Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3192))

Abstract

Bayesian and decision tree classifiers are among the most popular classifiers used in the data mining community and recently numerous researchers have examined their sufficiency in ensembles. Although, many methods of ensemble creation have been proposed, there is as yet no clear picture of which method is best. In this work, we propose Bagged Voting using different subsets of the same training dataset with the concurrent usage of a voting methodology that combines a Bayesian and a decision tree algorithm. In our algorithm, voters express the degree of their preference using as confidence score the probabilities of classifiers’ prediction. Next all confidence values are added for each candidate and the candidate with the highest sum wins the election. We performed a comparison of the presented ensemble with other ensembles that use either the Bayesian or the decision tree classifier as base learner and we took better accuracy in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36, 105–139 (1999)

    Article  Google Scholar 

  2. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  3. Van den Bosch, A., Daelemans, W.: Memory-based morphological analysis. In: Proc. of the 37th Annual Meeting of the ACL, University of Maryland, pp. 285–292 (1999), http://ilk.kub.nl/~antalb/ltuia/week10.html

  4. Breiman, L.: Bagging Predictors. Machine Learning 24(3), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29, 103–130 (1997)

    Article  MATH  Google Scholar 

  7. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proceedings: ICML 1996, pp. 148–156 (1996)

    Google Scholar 

  8. Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P., Moore, T.E., Chao, C.: Distributed learning on very large datasets. In: ACM SIGKDD Workshop on Distributed and Parallel Knowledge Discovery (2000)

    Google Scholar 

  9. Chuanyi, J., Sheng, M.: Combinations of weak classifiers. IEEE Trans. Neural Networks 8(1), 32–42 (1997)

    Article  Google Scholar 

  10. Kotsiantis, S., Pintelas, P.: On combining classifiers. In: Proceedings of HERCMA 2003 on computer mathematics and its applications, Athens (September 25-27, 2003)

    Google Scholar 

  11. Kotsiantis, S., Pierrakeas, C., Pintelas, P.: Preventing student dropout in distance learning systems using machine learning techniques. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2774, pp. 267–274. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation and active learning. In: Advances in Neural Information Processing Systems, p. 7 (1995)

    Google Scholar 

  13. McQueen, R.J., Garner, S.R., Nevill-Manning, C.G., Witten, I.H.: Applying machine learning to agricultural data. Journal of Computing and Electronics in Agriculture (1994)

    Google Scholar 

  14. Opitz, D., Maclin, R.: Popular Ensemble Methods: An Empirical Study. Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  15. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  16. Quinlan, J.R.: Bagging, boosting, and C4.5. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, pp. 725–730. AAAI/MIT Press (1996)

    Google Scholar 

  17. Salzberg, S.: On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach. Data Mining and Knowledge Discovery 1, 317–328 (1997)

    Article  Google Scholar 

  18. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics 26, 1651–1686 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Seewald, A.K., Furnkranz, J.: An evaluation of grading classifiers. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J. (eds.) IDA 2001. LNCS, vol. 2189, pp. 221–232. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Ting, K., Witten, I.: Issues in Stacked Generalization. Artificial Intelligence Research 10, 271–289 (1999)

    MATH  Google Scholar 

  21. Webb, G.I.: MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning 40, 159–196 (2000)

    Article  Google Scholar 

  22. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Mateo (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kotsiantis, S.B., Pintelas, P.E. (2004). Bagged Voting Ensembles. In: Bussler, C., Fensel, D. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2004. Lecture Notes in Computer Science(), vol 3192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30106-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30106-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22959-9

  • Online ISBN: 978-3-540-30106-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics