Incorporating Dynamic Constraints
in the Flexible Authorization Framework

Shiping Chen, Duminda Wijesekera, and Sushil Jajodia

Center for Secure Information Systems, George Mason University,
Fairfax, VA 22030-4444, USA
{schen3,dwijesek, jajodia}@gmu.edu

Abstract. Constraints are an integral part of access control policies. De-
pending upon their time of enforcement, they are categorized as static
or dynamic; static constraints are enforced during the policy compilation
time, and the dynamic constraints are enforced during run time. While
there are several logic-based access control policy frameworks, they have
a limited power in expressing and enforcing constraints (especially the
dynamic constraints). We propose dynFAF, a constraint logic program-
ming based approach for expressing and enforcing constraints. To make
it more concrete, we present our approach as an extension to the flexi-
ble authorization framework (FAF) of Jajodia et al. [17]. We show that
dynFAF satisfies standard safety and liveliness properties of a safety
conscious software system.

1 Introduction

Constraints are a powerful mechanism for specifying high-level organizational
policies [21]. Accordingly, most access control policies contain constraints, usu-
ally categorized as static or dynamic, referring to their time of enforcement by
the access controller. As examples, consider the following two constraints: an
undergraduate student should not be permitted to grade qualifying examinations
at the PhD level, and an author should not be allowed to review his/her own
manuscript. The first constraint can be enforced by prohibiting grading permis-
sions on PhD examinations for every undergraduate student, thereby making
it statically enforceable. The second constraint requires an access controller to
evaluate if the requesting subject is also an author of the document to be re-
viewed when the request is made. This constraint cannot be evaluated prior to
the request, making the constraint dynamically, but not statically, enforceable.
Enforcing the latter kind of constraints over access permissions expressed as
Horn clauses is the subject matter of this paper.

The past decade has seen several logic based flexible access control policy
specification frameworks. Woo and Lam [25] propose the use of default logic for
representing access control policies. To overcome the problems of undecidability
and non-implementability that arise in Woo and Lam’s approach, Jajodia et
al. [17] propose an access control policy specification framework (FAF) based
on a restricted class of logic programs, viz., those that are locally stratifiable.

P. Samarati et al. (Eds.): ESORICS 2004, LNCS 3193, pp. 1-16, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 Shiping Chen, Duminda Wijesekera, and Sushil Jajodia

Bertino et al.’s framework [6] uses C-Datalog to express various access control
policies [6]. Barker and Stuckey use constraint logic programming for multi-policy
specification and implementation [4].

Although they are powerful in expressing access control policies, these frame-
works have a limited power in specifying and enforcing constraints. For instance,
Jajodia et al. [17] use an integrity rule (a logic rule with an error() head) to
specify constraints. Barker and Stuckey [4] define some special consistency check-
ing rules (with head of predicates inconsistent_ssd, inconsistent_dsd) to encode
the separation of duty constraints. However, the enforcement of the constraints
is left outside the framework; as a result, dynamic constraints cannot be enforced
in the access control engine properly.

To overcome these drawbacks, we propose a constraint logic programming
based approach to express and enforce dynamic constraints. To make it more
concrete, we present our approach as an extension to Flexible Authorization
Framework (FAF) proposed by Jajodia et al. [17]. Our approach is applicable to
other logic based access control frameworks because our constraint specification
and enforcement modules are built on top of the existing framework modules.
The proposed extension, called dynFAF, has two extra modules. First module,
the integrity constraint specification and derivation module (ISM), is responsible
for specifying the atomic conflicts and deriving all possible complex conflicts
in the system that represent the constraints. The second module, the dynamic
access grant module (DAM), is responsible for enforcing the constraints specified
by ISM dynamically. In addition, DAM allows subjects to relinquish permissions
that were granted to them. In our design, FAF composes the static component,
and ISM and DAM compose the dynamic component of dynFAF.

We show that dynFAF satisfies safety and liveliness properties granting any
access that does not violate derivable constraint, and denying those that do.
Because FAF policies are stratified logic programs, they have a stable model
semantics [14]. Our constraint specification policies taken together with FAF
policies also have a local stratification, thereby admitting a stable model that
extends the former. In addition, proposed dynamic access grant module enriches
the syntax of the former by having yet another layer of constrained logic pro-
grams, that taken as a whole extends the former local stratification. Therefore,
a dynFAF specification admits a well-founded model in which some predicate
may result in an undefined truth in addition to the usual true or false values;
however, our design ensures that any access requested of dynFAF returns only
true or false.

The remainder of the paper is structured as follows. Section 2 contains a
brief overview of FAF, followed by a description of its limitations. Section 3
presents the architecture of dynFAF, including the descriptions of ISM and DAM
modules. Section 4 presents the semantics of dynFAF syntax. Section 5 shows
that dynFAF satisfies the traditional safety and liveliness properties, and that the
semantics of the granting and relinquishing access rights are enforced properly.
Section 6 compares our work to those of others. Section 7 concludes the paper.

Incorporating Dynamic Constraints in the Flexible Authorization Framework 3

FAF Architecture Integrity Enforcement Module|
T —r e [- - = True(grant)
Specificati Conflict Decisi ! i ! Integrity .
Propagation Resolution ecision | Integrity 4 5,0, + . Dynamic
Tgrant(s,0.2,0) 1 MoguFe Module Module): Module ! () N g""_s"z'"t | Access
e . N o N A N ertvation |- - Module
policies, icies. | ! policies, | Module
Structure, policies, policies, ' P : — —
Rules Rules Rules | Rules 1 policies, policies, False(deny)
] | Rules Rules

Fig. 1. dynFAF Architecture

2 Overview of FAF

FAF [17] is a logic-based framework to specify authorizations in the form of
rules, based on four stages (each stage corresponds to a module) that are ap-
plied in a sequence, as shown in FAF Architecture part of Figure 1. In the first
stage of the sequence, some basic facts such as authorization subject and ob-
ject hierarchies (for example directory structures) and a set of authorizations
along with rules to derive additional authorizations are given. The intent of this
stage is to specify basic authorizations and use structural properties to derive
new authorizations. Hence, they are called specification and propagation poli-
cies. Although propagation policies are flexible and expressive, they may result
in over-specification resulting in conflicting authorizations. FAF uses conflict res-
olution policies to weed out these in the second stage. At the third stage, decision
policies are applied in order to ensure the completeness of authorizations. The
last stage consists of checking for integrity constraints, where all authorizations
that violate integrity constraints will be denied. In addition, FAF ensures that
every access request is either granted or rejected, thereby providing a built-in
completeness property.

FAF syntax consists of terms that are built from constants and variables (no
function symbols) and they belong to four sorts, viz., subjects, objects, actions,
and roles. We use the capital letters with subscripts such as X, Y,, X,, and X,
to denote the respective variables belonging to them, and lower case letters such
as s, a, o, and r for constants. FAF has the following predicates:

1. A ternary predicate cando(s,o,a), representing grantable or deniable re-
quests (depending on the sign associated with the action) where s, o, and a
are subject, object, and signed action terms, respectively.

2. A ternary predicate dercando(s, o, a), with the same arguments as cando.
The predicate dercando represents authorizations derived by the system
using inference rules modus ponens plus rule of stratified negation [2].

3. A ternary predicate do, with the same arguments as cando, representing the
access control decisions made by FAF.

4. A 4-ary predicate done(s, o, a,t), meaning subject s has executed action a
on object o at time ¢, ¢ is a natural number.

5. Two binary predicate symbols overas and overap, each taking two subject
and object terms as arguments two object terms respectively.

4 Shiping Chen, Duminda Wijesekera, and Sushil Jajodia

6. A predicate symbol without argument, error, symbolizing violation of an
integrity constraint, where a rule with an error head must not have a sat-
isfiable body.

7. Other terms and predicates necessary to model specific applications. For
example, constants AOH, ASH denote object and subject hierarchies with
in, where in(x,y,H) denotes that x < y in hierarchy H. For example, we
denote the fact that usr\local is below usr in the object hierarchy AOH by
in(usr\local, usr, AOH).

Because any FAF specification is a locally stratified logic program, it has a
unique stable model [14], and a well-founded model (as in Gelfond and Lifshitz).
In addition, the well-founded model coincides with the unique stable model [3,
17]. Furthermore, the unique stable model can be computed in quadratic time
data complexity [24]. See [17] for details.

2.1 Limitations of FAF

In its current design, FAF has these limitations. First, FAF expresses constraints
using integrity rules of the kind error() « L;,...,L, where error is an
argument-less predicate that should not be valid in any model and L;, ..., L,, are
other literals. Ensuring that granted permissions do not imply error is enforced
outside of the logical machinery of FAF. Accordingly, it is not within the logical
inference engine of FAF to avoid constraint violations. To elaborate further, FAF
evaluates an access request as a query ?do(s, 0, a), and ensures the completeness
and consistency of the specification, consisting of the rules from the first three
modules, by ensuring that one and only one of do(s, 0, +a) or do(s,0,—a) eval-
uates to true. However, it is possible that both (s,o0,+a) and (s,0,—a) could
be rejected by the integrity enforcement module making the eventual outcomes
incomplete, as the inference rules are unaware of rejections by the integrity en-
forcement module. Thus, the integrity enforcement needs to be brought inside
the reasoning engine, as done in dynFAF.

Second, FAF does not allow constraint derivation, although this occurs in
practice. For example, role based access control (RBAC) models have conflict-
ing roles (say, 1 and r3) where a single subject assuming them simultaneously
violate the policy. In addition, an application may want to declare junior roles
of conflicting roles to be conflicting. That is, if roles 73,74 are junior to roles
and 79, respectively, by satisfying the constrains r3 < r; and r4 < 79, then no
subject should be allowed to assume r3 and r4 simultaneously. Our extension
facilitates constraint derivation.

Third, in FAF each access request is either granted or denied on its own
merit. But some applications may want controlled (don’t care) nondeterminism.
For example, a subject is allowed to assume role r; or role ry, but not both,
with no preference for either. If we are to accept a unique stable model, then
either 1 or 79, but not both can be assumed by the subject. dynFAF facilitates
controlled nondeterminism in granting permissions.

Incorporating Dynamic Constraints in the Flexible Authorization Framework 5

Finally, and importantly, FAF does not consider an evolving access control
system. That is, if do(o, s, +a) is in the stable model of an authorization specifica-
tion, the access request (o, s, a) is always permitted. In practice, an authorization
may be relinquished by the user or the administrator some time after it is autho-
rized (e.g., in workflow management systems). Consequently, some authorization
that is not allowed at a point of time because of constraints restriction may be
allowed later if the conflicting authorizations are relinquished. Notice that in-
serting a negative authorization cando(o, s, —a) does not model this situation.
The soon to be described dynamic access grant module of dynFAF provides this
functionality.

3 dynFAF: A Constraint Logic Programming
Based Extension to FAF

To address the problems described in the previous section, FAF is enhanced by
adding an integrity constraint specification and derivation module (ISM) and a
dynamic access grant module (DAM), grants accesses that avoid those conflicts.
FAF enhanced with these two modules are referred to as dynFAF, shown in
Figure 1. An access request for (s,0,a) is modeled in dynFAF as a predicate
instance request(s, o, +a, t), where (s, 0, +a, t) is a request to obtain permission
for (s,0,a) at time t (equals to a query ?grant(s,0,a,t)) and (s,0,—a,t) is a
request to relinquish already existing permission for (s, 0,a) at time t (equals to
a query ‘relinquish(s,0,a,t)). dynFAF ensures that any request for permission
is statically granted by FAF, and granting it does not violate any constraints
specified by ISM.

3.1 Integrity Constraint Specification
and Derivation Module (ISM)

ISM uses two predicates:

— A binary predicate symbol, conflict, where conflict(x,y) is an atomic
conflict where x and y can be either (subject,object,action) triples or object,
action, or subject terms.

— A binary predicate symbol derConflict. derConflict has the same argu-
ments as conflict. derConflict(x,y) is true iff x,y constitute a derivable
conflict.

We use Horn clause rules to specify atomic conflicts and derivable conflicts
based on already defined atomic conflicts. The corresponding rules are called
conflict rules and conflict derivation rules, respectively. Each conflict rule has a
conflict predicate as its head and some cando, dercando, done or rel-literals
as its body.

6 Shiping Chen, Duminda Wijesekera, and Sushil Jajodia

Example 1 (Conflict Rules)

conflict(ri,r2) <« (1)
conflict(orga,orgr) «— (2)
conflict((o,a),(0',a")) « isPerm(o,a), isPerm(o’,a’). (3)

conflict((Xs, Xo, Xa), (X1, Xo, Xa)) — (X« # X1), in(X., G, ASH),
in(X., G, ASH). (4)

Rule 1 says that r1 and ro are conflicting roles. Rule 2 says that orga and orgp
are conflicting organizations. Rule 3 says that (o,a) and (o',a’) are conflicting
permissions. Here the predicate isPerm(z,y) is true if = is an object and y is
an action. Rule 4 says that any two users in group G trying to execute the same
operation on the same object is a conflict (i.e., only one subject can have the
permission al any one time such as a semaphore).

Each conflict derivation rule has a derConflict predicate as its head and
some conflict, derConflict, cando, dercando, done, or rel-literals as its
body. As it is used recursively, all appearances of derConflict literals in the
body of conflict derivation rules must be positive. Example 2 shows some conflict
derivation rules.

Example 2 (Conflict Derivation Rules)

derConflict(X,Y) « conflict(X,Y). (5)
derConflict(X,,Y,) « derConflict(X,,,Y,/),
in(Y,,Y,, ASH), in(X,, X,,, ASH). (6)
derConflict((Xs, Xo, Xa), (Xs, X0, X3)) «—
conflict((X,, Xa), (X,, X0)). (7)
derConflict(X,,Y,) « derConflict(orga,orgs),

in(Y,,orgn),in(Xo,0rga). (8)
derConflict((Xs, X, read), (Xs, X,,read)) + derConflict(Xo, X,). (9)
derConflict((Xs, X,,activate), (X, Y,,activate)) « conflict(X,,Y;). (10)

Rule 5 says that every conflict is a derivable conflict. Rule 6 says roles junior
to conflicting roles are also conflicting. Rule 7 says that obtaining conflicting
permissions leads to a conflict. Rule 8 and rule 9 say that any pair of objects that
belong to two conflicting organizations are conflicting objects, and each subject
can read only one of them. Rule 10 says activating conflicting roles leads to
conflicts.

Note that the conflicts specified in FAF and ISM are different. The former,
refers to static compile time conflict, arises out of over specification of permis-
sions, and the latter arises due to application specified conflicts that have to be
resolved dynamically by the run time constraint enforcement module DAM. We
have chosen to represent only binary conflicts as integrity constraints, inspired
by the work such as [16,5, 20, 15,19, 20], where most constraints are binary con-
flicts.

Incorporating Dynamic Constraints in the Flexible Authorization Framework 7

3.2 The Dynamic Access Grant Module (DAM)

As stated earlier, the dynamic access grant module first checks if a requested
permission (s, 0,+a,t) is permissible under static FAF policies (by checking if
do(s, 0,+a) is true). If so, then it will further check if granting (s, 0,a) at time ¢
would violate any integrity constraints specified in ISM. If the answer is negative,
the requested granted and denied otherwise. DAM is based on some assumptions
and design choices outlined below.

First, DAM allows requesters to relinquish already granted access rights. Sup-
pose dynFAF granted access request (s, 0, a), and after some time the requester
s is willing to relinquish the access right (s, 0, a). This kind of actions is widely
seen in practical systems. (e.g., in workflow management systems) dynFAF al-
lows this kind of actions by modeling it as a query of ?relinquish(s, o, a,t) with
an insertion of request(s, o, —a,t) into the authorization specification program.
Similarly, relinquish(s, o, a,t) has no effect on do(s, 0, a) and, therefore, does
not alter the unique stable model of the static FAF policy (sans the error rules).

Second, we assume that access requests are considered in sequence, one at a
time, at discrete time intervals, referred to as the synchrony hypothesis, under
which dynFAF accepts only two kinds of requests: to obtain a new permission
or to relinquish a permission obtained earlier. They are modelled as inserting
instances of request(s, o, +a,t) and request(s, o0, —a, t) into the logic program,
respectively. dynFAF’s answer to requests are computed as an evaluation of
grant(s,o,a,t) or relinquish(s, o, a,t), depending upon the chosen sign + for
the action @ in request(s, o, ta,t).

Third, we assume that neither grant(s, o, a,t) nor relinquish(s, o, a,t) im-
plies or is implied by done(s, 0, a,t) for some time term ¢. We only assume that
whenever an (0,a) is executed by s at a time ¢, done(s, 0, a,t) will be inserted
into FAF, satisfying the following conditions: 1) there is a time ' exists such
that grant(s,0,a,t’) and t' < ¢ hold, 2) there is no t” exists such that t" € (¢,)
and relinquish(s,o,a,t”) hold. We call this the system integrity hypothesis.

3.3 DAM Syntax

The dynamic access grant module uses five 4-ary predicates grant, relinquish,
validity, holds, and request with arguments subject, object, action and time
terms, and a 3-ary predicate conflictingHold. The time parameter ¢ here has
no relation with the clock time, but serves as a counter of the sequence of requests
made to the dynFAF since its inception.

1. grant(s,o0,a,t) means that access (s,0,a) is granted at time ¢.

2. relinquish(s,o,a,t) means that access (s,0,a) is relinquished at time ¢.

3. validity(s, o, +a,t) means that granting permission (s,0,a) at ¢t does not
violate any constraints, while validity(s, o, —a, t) means that granting per-
mission (s,0,a) at time ¢ does violate some constraints.

4. holds(s,0,a,t) means that s holds a access to o at time t.

8 Shiping Chen, Duminda Wijesekera, and Sushil Jajodia

5. request(s, o, +a,t) means that at time ¢ subject s requests permission (o, a),
while request(s, 0, —a,t) means that at time ¢ subject s requests to relin-
quish permission (o,a). Whenever a request (grant or relinquish) is made,
the corresponding predicate is inserted into dynFAF as fact.

6. conflictingHold((s,o,a),(s’,0’,a’),t) means the authorization (s’,0',a’) is
conflicting with (s, 0,a) and is holding at time t.

We now specify the rules of DAM that recursively define predicates grant,
relinquish, holds, conflictingHold, and validity as follows:

grant (s, To, Ta,0) < request (s, o, +2q,0),do(xs, To, +Ta). (11)

grant(zs, To, Ta, Tt + 1) « validity(xs, To, +Za, T¢), “holds(xs, To, Ta, Zt),
request (s, To, +Za,+ + 1). (12)

relinquish(zs, Zo, Ta, ¢ + 1) < holds(zs, Zo, Ta, Tt),

request (s, To, —Ta, T+ + 1). (13)
Rule 11 says that the first permission that is granted by the dynamic access
grant module must be statically permissible and requested. Rule 12 says that
any permission that is not already being held, requested and valid (i.e. would not
violate any constraints) at time z; can be granted at time x; + 1. The next set

of rules recursively update the holds predicate that capture permissions already
being held by a subject.

holds(zs, To, Ta, Tt) < grant(Ts, To, Ta, Tt). (14)
holds(zs, o, Za, Tt + 1) < holds(xs, Zo, Ta, Tt), "relinquish(zs, To, Ta, x+ + 1). (15)

Rule 14 says that a permission (z,,+z,) granted to zs at time z; is held by
s at time z;. Rule 15 says that any action other than relinquishing the same
permission by itself does not change the holding state of a subject. The following
rule defines the predicate conflictingHold.

conflictingHold((s, To, Ta), (T, b, Ty, Tt)

«— derConflict((s, To, Ta), (T4,), T,)), holds(xh, Tb, T4, Tt). (16)

The rest of the rules recursively define validity that computes if granting a
permission to a subject will conflict with the outstanding ones at time x;.

validity(zs, To, +2a,0) + —~derConflict (x4, zh, x,), (Ts, To, Ta)),

do(zs, To, +Za), - (17)

validity(xs, To, +Ta,) — grant(zs, To, Ta, Tt). (18)

validity(xs, To, +Ta,x¢) < relinquish(zs, To, Ta, Tt). (19)
)

validity(zs, To, £Ta, xr + 1) « grant(zl, x,, x5,z + 1), validity(zs, To, 2o, 1),

—derConflict((zs, To,Ta), (x5, Th, 24)),

(B Tor 2a) 7 (T, 2). (20)
validity(zs, To, —Ta, x + 1) « grant(z), z,, x5,z + 1), (Ts, To, Ta) # (T4, 25, 20),

derConflict((xs, To, Ta), (Th, Th, Tp))- (21)

Incorporating Dynamic Constraints in the Flexible Authorization Framework 9

validity(zs, To, +Ta, xs + 1) « relinquish(zl, z,, z,, s + 1),

validity(xs, To, £Ta,xt),

—derConflict((zs, To, Ta), (x5, Th, 24)),

(s, Toy Ta) 7 (T, T, Th). (22)
validity(xs, o, —Ta, x¢ + 1) «— validity(zs, To, —Ta, Tt),

relinquish (s, ,, o, x¢ + 1),

derConflict((xs, To, Ta), (Th, Th, T4a)),

(%5, To, Ta) # (2%, Th, T4), holds(xh , xb) , T, 1),

(0, Do a) 7 (&, 2L), (T 20) # (21, 20),

derConflict((@s, To, Ta), (T4, Ty,). (23)
validity(zs, To, +Ta, xs + 1) « relinquish(z}, z,, z,, s + 1),

validity(zs, To, —Ta, t), (Ts, To, Ta) # (T4, 20, Th1),

derConflict((xs, To, Ta), (Th, Th, Tha)),

(Ts,To, Ta) # (1’;>1‘g>1‘;)7 (1’;,1‘2,1’;) G (xls/>1‘g>1’g)7

—derConflict((s, Lo, Ta), (Th,T0,xn)). (24)
validity(zs, To, +2a, 2¢ + 1) « relinquish(zs, x,, o,z + 1),

validity(xs, To, —Ta, Tt), (Ts, To, Ta) 7 (Th, Th, Tty),

derConflict((zs, To, Ta), (4, Th, 24)),

(s, o, Ta) # (5,20, 24), (25, T, 2a) # (2,20, Ta),

—conflictingHold((zs, To,Ta), (T, T0,), 2t). (25)

validity(xs, To, —Ta,x¢) < —validity(zs, To, +Ta, Tt). (26)

Rule 17 is the base step of the recursion saying that every permission that is al-
lowed by the static component FAF and there is no conflicting permissions exist-
ing is valid when the dynamic grant module begins. The next two rules 18 and 19
state that an authorization (s, o, a) is valid at time ¢ if it is granted or relinquished
at time ¢. Rules 20 and 21 consider how some other (subject,object,action) pair
being granted affects the validity of a permission. Rule 20 leaves the validity
if a non-conflicting permission was granted at time x;. Rule 21 invalidates it if
another conflicting permission was granted at x;.

The next four rules address what happens to the state of validity of a permis-
sion if some other permissions were relinquished. Rule 22 says that if the relin-
quished permission is not conflicting with the considered one, then the validity
remains the same. Rule 23 says that if there are other conflicting authoriza-
tions held in the system, then the validity states of the considered one remains
invalid. Rule 24 says that if the relinquished permission is the only conflicting
permission with the considered one in the system, the validity state of the con-
sidered one will be changed to valid. Rule 25 says that although there are still
other conflicting permissions with the considered one, if they are all not holding,
then the validity state of the considered one will be valid. The last rule, rule
26 says that validity(zs, o, —%q, 2t) succeeds, when validity(zs, ©o, +%q, Tt)
fails. This rule is necessary because of the following reason. In rules 20, 22, 23
and 24, validity(xs, T,, 224, 2 + 1) depends upon validity(zs, o, £2q, xt).

10 Shiping Chen, Duminda Wijesekera, and Sushil Jajodia

Thus, in order for the inductive computation of other steps to proceed from x;
to x; + 1 it is necessary to have validity(xs, 2o, —Z4, 2¢) which is not given by
rule 21. Therefore, the rule 26 allows us to infer validity(xs, €y, — 24, ¢) from
the failure of validity (s, o, +Ta, Tt).

In section 5 we show that in view of the synchrony hypothesis, grant,
relinquish, validity and holds are correctly specified. That is grant and
relinquish satisfy both safety and liveliness properties and have the required
anti-idempotency properties. In other words, no subject can relinquish permis-
sions that it does not hold and a subject cannot obtain permissions that it
already holds.

Example 3 (Interacting with DAM) Consider the separation of duty exam-
ple which states that two processes p1 and pa may not get write locks on a file
“foo” at the same time, but otherwise both processes have static permissions to
write to “foo”. These requirements are captured by dynFAF as follows.

do(p1, “foo”, +write) — . (27)
do(pz, “foo”, +write) — . (28)
derConflict((p1, “foo0”, write), (pz2, “foo”, write)) «— . (29)

Rules 27 and 28 state static write permissions to “foo” is given to p1 and ps
respectively. Rule 29 says that, although p1 and ps have static write permissions,
they may not use them stmultaneously.

Now consider a request to obtain write permission to “foo” by p1 at time 0.
That means, request (p1, “foo”,+write,0) now becomes a part of the DAM rules.
Therefore, grant (p1, “foo”,write,0) now is evaluated to be true as, by rule 11,
grant (p1, “foo” ,write,0) holds if request (p1, “foo”,+write,0) and do (p1, “foo”,
+write) are valid. As a result, p1 is granted write permission on “foo”.

Now consider a request to write “foo” issued by pa at time 1. This request
is modeled by entering request (ps, “foo”, +write,1) into dynFAF’s rule set. Be-
cause derConflict ((p1, “foo” write),(pa, “foo” write)) holds, by rule 17 we can
not get validity (pa, “foo”,+write,0). Therefore grant (pa, “foo”, write,1) cannot
become wvalid as the only applicable rule 12 results in finite failure. Similarly,
grant (p1, “foo” write,1) also fails in the alternate addition of request (p1, “foo”,
+write,1) instead of request(pa, “foo”,+write,1) because holds(p1, “foo”,
write,1) is valid by rule 14 and 15.

Now suppose that py wishes to relinquish its “write” permission to “foo” at
time 2. This is done by entering request (p1, “foo”,~write,2) into dynFAF’s rule
set. Then by rule 13, relinquish(py, “foo” write,2) evaluates to true because
of holds (p1, “foo” write,1) and request (p1, “foo”,~write,2). Now suppose py re-
quests write permission to “foo” again by inserting request (p1, “foo” write,3).
At this time grant (pa, “foo” write,3) succeeds by rule 12 as validity (ps, “foo”,
+uwrite,2) holds by rule 24. As a result, request (p2, “foo” write) is granted at
time 3.

Incorporating Dynamic Constraints in the Flexible Authorization Framework 11
4 Semantics of dynFAF

This section describes models of dynFAF syntax. All lemmas and theorems in
this section are given without proof. We refer the reader to [9] for the formal
proofs. We consider a dynFAF specification to consist of FAF rules (without
the error predicates), conflict rules, conflict derivation rules, a collection of
appropriately constructed (soon to be described) request predicates, and rules
from 11 to 26. As argued in [17], FAF policies are locally stratified logic programs.
We now show that dynFAF specifications form locally stratified logic programs.

Lemma 1 (Local stratification and stable models of dynFAF).

Any dynFAF specification constitutes a local stratification on its Herbrand base.
Consequently, dynFAF rules restricted to FAF and ISM have a unique stable
model that coincides with its well-founded model.

At any time n, a dynFAF specification consists of the following four kinds of
rules: FAF rules, ISM rules, a set of n instances of request predicates {request
(5o 4) + ¢ < n}, and DAM rules consisting of rules 11 through 26, that we
refer to as F,C,Tr,, D, respectively. Lemma 1 says that F' U C has a unique
stable model, denoted by M (F UC). Now we build a model, notated as M (F U
CUTr,UD), for FUCUTr,UD for each n and another model M(F UC U
(UiewTr;) UD) for FUC U (Uje,Tr;) UD as three-valued Kripke-Kleene (also
known as Fitting-Kunen)models [18,11] over M(F U C'). We show that every
grant or relinquish query instance over either of these models evaluate to
either true or false, and therefore the three-valued model takes only two truth
values. In doing so, we have to choose a constraint domain and interpretation
for negation. We choose the finite integer domain, CLP(R), as our constraint
domain and interpret negation as constructive negation [7, 8] as have been used
for negation by Fages [13,10]. The latter choice is due to the almost universally
accepted stance on using constructive negation instead of its classical counterpart
or negation as failure [22,23,13,10]. The former choice is due to the fact that
constructive negation proposed by Stuckey [22,23] requires that the constraint
domain be admissible closed, whereas that proposed by Fages [13,10] does not (at
the cost of requiring some uniformity in computing negated subgoals of a goal).
We now give formal details. As a notational convention hereafter we denote
MFUCUTr,UD) by M(F,C,Tr,,D) and M(F UC U (Uje,,Tr;) UD) by
M(F,C,Tr., D).

Definition 1 (n-traces, *-traces and models) For every numeraln, any set
of predicate instances of the form {request(-, _, _,i) : i < n}, {request(_, _, _,7) :
i € w} are said to be an n-trace and a *-trace respectively, where every request(_,
- 1) term is variable free.

Let F,C,Tr,,Tr., and D be respectively FAF, ISM, n-trace, *-trace, and
DAM rules. Let @ be the three-valued Kripke-Kleene immediate consequence op-
erator. Then we say that ., Py, p(FUC) are the models M(F,C, R, D) where
R is either an n-trace T'r,, or an *-trace Tr,.

12 Shiping Chen, Duminda Wijesekera, and Sushil Jajodia

As stated in definition 1, a model of M (F, C, R, D) is obtained by evaluating
the @ operator over a FAF+ISM model M(F,C) w many times. The reasoning
behind our choice for the semantics is that FAF already has a (two-valued) stable
model. In [12], Fitting shows that ., #%,, ,p(FUC) = U,c,, D7, up.ruc(0)-
The dynamic grant policy then extends this stable model. Following two claims
clarify this statement.

Theorem 1 (Finite termination of dynFAF queries).
For every numeral n, every grant(_,_, ,n), relinquish(-, _,_,n), holds(.,,
,n), and validity(-,,_,n) query either succeeds or fails finitely, given that
query over M(F,C) has the same property.

Consequently, for every numeral n, the three valued model M(F,C, R, D)
evaluates every instance of grant(_, _, _, n) or relinquish(., -, -, n) query to be
either true or false.

Theorem 1 shows that dynFAF acts like FAF in the sense that every request
is either honored or rejected. But theoretically there is a remarkable difference
between a FAF model and a dynFAF model. While every FAF model is a (least)
fixed point of a monotonic operator (conventionally referred to as the classical
immediate consequence operator T), a dynFAF model is not a fixed point of
the so called Fitting-Kunen & operator [12,10], as it is well known that the
closure ordinal of the Fitting-Kunen & operator is not w. ([12] gives a simple
counterexample) In contrast, a dynFAF model M(F,C, R, D) is an w-closure of
the @ operator of M(F,C") under rules 11 through 26.

The other pertinent point is that nothing in the logical machinery guarantees
that the synchrony hypothesis is valid, but conversely the correctness of the
dynamic access grant module depends upon this externally enforced assumption.
The next set of results show the connections between different traces.

Definition 2 (Trace chains) We say that a set of n-traces {Tr, : n > 0} is
a trace chain iff each Try is an n-trace and Tr, C Trpy1. Then we say that
Try = U;e,, Tri is the limit of the trace set {Try, : n > 0}.

Following results are valid for any trace chain.

Lemma 2 (Compactness of Traces).
Suppose {T'ry, : n > 0} is a trace chain. Then the following holds:

1. M(F,C,Tr,,D) = ¢ iff M(F,C) = ¢ for every FAF or ISM predicate
instance ¢.

2. M(F,C,Tr,,D) = ¢ iff M(F,C,Trpy1,D) = ¢ for every DAM predicate
instance where the last variable of ¢ is instantiated to m for any m < n.

3. M(F,C,Tr.,D) E ¢ iff M(F,C,Tr,,D) = ¢ where ¢ is a variable free
DAM predicate where the numeral instance is n.

Lemma 2 says that any model M(F,C,Tr,,, D) of FUCUTr, UD only vali-
dates the history of dynamic changes taking place over the static model M (F, C)

Incorporating Dynamic Constraints in the Flexible Authorization Framework 13

up to and including time n. It also says that evaluating the Fitting-Kunen & clo-
sure operator w many times does not add any more truth to M(F,C,Try,, D)
than n many times. In that respect, our semantics is finite over finite lifetimes
of dynFAF evolutions.

5 Correctness of DAM

This section shows that dynFAF functions correctly. All lemmas and theorems
in this section are given without proof. We refer the reader to [9] for the formal
proofs. Our notion of correctness consists of two parts: (1) dynFAF satisfies
traditional safety and liveliness properties. (2) grant and relinquish function
as expected. By safety we mean that any granted permission does not violate
any constraint. By liveliness, we mean that any requested permission that does
not conflict with any other outstanding permissions is granted. By the expected
functionality of grant we mean that any request for already granted permission
fails. Similarly, the expected functionality of relinquish is that only granted
permissions are relinquishable. In order to prove these results, we prove Lemma 3,
that guarantees the correctness of holds and validity, the two other predicates
that are for internal use in DAM.

Lemma 3 (Correctness of holds and validity).
The following statements hold for every numeral n and every permission triple
(s,0,a):

1. M(F,C,Try,,D) = holds(s,o0,a,n) iff M(F,C,Tr,, D) |= grant(s,o,a,n’)
for some n’ < n and M(F,C,Tr,,D) £~ relinquish(s,o,a,m) for all m
satisfying n’ < m < n.

2. M(F,C,Tr,, D) = validity(s, o, +a,n) iff there is no permission (s',0',a’)
satisfying M(F,C,Tr,, D) = holds(s’,0',a’,n) AderConflict((s,o,a), (s,
o,a')) Ndo(s', 0, +a’).

Now we use this result to prove the safety and the liveliness as promised.

Theorem 2 (Safety and liveliness of dynFAF).
The following holds for all permissions (s,0,a) and all times n:

Safety: Suppose M(F,C,Tr,,D) | holds(s,o,a,n). Then there is no other
permission (s',0',a’) satisfying M(F,C,Tr,,D) | holds(s’,o,a’,n) A
derConflict((s,o,a),(s’,0,a")).

Liveliness: Suppose M(F,C,Tr,,D) | validity(s,o,a,n) A —holds(s,o,
a,n). Then there is a trace Tryp41 satisfying M(F,C, Tr,y1, D) = grant(s,
o,a,n+ 1) Aholds(s,0,a,n+1).

Now we show that grant and relinquish has the required prerequisites.
That is, request(_, -, (+)-,n) succeeds and results in grant(., -, ., n) evaluating
to true only if this permission has not already outstanding. Similarly, request(-,
-, (=)-,n) succeeds and results in relinquish(_, _, _,n) evaluating to true only
if this permission is already outstanding.

14 Shiping Chen, Duminda Wijesekera, and Sushil Jajodia

Theorem 3 (Prerequisites of grant and relinquish).
The following holds for all (s,0,a) and all n:

grant: M(F,C,Tr,1,D) E grant(s,o0,a,n + 1) only if M(F,C,Tr,,D) -
holds(s,o,a,n).

relinquish: M(F,C,Tr,4+1,D) |E relinquish(s,o,a,n + 1) only if M(F,C,
Try,, D) = holds(s,o0,a,n).

6 Related Work

Ahn and Sandhu introduce a logical language for specifying role-based autho-
rization constraints named RCL2000 [1]. They identify conflicts as originating
from conflicting permissions, users and roles, and constraints are stated using
cardinalities of sets of access or their intersections where most cardinalities are
restricted to one. They specify several kinds of dynamic separation of duty, with-
out showing enforcement mechanisms.

Bertino et al. propose a framework for specification and enforcement of au-
thorization constraints in workflow management systems [5]. They present a
language to express authorization constraints as clauses in a logic program and
propose algorithms to check for the consistency of the constraints and to assign
roles and users to the workflow tasks in such a way that no constraints are vio-
lated. The consistency checking algorithms is executed by the security officer in
role or user planning.

Similar to FAF, Barker and Stuckey [4] define some special consistency check-
ing rules (with head of predicates inconsistent_ssd, inconsistent_dsd) to encode
the separation of duty constraints. The constraints are checked by the security
officer whenever new user-role or new role-permission assignments are inserted.

In comparison, dynFAF has the following advantages in expressing and en-
forcing constraints. First, we add the ability to derive all binary constraints from
atomic constraints specified by the SSO using predefined derivation rules. Sec-
ond, derived constraints are enforced dynamically in the model itself. That is,
all those and only those access requests that do not violate any constraint will
be granted — referred to as liveliness and safety, respectively.

7 Conclusions

In this paper, we described a constraint logic programming-based approach,
dynFAF, for expressing and enforcing dynamic constraints as an extension to
the framework FAF proposed by Jajodia et al. [17]. We limited FAF to rules
without error predicates; then we enriched FAF with the ability to specify
atomic binary conflicts and derive complex conflicts using user specified rules.
This extension constitutes the ISM module. We showed how to extend this syntax
with an appropriate dynamic access grant module DAM. DAM grants requests
that do not violate any conflicts. In return, DAM expects the user of the system
to relinquish granted permissions once they are no longer in need. dynFAF works

Incorporating Dynamic Constraints in the Flexible Authorization Framework 15

under the assumptions that access requests are submitted in sequence, one at
a time and that the permissions obtained are relinquished by giving them up
to the access controller. The current design of dynFAF requires that these are
enforced external to the system.

We have shown that dynFAF models have a unique three-valued model used
in (constraint) logic programming. We have further shown that any stable model
(correspondingly well-founded) FAF model is extendible to a three-valued dyn-
FAF model. In addition, we showed that every instance of a request to grant or
relinquish permissions made to dynFAF always terminates without floundering
as a constraint logic program.

Acknowledgments

This work was partially supported by the National Science Foundation under
grant CCR-0113515 and 11S-0242237. We thank the anonymous reviewers for
their valuable comments.

References

1. G. Ahn and R. Sandhu. Role-based authorization constraints specification. ACM
Transactions on Information and Systems Security, 3(4):207-226, November 2000.

2. K. R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge.
In Foundations of Deductive Databases and Logic Programming, pages 89-148.
Morgan Kaufmann, 1988.

3. C. Baral and V. S. Subrahmanian. Stable and extension class theory for logic
programs and default theories. Journal of Automated Reasoning, 8(3):345-366,
June 1992.

4. S. Barker and P. Stuckey. Flexible access control policy specification with con-
straint logic programming. ACM Transactions on Information and System Secu-
rity, 6(4):501-546, 2004.

5. E. Bertino and V. Atluri. The specification and enforcement of authorization con-
straints in workflow management. ACM Transactions on Information Systems Se-
curity, 2(1):65-104, February 1999.

6. E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for reason-
ing about access control models. ACM Transactions on Information and System
Security, 6(1):71-127, February 2003.

7. D. Chan. Constructive negation based on the completed databases. In R. A. Kowal-
ski and K. A. Bowen, editors, Proc. International Conference on Logic Program-
ming (ICLP), pages 111-125. The MIT Press, 1988.

8. D. Chan. An extension of constructive negation and its application in coroutining.
In E. Lusk and R. Overbeek, editors, Proc. North-American Conference on Logic
Programming, pages 477-489. The MIT Press, 1989.

9. S. Chen, D. Wijesekera, and S. Jajodia. Incorporating dynamic constraints in the
flexible authorization framework. Technical Report CSIS-TR-04-01, Center for Se-
cure Information Systems, George Mason University, June 2004.

10. F. Fages. Constructive negation by pruning. Journal of Logic Programming,
32(2):85-118, 1997.

16

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Shiping Chen, Duminda Wijesekera, and Sushil Jajodia

M. Fitting. A kripke-kleene semantics for logic programs. Journal of Logic Pro-
gramming, 2(4):295-312, 1985.

M. Fitting and M. Ben-Jacob. Stratified, weak stratified, and three-valued se-
mantics. Fundamenta Informaticae, Special issue on LOGIC PROGRAMMING,
13(1):19-33, March 1990.

F. Francois and G. Roberta. A hierarchy of semantics for normal constraint logic
programs. In Algebraic and Logic Programming, pages 77-91, 1996.

M. Gelfond and L. Lifschitz. The stable model semantics for logic programming.
In Proc. Fifth International Conference and Symposium on Logic Programming,
pages 1070-1080, 1988.

T. Jaeger. On the increasing importance of constraints. In Proc. of the Fourth Role
Based Access Control, pages 33-42, Fairfax, VA, 1999.

T. Jaeger, A. Prakash, J. Liedtke, and N. Islam. Flexible control of downloaded
executable content. ACM Transactions on Information Systems Security, 2(2):177—
228, May 1999.

S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible sup-
port for multiple access control policies. ACM Transactions on Database Systems,
26(2):214-260, June 2001.

K. J. Kunen. Negation in logic programming. Journal of Logic Programming,
4(4):298-308, December 1987.

M. Nayanchama and S. Osborn. The role graph model and conflict of interest. ACM
Transactions on Information and Systems Security, 2(1):3-33, February 1999.

S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Transactions on
Information and Systems, 3(2):85-106, May 2000.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control
models. IEEE Computer, 29(2):38-47, Febraury 1996.

P. Stuckey. Constructive negation for constraint logic programming. In Logic in
Computer Science, pages 328-339, 1991.

P. Stuckey. Negation and constraint logic programming. Information and Compu-
tation, 118(1):12-33, 1995.

A. van Gelder. The alternating fixpoint of logic programs with negation. In Proc.
8th ACM Symposium on Principles of Database Systems, pages 1-10, 1989.

T.Y. C. Woo and S. S. Lam. Authorizations in distributed systems: A new ap-
proach. Journal of Computer Security, 2(2-3):107-136, 1993.

	1 Introduction
	2 OverviewofFAF
	2.1 Limitations of FAF

	3 dynFAF: A Constraint Logic Programming Based Extension to FAF
	3.1 Integrity Constraint Specification and Derivation Module (ISM)
	3.2 The Dynamic Access Grant Module (DAM)
	3.3 DAM Syntax

	4 Semantics of dynFAF
	5 Correctness of DAM
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

