting in equivalent states. For this reason, the region equivalence is
a time-abstract bisimulation.

For a timed automaton A, the quotient of S4 with respect to the region
equivalence is called the region automaton of A, and is denoted R(A): vertices
of R(A) are of the form (s,r), where s is a location and r is a clock region; there
is an edge (s,r) = (s,7') in R(A) for a € X iff for some clock valuations v € r
and v' € 7', (s,v) 3 (s',v') in Syu, or, a = € and (s,v) 2 (s',v") for some
6 € IR. The initial and final states of S4 are used to define the initial and final
vertices of R(A). Now, the language of R(A) is the untimed language of L(A).

Theorem 2. For a timed regular language L, untime(L) is a regular language [2].

Consequently, R(A) can be used to solve language emptiness for A, and also
to answer reachability queries for A. Thus, emptiness and reachability can be
solved in time linear in the number of vertices and edges of the region automaton,
which is linear in the number of locations and edges of A, exponential in the
number of clocks, and exponential in the encoding of the constants. Technically,
these problems are PSPACE-complete.

Theorem 3. The language emptiness question for timed automata is PSPACE-
complete, and can be solved in time O(m - k! - 4% - (c- ' + 1)¥), where m is the
number of switches in A, k is the number of clocks in A, c is largest numerator in
the constants in the clock constraints in A, and ¢’ is the least-common-multiple
of the denominators of all the constants in the clock constraints of A [2].

In [15] it was also shown that for timed automata with three clocks, reach-
ability is already PSPACE-complete. A recent result [28] shows that for timed
automata with one clock, reachability is NLOGSPACE-complete and for timed
automata with two clocks, it is NP-hard. The reachability problem remains
PspACE-hard even if we bound the magnitudes of constants [15].

2.2 Cycle detection

A timed w-word is an infinite sequence of the form a = (ag, to)(a1,t1) - - - (ai, t;), - - -

with a; € X, t; € R, and g < t; < ---t; < ---, and timed w-language is a set



of timed w-words. Reasoning in terms of infinite timed words, as in the untimed
setting, is useful for checking liveness properties. The notion of a run of a timed
automaton A naturally extends to timed w-words. A timed w-word « is accepted
by A using the Biichi condition, if there is a run of A on «a that repeatedly hits
(infinitely often) some final location in V. The set of w-words accepted by A
is denoted by L, (A). Checking whether L, (A) is nonempty, for a given A, can
be done by checking whether there is a cycle in the region graph of A which is
reachable from an initial state and contains some state in V.

For infinite words, it is natural to require that time diverges, that is, the
sequence tg, t1, ... t;, ... grows without bound. Timed words that do not diverge
depict an infinite number of events that occur in a finite amount of time. To
restrict L, (A) only to divergent words, we can transform the timed automaton
by adding a new clock z which is reset to 0 whenever it becomes 1 (using an
e-edge) and the timed automaton hits the new final set V. only if the run had
passed through Vr in the last one unit of time.

Theorem 4. Given a timed automaton A, the problem of checking emptiness of
L, (A) is PSPACE-complete.

Most of the results in this survey hold for timed w-languages also.

2.3 Sampled Semantics

In the discrete-time or sampled semantics for timed automata, the discrete
switches, or the events, are required to occur only at integral multiples of a
given sampling rate f. This can be formalized as follows. Given a timed automa-
ton A and a sampling rate f € Q, we define an automaton Sf‘: the states, initial
states and final states of Sfl are the same as the states, initial states, and final
states of S4, and the transitions of Sfl are the transitions of S4 that are labeled
with either a € X or with m.f (where m € N). The sampled timed language
Lf(A) is defined using the automaton Sf‘. Note that time of occurrence of any
symbol in the timed words in Lf(A) is an integral multiple of the sampling fre-
quency f. To check emptiness of L7 (A), observe that in any reachable state of
Sﬁ, the values of all clocks are integral multiples of f, and this can lead to a
reduced search space compared to the region automata. However, the complexity
class of the reachability and cycle-detection problems stays unchanged (here L7
denotes the set of w-words where events occur at sampling rate f):

Theorem 5. Given a timed automaton A and o sampling rate f € Q, the prob-
lem of checking the emptiness of Lf(A) (or Lf(A)) is PSPACE-complete.

If the sampling rate f is unknown, the resulting problems are the discrete-
time reachability and discrete-time cycle-detection problems with unknown sam-
pling rate: given a timed automaton A, does there exist a rational number f € Q
such that L7 (A) (or Lf (A)) is nonempty. Discrete-time reachability for unknown
sampling rate is decidable since it is equivalent to the question of whether L(A)



bz >1,z:=0
Fig. 3. Sampled semantics is different from the standard semantics

is empty: if L(A) is nonempty, we can find a word in L(A) where events occur at
rational times, and by choosing an appropriate f, show that it is an f-sampled
word. However, the discrete-time cycle-detection problem with unknown sam-
pling rate is undecidable:

Theorem 6. Given A, the problem of checking whether |J;q Lf(A) is nonempty,
is undecidable [14].

The undecidability proof is by reduction from the halting problem for two-
counter machines. Given a two-counter machine M, one can construct a timed
automaton Ay and a location sg such that for any integer n, the location sg
is reachable in the discrete-time semantics with the sampling rate 1/n iff the
two-counter machine M has a halting run in which both the counters do not
exceed the value n.

To see that L, (A) can be nonempty while for each f, LY (4) = @, consider the
automaton in Figure 3. While the a-events occur at integer times, the b-events
have to occur closer and closer to the a-events, and fixing any sampling rate f
makes the w-language empty.

2.4 Choice of Clock Constraints and Updates

The clock constraints in the guards of a timed automaton compare clocks with
constants. Such constraints allow us to express (constant) lower and upper
bounds on delays. Consider the following generalization of clock constraints:
for a set X of clocks, the set #¥(X) of clock constraints g is defined by the
grammar

g=z<c|c<z|z—y<clz<c|le<z|z—y<c|gAg

where z, y are clocks in X and ¢ € Q. Including such “diagonal” clock constraints
that compare clock differences with constants does not change the complexity
of reachability. Similarly, we can relax the allowed updates on switches. In the
original definition, each switch is tagged with a set A which specifies which clocks
should be reset to zero. A more general update map A maps clocks in X to QUX
specifying the assignments x := A\(z). Thus, x can be assigned to an arbitrary
rational constant, or to the value of another clock. Both these modifications can



be handled by modifying the region construction. In fact, both these extensions
do not add to the expressive power.

Theorem 7. If the clock constraints for guards are chosen from the set $¢(X),
and the switches are annotated with the update maps, the expressive power of
timed automata stays unchanged, and the language emptiness problem stays
PSsPACE-complete.

However, a variety of extensions have been shown to allow definition of lan-
guages that are not timed regular, and lead to undecidability of the emptiness
problem. We summarize some notable ones:

1. Allowing guards of the form x = 2y renders reachability problem for timed
automata undecidable [2].

2. Allowing guards of the form z + y ~ ¢, where ~ € {<, <} leads to undecid-
ability if there are four or more clocks, but is decidable for automata with
two clocks [9].

3. Allowing updates of the form x := x — 1 renders reachability problem for
timed automata undecidable [13].

4. Allowing updates of the form z := x + 1 keeps the reachability problem
PsPACE-complete if the clock constraints are chosen from #(X), but renders
it undecidable if the guards are chosen from ¢¢(X) [13].

5. Allowing guards that compare clocks with irrational constants renders reach-
ability problem for timed automata undecidable [30].

The first result above implies that allowing constraints involving addition
of clock variables leads to undecidability of the reachability problem. With an
enabling condition of the form y = 2z, one can express a constraint of the
kind “the time delay between the symbols a and b is the same as the time
delay between b and ¢” (reset a clock z while reading a, reset a clock y while
reading b, and require y = 2z while reading ¢). This can be exploited to copy
the counter values, and encode configurations of a two-counter machine, leading
to undecidability. The second result is of similar nature. The third result says
that one cannot allow decrements. Since clocks increase with elapse of time,
with decrements they can act as counters, and thus be used to encode counter
machines. The fourth result says that explicit increments can be allowed in the
original region construction, but in the presence of guards of the “diagonal” form
z —y < ¢, such increments allow encoding of counter values using the differences
between clocks. Bouyer et al have also studied nondeterministic updates (for
example,  is reset to a value chosen nondeterministically from intervals such
as [0,c] or [y,0)), and their impact on the decidability with and without the
“diagonal” constraints [13]. Finally, [30] considers timed automata where guard
constraints compare clocks with érrational constants, and shows that if 7 € (0,1)
is an irrational number, then timed automata where the constants are taken from
{0,1,7,3 — 7} have an undecidable emptiness problem.
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Fig. 4. Clock drift, however small, influences reachability

2.5 Choice of Clock Rates

An interesting generalization of timed automata is rectangular automata in which
clocks increase at a rate that is bounded by constants [21]. Such a clock can be
used to approximate a continuous variable. A rectangular automaton A over an
alphabet X is a tuple (V,V°, V¥ X, E, low, high), where the components V', V0,
V¥, X, and E are as in a timed automaton, and low and high are functions from
X to Q. When time elapses each clock z increases at a rate bounded by low(z)
from below, and by high(z) from above. The transition system S4 associated
with the rectangular automaton A is defined as in case of timed automata. The
only difference is in the transitions corresponding to elapse of time: for a state

(s,v), a time increment § € IR, and a clock valuation u, (s,v) 3 (s, ) holds
if for each clock z € X, there exists a rate low(z) < r, < high(z) such that
w(z) =v(x) + 61y

Theorem 8. The language accepted by a rectangular automaton is timed reg-
ular, and the language emptiness problem for rectangular automata is PSPACE-
complete [21].

The emptiness problem for rectangular automata is solved by translating rectan-
gular automata to equivalent timed automata. Consider a rectangular automaton
A. We obtain an equivalent automaton B as follows. For every clock xz of A, B
has two clocks: z; whose rate is low(z) and zj whose rate is high(z). We would
like z; and zxj, to track the lower and upper bounds, respectively, on the possible
values of the clock z whose rate can vary in the interval [low(z), high(z)]. Con-
sider a switch of A with guard = < ¢. The corresponding switch in B has guard
x; < ¢, and update x, := c¢. Analogously, the guard x > d is replaced by the con-
straint xj > d, with an accompanying adjustment x; := d. This transformation
preserves answers to reachability questions, and in fact, timed languages. The
automaton B has clocks that have fixed rates, and can easily be transformed
into a timed automaton simply by scaling. Note that in rectangular automata,
a variable does not change its rate from one location to another, the enabling
conditions compare variables with constants, and updates reset variables to con-
stants. Relaxing any of these restrictions results in undecidability [21].
Rectangular automata are also useful to introduce “errors” in the clocks. For
a timed automaton A, and a constant ¢, let A° be the rectangular automaton
obtained from A by setting low(xz) = 1 — ¢ and high(z) = 1 + ¢ for all clocks



2. Thus, the clocks in A° have a drift bounded by . A location s of a timed
automaton A is said to be limit-reachable if s is reachable in the perturbed
automaton A¢, for every £ > 0. Obviously, reachability implies limit reachability,
but not vice versa [33]. For instance, the language of the automaton of Figure 4
is nonempty as long as the there is a non-zero drift for the two clocks. It is
possible to compute the set of limit-reachable locations by modifying the search
in the region automaton R(A). For example, in Figure 4, in the initial location,
the region 0 < & = y < 1 is reachable. Since it touches the region 0 < z <y =1,
which, in turn, touches the region 0 < z < 1 < y, the latter is declared limit-
reachable, and this makes the discrete switch to the final location possible. The
computation, in general, requires identifying the so-called limit-cycles in the
region graph [33].

Theorem 9. Given a timed automaton A, the problem of deciding whether a
location is limit reachable is PSPACE-complete [33].

Instead of perturbing the clock rates, if we perturb the guards, that is, replace
every £ < cby x < c+¢ and every x > ¢ by x > ¢ — ¢, and ask if a location
is reachable for every positive perturbation € of the guards, then the problem is
solvable by similar techniques [17].

2.6 Weighted Automata and Optimal Reachability

A weighted timed automaton consists of a timed automaton A, a cost function
J that maps every location and every switch to a nonnegative rational number.
For a location s € V, J(s) is the cost of staying in s per unit time, and for a
switch e € E, J(e) is the cost of a discrete switch corresponding to e. The cost
function leads to costs on the edges of the underlying transition system S4: the

transitions of the form (s, v) A (s,v+6) have cost §-J(s), and transitions due to
a switch e have cost J(e). The optimal reachability problem for weighted timed
automata is to determine the cost of the shortest path from an initial state to a
final state, and thus, is a generalization of the classical shortest path problem in
weighted automata. Formally, given a timed automaton A, and a cost function
J, the optimal cost of reaching the final set V¥ is the infimum over costs ¢
such that there is a path of cost ¢ from an initial state to a final state. The
solution to this problem has been proposed in [7] (see also [8] for an alternative
approach). Consider a path in the underlying graph of the timed automaton from
an initial location to a final location. There can be many runs corresponding to
the sequence of discrete switches specified by such a path, depending on the
time spent between successive switches. However, since the constraints imposed
by the resets and guards are linear, and so is the cost function, in an optimal
run the times of switches will be at corner points (or arbitrarily close to corner
points if the corner points are ruled out by the constraints).

In a more general version of the optimal reachability problem, we are given
a source region (that is, some constraints on the initial values of the clocks),
and we want to compute optimal costs for all the states in the source region.



It is possible to construct a weighted graph whose nodes are “refined” regions
and edges are annotated with parametric costs that are linear functions of the
clock values in the source state. The size of this graph, like the region graph, is
exponential in the timed automaton. Fixing a source state determines the costs
on all the edges, and optimal cost to reach any of the locations (or regions) can be
computed in PSPACE (see also [12]). However, the number of parameters is same
as the number of clocks, and if wish to compute a symbolic representation of the
optimal cost to reach a target as a function of the source state, this approach
gives a doubly exponential solution.

Theorem 10. Given a timed automaton A, and a cost function J, the optimal
cost of reaching a final state can be computed in PSPACE.

3 Inclusion, Equivalence and Universality

3.1 Undecidability

The universality problem for timed automata is to decide, given a timed au-
tomaton A, whether A accepts all timed traces, i.e. whether L(A) = T X*. For
automata on discrete words, this is decidable as one can complement the automa-
ton A and check for emptiness. This approach does not work for timed automata
since, as we saw earlier, timed automata are not closed under complementation.
In fact, it turns out that the problem is undecidable:

Theorem 11. The universality problem for timed automata is undecidable [2].

The proof proceeds by encoding computations of a 2-counter machine (or
a Turing machine) using timed words where every unit time interval encodes
a configuration of the machine. Copying between successive configurations is
achieved by requiring that every event in one interval has a matching event
distance 1 apart in the next interval. While this requirement cannot be captured
by a timed automaton, the complement can be accepted by a nondeterministic
timed automaton that guesses the errors (that is, events with no matches in the
following interval).

The inclusion problem is to check, given two timed automata A and B,
whether L(A) C L(B). This is an interesting question from the formal methods
perspective as it corresponds to the model-checking problem: given a system
modeled using A and a specification modeled as B, is the set of behaviors of
A contained in the the language defined by B?. The equivalence problem is to
check, given A and B, whether L(A) = L(B).

Since the set of all timed words is timed-regular, the universality problem
reduces to both the inclusion and equivalence problems, and we have:

Corollary 1. The inclusion and equivalence problems for timed automata are
undecidable.



Due to the interest in model-checking timed systems modeled as timed au-
tomata, there has been intense research over the years to find subclasses of timed
automata for which the inclusion problem is decidable. We review some of them
here.

3.2 Deterministic Timed Automata

A timed automaton A is deterministic if (1) V° contains only one location, (2)
there are no switches labeled with €, and (3) for every pair of distinct switches
(s,a,9,A,8") and (s,a,g',N,s") with the same source location and label, the
guards g and ¢’ are disjoint (i.e. the sets of clock valuations that satisfy g and ¢’
are disjoint). These requirements ensure that A has at most one run on a given
timed word, and consequently, complementation can be achieved by comple-
menting the set of final states. The properties of deterministic timed automata
are summarized below:

Theorem 12. Deterministic timed automata are closed under union, intersec-
tion, and complementation, but not under projection. The language emptiness,
universality, inclusion, and equivalence problems for deterministic timed au-
tomata are PSPACE-complete [2].

Unlike classical automata, deterministic timed automata are strictly less ex-
pressive than the nondeterministic ones, and in particular, the language of the
automaton of Figure 1 cannot be specified using a deterministic timed automa-
ton. Given a timed automaton A, the problem of checking whether there exists an
equivalent deterministic timed automaton is not known to be decidable (see [35]
for a discussion).

An interesting extension of deterministic timed automata is bounded 2-way
deterministic timed automata [5]. Automata in this class deterministically tra-
verse a timed word from left to right, but can stop and reverse direction to read
the word backwards from that point. For example, consider the language con-
sisting of all words of the form (a,t)(a,t1) ... (a,tr)(b,t') such that there exists
some i < k with ' = ¢;+1 (i.e. there is some a-event which is exactly one unit of
time before the b-event). This language is not accepted by a (forward) determin-
istic automaton, but can be accepted by an automaton that goes to the end of
the word, sets a clock to the time of the last event, and traverses the word back-
wards looking for the matching a event. For decidability, it is required that there
exists a bound n such that any symbol of any word is read at most n times. Such
a bounded timed automaton (even a nondeterministic one) can be simulated by
a single-pass forward nondeterministic automaton as it simply needs to guess
the positions where the clocks are reset on the bounded number of passes. In
the deterministic case, the expressive power strictly increases with the bound n.
These deterministic bounded two-way automata also preserve the crucial prop-
erty that there is at most one run on each timed word, and consequently, they are
closed under all boolean operations, and checking whether L(A) C L(B), where
A is a timed automaton and B is a bounded 2-way deterministic automaton, is
decidable.



3.3 Digitization

An important subclass of timed automata for which the inclusion problem is
decidable involves the notion of digitization. A timed language L is said to be
closed under digitization if discretizing a timed word w € L by approximating
the events in w to the closest tick of a discrete clock results in a word that is
also in L.

Formally, for any ¢ € R and for any 0 < e < 1, let [t]. be [t], if t < [t] + ¢,
and [t] otherwise. We extend this to timed words: if w = (ag, to),- - - (ak, tx),
then [w]. = (ao, [to]e) - - - (ak, [tk]c)- Intuitively, [w]e is the word obtained when
events are observed using a discrete clock with offset . For a timed language L,
[L]: = {[w]: |w e L}.

A timed language L is closed under digitization [22] if for every w € L and
for every € € [0,1], [w]. € L, i.e. if for every € € [0,1], [L]: C L. L is said to
be closed under inverse digitization if it is the case that whenever u is a timed
word such that for every ¢ € [0,1], [u]c € L, then w itself belongs to L.

For any timed language L, let Z(L) be the set of timed words in L in which
every event happens at an integer time. Note the relation to the sampled seman-
tics of Section 2.2: for a timed automaton A, L'(A) = Z(L(A)).

Lemma 1. [22] Let L be closed under digitization and L' be closed under inverse
digitization. Then L C L' iff Z(L) C Z(L").

The proof of the above lemma runs as follows: Assume Z(L) C Z(L"). If
u € L, then [u]. € L for every € € [0,1] (since L is closed under digitization);
hence [u]. € Z(L) C Z(L'), for every ¢ € [0,1], which in turn means that v € L’
(since L' is closed under inverse digitization).

It is easy to see that timed languages over X' in which events occur only
at integral times are in one-to-one correspondence with untimed languages over
Y U {4/}, where 4/ denotes the passage of one unit of time. For example, the
trace (ao, 1)(a1, 1)(az, 3) corresponds to the untimed word \/agai+/+/az. For any
timed word in which events occur at integral times, let Tick(w) denote the
corresponding word over X' U {4/}. Given a timed automaton A accepting L,
we can effectively construct an automaton over X' U {,/} accepting Tick(Z (L)),
using the region automaton for A. Hence, checking Z(L) C Z(L') boils down
to checking inclusion between two untimed languages, which is decidable. This
gives:

Theorem 13. [22] Given timed automata A and B, where L(A) is closed under
digitization and L(B) is closed under inverse digitization, the problem of checking
whether L(A) C L(B) is decidable.

Open timed automata are timed automata where all atomic clock constraints
in guards are of the form x < c or z > ¢, i.e. atomic guards of the form z < ¢
and z > c¢ are disallowed. Similarly, closed timed automata are those in which
all atomic guards are of the form z < ¢ or > ¢. The following is then true:



Proposition 1. [22, 31] Closed timed automata are closed under digitization,
and open timed automata are closed under inverse digitization.

Corollary 2. Given a closed timed automaton A and an open timed automaton
B, the problem of checking if L(A) C L(B) is decidable.

Turning to the universality problem, since checking whether a timed automa-
ton A accepts all timed words is the same as asking whether TX* C L(A), and
since T X™ is closed under digitization, it follows that:

Theorem 14. [22, 31] The universality problem for open timed automata (or
any class of timed automata that are closed under inverse digitization) is decid-
able.

Note that the above crucially uses the fact that our definition of timed words
allows several events to happen at the same time, i.e. the timed words are weakly
monotonic. If this were disallowed and it was required that time strictly elapse
between events, then we have as universe the set of all strongly monotonic words,
which is not closed under digitization. It turns out that checking universality of
open timed automata is undecidable in the domain of strongly monotonic words.
Also, for closed timed automata, universality is undecidable regardless of whether
the universe is weakly or strongly monotonic [31].

Note that open timed automata are defined syntactically by placing restric-
tions on the structure of the automata while closure under digitization is a
semantic property of languages. Given automata A and B, one can always check
whether Z(L(A)) C Z(L(B)). If we could decide whether A is closed under
digitization and whether B is closed under inverse digitization, we would know
whether we can use the above test to check language inclusion. It turns out that
the former is decidable but the latter is not:

Theorem 15. [31] Given o timed automaton A, checking whether L(A) is closed
under digitization is decidable, while the problem of checking whether L(A) is
closed under inverse digitization is undecidable (even if A is a closed timed au-
tomaton,).

3.4 Robust Timed Automata

Since the undecidability of universality and inclusion problems were shown us-
ing the fact that events that are precisely one unit (or an integral number of
units) apart can be related, and hence used to count, this led to the belief that
introducing some fuzziness in acceptance could alleviate the problem. Also, in
practice, no timed system can be modeled and observed with such arbitrary
accuracy a timed automaton provides.

The definition of robust timed automata addresses this. Given a timed au-
tomaton, under the robust semantics a word is accepted if and only if a dense
subset “around” the word is accepted by the timed automaton. In this definition,
a word that is accepted by the timed automaton may be rejected in the robust



semantics if it is an isolated accepted trace, while a word that is rejected by the
timed automaton can be accepted under the robust semantics if it is surrounded
by a dense set of accepted traces.

Formally, let us first define a metric d on timed words. Let w and w’ be
two timed words. If untime(w) # untime(w'), then d(w,w') = co. Otherwise, if
w = (ao, o) ... (ar,tx) and w' = (ao,t;) ... (ak,t}), then d(w,w') = max{|t; —
ti] | 0 <4 < k}. In other words, the distance between two timed words (whose
untimed components are identical) is the maximum difference in time between
corresponding events in the two words. We refer to open and closed sets of timed
words with regard to this metric.

The robust semantics can now be defined as follows. Given a timed automaton
A accepting L, let L¢ denote the smallest closed set containing L. Then the robust
language accepted by the automaton, Lgr(A), is the interior of L¢, which is the
largest open set contained within L°.

In this subsection, to clearly distinguish between the standard semantics and
the robust one, we refer to the former as precise semantics. In the original paper
[20], the robust semantics of a timed automaton was defined as a collection of
tubes as opposed to a collection of timed words. A tube is any set of timed
words which is open (i.e. for each timed word in the tube, some e-neighborhood
should be contained in the tube). Here we adopt a slightly different semantics
by defining the robust semantics to be the set of all timed words which belong
to some tube that is robustly accepted.

The robust language of any timed automaton is, by definition, open. Also,
it turns out that the (precise) languages accepted by open timed automata are
also open. However, open timed automata and robust timed automata have
incomparable expressive power (i.e. there are timed languages that are accepted
by open timed automata which are not acceptable by robust timed automata
and vice versa) [31].

Despite the involved definition of robust acceptance, emptiness for robust
timed automata is decidable:

Theorem 16. [20] The emptiness problem for robust timed automata is PSPACE-
complete.

The proof proceeds by showing that for any timed automaton A, we can
construct an open timed automaton A° such that both accept the same robust
languages, i.e. Lr(A) = Lr(A°). Since the precise language of this open timed
automaton is open, i.e. L(A°) is open, it follows that the robust language of
A is nonempty iff the precise language of A° is nonempty (i.e. Lgr(4) # § iff
L(A°) # (), which is decidable. One can in fact show that the untimed language
corresponding to the robust language accepted by A is regular (as is true for the
precise semantics).

However, it turns out that despite robustness, robust timed languages are not
closed under complement (and hence not determinizable) [20,26]. We give a new
proof here. Consider the timed automaton A depicted in Figure 5, which accepts
(in the precise semantics) the language L consisting of all timed words w such



Fig. 5. A noncomplementable robust automaton

that the untimed word of w is in a*b* and there are two consecutive a-events
at times ¢ and ¢’ such that there are no b-events in the range [t + 1,¢' + 1]. It is
easy to see that the robust language accepted by A is also L.

The robust complement of A, denoted by L, consists of the set of all words w
such that either the untimed word of w is not in a*b* or for every two consecutive
a-events, there is at least one b-event in the open range (¢t + 1,t' + 1). We show
that L is not robustly acceptable by any timed automaton. We claim that a word
is in the untimed language of L iff it is in X*.b.X*.a.X* or is of the form a™b™
where n > m — 1. This claim will show that L cannot be robustly accepted, since
untime(L) is non-regular. The only interesting part is to show that there is no
word whose untimed word is a™b™ with n < m — 1. Assume there is such a word
7. By robust acceptance, we can find a word 7 close to T whose untimed word
is the same as that of 7 but where all a-events occur at different times. Then, it
is easy to see that the a-events define m — 1 intervals which cannot be filled by
n b-events and hence 7' is not in the language, which is a contradiction.

The above mechanism of sandwiching a related event in an interval one unit
away from a pair of consecutive events, gives a way to maintain counters. A
similar mechanism is used to encode configurations of a Turing machine in [24],
where the authors show that a robust timed automaton can accept all wrong
configuration sequences of a Turing machine, making universality of robust timed
automata undecidable.

Turning to the notions defined in the last subsection, the languages defined
by robust automata are closed under inverse digitization [31]. However, unlike
regular timed languages, checking whether the robust language of a timed au-
tomaton is closed under digitization is undecidable [31].

Also, in sharp contrast to the precise semantics of timed automata, it turns
out that the discrete-time language accepted by robust timed automata need
not be regular. That is, there are robust timed automata A such that Z(Lg(A))
is not regular. Consequently, there are timed languages that can be accepted by
timed automata under the robust semantics which cannot be accepted by timed
automata under the precise semantics (and vice versa).

The nonregularity of Z(Lg(A)) seems to render digitization techniques inap-
plicable for checking inclusion of robust timed automata. In fact, the decidability
status of the integral language emptiness under the robust semantics (i.e. given



an automaton A, to check whether Z(Lg(A)) # 0) is not known. Also, introduc-
ing imprecision using infinitesimal clock drift (recall the definition of A¢ from
Section 2.4) as a way of defining semantics, and its relationship to the robust
semantics has not been studied.

3.5 Restricting Resources

One approach to get a more tractable subclass is to restrict the resources a timed
automaton can use. The original proof showing that inclusion of timed automata
is undecidable also showed that timed automata with two clocks already renders
the inclusion problem undecidable [2].

For timed automata with one clock, however, a recent result shows that
checking inclusion (i.e. checking if L(A) C L(B)) is decidable when B has only
one clock [32]. The proof is based on techniques used to solve problems on infinite
graphs akin to those used to solve problems involving coverability in Petri nets.

The paper [32] also shows that the problem of checking whether L(A) C L(B)
is decidable if the only constant that appears in the guards of B is 0. The proof
goes by showing that B can be determinized. The essence of the idea is this:
Consider the region automaton for B. The only information we need to maintain
is whether each clock is 0 or greater than 0—the ordering of fractional parts of
clocks need not be recorded as any region has at most one timed successor (the
one with every clock greater than 0). Using now a clock, we can simulate a subset
construction on the region automaton and turn it into a timed automaton where
the clock is reset on every event and is used to check whether any amount of
time has elapsed since the last event.

Theorem 17. [32] The problem of checking, given two timed automata A and
B, whether L(A) C L(B), is decidable if B does not have any e-labeled switches
and either:

— B uses only one clock, or
— B uses guards involving the constant 0 only.

The above results are the only known decidability results in this category.
In fact, the following relaxations of these restrictions on a given automaton A,
renders the universality problem undecidable [32]:

— A has two clocks and a one-event alphabet, or

— A has two clocks and uses a single non-zero constant in the guards, or

— A has a single location and a one-event alphabet, or

— A has a single location and uses a single non-zero constant in the guards.

3.6 Event Clock Automata

The essential power of nondeterminism in timed automata lies in its ability to
reset clocks nondeterministically, as will become clear later in this subsection.
The class of event-recording automata [4] are timed automata with a fixed set of



clocks, a clock z, for each a € X, where x, gets reset every time a occurs. There
are no e-labeled switches. Event-recording automata thus have switches labeled
(a, g) instead of (a, g, \), as it is implicitly assumed that A = {z,}.

An event-recording automaton A can be easily determinized. First, we can
transform A to an automaton B such that if G is the set of guards used on the
transitions, then G is “minimal” in the sense that for any two guards g and ¢’
in G, there is no clock valuation that satisfies both g and ¢'. Then, we can do
a subset construction on this automaton. Let B = (V,V°, V¥ X E). Then, we
can build a deterministic event recording automaton C = (2V,{V°}, F, X, E')
where for any S CV,a€ X, g € G, (S,a,9,5") € E' where S'={v' €V |TJv €
S.(v,a,g,v") € E}. The set F contains the sets S C V such that SN VE # (.
It is easy to see that C is deterministic and accepts the same language as B
does. Note that a similar construction fails for timed automata since for a set
S, there could be two states v,v' € S with edges (v, g, A,v1) and (v', g, N, v]),
where A # .

An event-recording automaton at any point on the input word has access to
a clock z,, for each a € X, whose value is the time that has elapsed since the
last a-event. Fvent clock automata are an extension in which the automaton also
has access to a prophecy clock y, (for each a € X) whose value at any point is
the time that must elapse before the next a-event happens. For, example, in the
timed word (a,0.4)(b,0.5)(a,0.7)(b,0,9)(a,0.95), when reading the third event
in the word, the clock z, = 0.3 and y, = 0.25.

Observe that prophecy clocks add to the expressiveness: the language of
timed words such that the untimed word is in a*b and there is some a event
one time unit before b, is not accepted by any event recording automaton, or
even any deterministic timed automaton, but can easily be accepted by an event
clock automaton. For every event clock automaton, we can construct a (nonde-
terministic) timed automaton that accepts the same language. Event-recording
clocks z, do not cause any problem, of course, as we can reset the clock z, at
each a-event. To handle prophecy clocks is more tricky. The timed automaton
simulates the event-clock automaton, and if at an event a guard demands y; < ¢,
then we can take the action and postpone the checking of this constraint. We do
this by resetting a new clock zy, <. and check at the next b-event that zy, <. < c
holds. If we meet another transition before the next b-event which also demands
yp < ¢ hold, then we can ignore it as checking y, < ¢ at an earlier position is
a stronger condition. Similarly, constraints of the form y; > ¢ can be handled.
Note that the resulting automaton can be nondeterministic as multiple edges
that demand different constraints on the prophecy clocks can be enabled.

Since the values of any clock of an event clock automaton at any time depends
only on the word w (and not on the run of the automaton), it turns out that
event-clock automata can be complemented. Let A be an event clock automaton
and let the guard constraints G used in A be “minimal”. Also, let us assume that
the guards of switches with identical source location and identical label cover
the set of all clock valuations so that some guard is always enabled. Let IT be



the set of all (a,g) where a € X and g € G. Note that the transitions of A are
labeled using symbols in IT and that II is finite.

Consider words in IT*. For any word 7 € IT*, we can associate a set of timed
words tw(m) corresponding to it. Formally, if m# = (ag, go) - - - (an, gn), then tw(m)
contains the set of all timed words of the form (ag, to) . . . (an,tn) where, for any
1 < n, the set of event-recording and prophecy clocks at (a;, ;) satisfy the guard
Gi-

In fact, if we denote the set of symbolic words accepted by A as Lsym(A)
(which is a regular subset of IT*), it is easy to see that L(A) =, Lupm(A4) tw(7)
[18].

Notice that for any timed word w, there is a word «# € IT* such that w €
tw(m). In fact, this symbolic word is unique, by the minimality of the guards.
Consequently, the timed words corresponding to words in II* \ Lgym,(A) form
the complement of L(A), i.e. tw(Lgsym(A)) = L(A). Hence we can complement
the event clock automaton A by constructing an automaton A’ accepting the
complement of Lgym(A) and by viewing A’ as an event clock automaton. We
can indeed even build a deterministic automaton for Ly, (A) and by viewing it
as an event-clock automaton we would get a deterministic event clock automaton
equivalent to A. For event-recording automata A, this construction in fact yields
a deterministic timed automaton equivalent to A.

We have the following results:

Theorem 18. [/] Event clock automata are effectively closed under complemen-
tation. Further, given a timed automaton A and an event clock automaton B,
the problem of checking whether L(A) C L(B) is PSPACE-complete.

Choosing recording clocks z, and prophecy clocks y,, for every symbol a €
JJ, is rather arbitrary, and one can generalize the notion of events with the
corresponding recording and predicting clocks. For example, the occurrence of
two a’s exactly one unit of time apart can be an event for which we may want
to keep recording and prophecy clocks. The property we would like to maintain
is that the events are determined by the word, and not by a particular run of an
automaton on the word.

The class of recursive event clock automata [25] are defined using this princi-
ple. These automata consist of a finite collection of automata, one at each level
{1,...,k}. The automaton at each level A; uses events that are defined by the
automaton at level A;_; (A4; is a simple event clock automaton). The notion of
events is complex: essentially each automaton A; comes as a pair of event clock
automata (AL, AT) and an event is generated by A; at time ¢ if the prefix of
the word till time ¢ is accepted by A% and the suffix from time ¢ is accepted by
A?. The automaton at level ¢ then uses clocks of the form x; and y;, (j < i),
where z; and y; are recording and prophecy clocks for events defined by the
automaton A;. The main result is that checking if L(A) C L(B) is decidable,
when A is a timed automaton and B is a recursive event-clock automaton. The
class of languages defined by recursive event-clock automata has logical charac-
terizations using real-time temporal logics [25, 34, 18], but its expressive power
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Fig. 6. The various classes of timed languages.
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by D. Dotted lines emphasize that certain classes are not comparable.

with respect to deterministic bounded two-way automata has not been studied.
The relationship among various classes is summarized in Figure 6.

3.7 Resource-bounded Inclusion

We present in this section a result that shows that checking whether a timed
automaton with limited resources can exhibit an evidence to the fact that L(A)
is not a subset of L(B), is decidable. This result is derived from ideas in [1,19].
The resources of a timed automaton are the following: the number of clocks
that it uses, the granularity 1/m with which it makes observations of the clocks,
and the maximum constant it uses. The maximum constant, however, is not
important, as for any timed automaton A, there exists an equivalent timed au-
tomaton B with e-transitions which uses the same number of clocks, has the
same granularity as A, but with maximum constant 1 in the guards. We can
construct B such that it simulates A, except that it keeps track of |z, for each
clock z, in its control state, and uses the clock only to keep track of z — |z].
The number of clocks and the granularity of observation are however important—
increasing the number of clocks or decreasing the granularity from say 1/m to
1/2m strictly increases the class of languages a timed automaton can accept.



Given timed automata A and B, and resources (k,1/m), we now want to
know whether there is an automaton C' with granularity (k,1/m) which can be
an evidence to the fact that L(A) is not contained in L(B). More precisely, is
there such a C such that L(A) N L(C) # @ but L(B) N L(C) = §? We show that
this is a decidable problem.

Let us fix resources (k,1/m). Let X, = {x1,...,z,} be a set of k-clocks and
let Gy /., denote the set of all minimal guards formed using boolean combinations
of constraints of the form z; < 1/m and z; < 1/m, where z; € Xj. Let IT =
{(a,9,)) | a € X',g € G1jm, A C X }. Note that for any timed automaton C
which has minimal guards on transitions, the symbolic language it accepts is a
subset of IT*.

Each word w7 € IT* defines a set of timed words tw(w) over X which is
basically the set of timed words that would be accepted by a timed automaton
along a run that is labeled with 7. The question of the existence of a C' that
witnesses that L(A) is not a subset of L(B) boils down to finding whether there
is some symbolic word w € IT* such that tw(m)NL(A) # 0 and tw(r)NL(B) = 0.

The following lemma will help capture the set of all such witnesses:

Lemma 2. [19] Let D be any timed automaton over X and let IT be a symbolic
alphabet for granularity (k,1/m) as above. Then, the set of all m € IT* such that
tw(w) N tw(D) # O is regular.

The proof follows using the intersection construction for timed automata. Let
E be the automaton accepting IT*. Essentially, the automaton we are looking
for is the region automaton accepting the product of D and E. When we take a
product transition, however, we label this transition with the I7-label that was
involved in the transition.

Consequently, R4, the set of all words 7 in IT* such that tw(w) N L(A) # 0
is regular, and the set Rp of all words « in IT* such that tw(w) N L(B) = 0, is
also regular. We can now check whether R4 N Rp is empty, which is decidable,
and we have:

Theorem 19. Given timed automata A and B, and a resource constraint (k,1/m),
the problem of checking whether there is an automaton C with granularity (k,1/m)
such that L(A) N L(C) # 0 and L(B)N L(C) = 0 is decidable.

4 Discussion

This survey attempts to collect, unify, and explain selected results concerning
reachability and language inclusion for timed automata and its variants. The
theoretical questions studied in the literature, but not addressed in this survey,
include timed w-languages, connections to monadic logics, regular expressions,
and circuits, branching-time equivalences such as timed (bi)simulations, model
checking of real-time temporal logics, analysis of parametric timed automata,
and games and controller synthesis.



The reachability problem is the most relevant problem in the context of for-
mal verification, and its complexity class is PSPACE. A large number of heuris-
tics have been proposed to efficiently implement the reachability algorithm. All
these involve searching the region automaton, either explicitly, or using symbolic
encoding of regions using zones (see [6,29, 16, 36,11] for sample tools). Many of
these optimizations have been devised so as to avoid enumerating all possible nu-
merical combinations of the (integral) clock values. We believe that new insights
can be obtained by exploring the following theoretical question [27]. Consider the
special case when the graph formed by locations and edges of a timed automaton
A is acyclic. Even in this case, the region automaton can be exponential, and
the shortest path to a target region can be of exponential length. However, it is
easy to see that the problem is in NP: the number of discrete switches along the
path to the target is linear, it suffices to guess the regions when these discrete
switches occur, and it is easy to verify the feasibility of the guess. The problem
can also be shown to be NP-hard. The NP upper bound also holds if we allow a
single self-loop switch on each location. We conjecture that this bound continues
to hold when the strongly connected components in the graph are small: if the
number of edges in each strongly-connected component of the graph formed by
the locations and edges of a timed automaton is bounded, then the reachability
problem is in NP.

The fact that the language “some two a symbols are distance 1 apart” is timed
regular has led to the belief that timed automata are too powerful in terms of
precision and unbounded nondeterminism, causing noncomplementability and
undecidable language inclusion problem. The various solutions such as event
clock automata, robust automata, open timed automata, have been proposed to
address this issue. However, no solution has emerged as a convincing alternative,
and research in obtaining a class of automata with properties more attractive
than those of timed automata continues. We believe that introducing a small
drift in the clocks of timed automata is a natural and simple way to introduce
imprecision. Let us call a timed regular language L to be a perturbed language
if there exists a timed automaton A and an error € > 0 such that L = L(A®).
We conjecture that the class of perturbed languages has a decidable language
inclusion problem.
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