Skip to main content

Circumscription Policies for Induction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3194))

Abstract

There are two types of formalization for induction in logic. In descriptive induction, induced hypotheses describe rules with respect to observations with all predicates minimized. In explanatory induction, on the other hand, hypotheses abductively account for observations without any minimization principle. Both inductive methods have strength and weakness, which are complementary to each other. In this work, we unify these two logical approaches. In the proposed framework, not all predicates are minimized but minimality conditions can be flexibly determined as a circumscription policy. Constructing appropriate policies, we can intentionally minimize models of an augmented axiom set. As a result, induced hypotheses can have both conservativeness and explainability, which have been considered incompatible with each other in the literature. We also give two procedures to compute inductive hypotheses in the proposed framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 119–140. Plenum Press, New York (1978)

    Google Scholar 

  2. De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95, 187–201 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26(2,3), 99–146 (1997)

    Article  MATH  Google Scholar 

  4. De Raedt, L., Lavrač, N.: The many faces of inductive logic programming. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 435–449. Springer, Heidelberg (1993)

    Google Scholar 

  5. del Val, A.: A new method for consequence finding and compilation in restricted languages. In: Proceedings of AAAI 1999, pp. 259–264. AAAI Press, Menlo Park (1999)

    Google Scholar 

  6. Dimopoulos, Y., Dzeroski, S., Kakas, A.: Integrating explanatory and descriptive learning in ILP. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 900–906. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  7. Flach, P.A.: Rationality postulates for induction. In: Shoham, Y. (ed.) Proceeding of the 6th TALK, pp. 267–281. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  8. Flach, P.A., Kakas, A.: Abduction and Induction: Essays on their Relation and Integration. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  9. Helft, N.: Induction as nonmonotonic inference. In: Proceedings of KR 1989, pp. 149–156. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  10. Helft, N., Inoue, K., Poole, D.: Query answering in circumscription. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, pp. 426–431. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  11. Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56(2,3), 301–353 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Inoue, K.: Induction, abduction, and consequence-finding. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 65–79. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Inoue, K.: Induction as consequence finding. Machine Learning 55(2), 109–135 (2004)

    Article  MATH  Google Scholar 

  14. Inoue, K., Haneda, H.: Learning abductive and nonmonotonic logic programs, vol. 8, pp. 213–231 (2000)

    Google Scholar 

  15. Kakas, C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)

    Google Scholar 

  16. Lachiche, N.: Abduction and induction from a non-monotonic reasoning perspective, vol. 8, pp. 107–116 (2000)

    Google Scholar 

  17. Lachiche, N., Marquis, P.: A model for generalization based on confirmatory induction. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 154–161. Springer, Heidelberg (1997)

    Google Scholar 

  18. Lifschitz, V.: Computing circumscription. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 122–127. Morgan Kaufmann, San Francisco (1985)

    Google Scholar 

  19. Lifschitz, V.: Circumscription. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 298–352. Oxford University Press, Oxford (1994)

    Google Scholar 

  20. McCarthy, J.: Circumscription—a form of nonmonotonic reasoning. Artificial Intelligence 13, 27–39 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13(3,4), 245–286 (1995)

    Article  Google Scholar 

  22. Muggleton, S.H., Bryant, C.H.: Theory completion and inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. Ohlbach, H.J.: SCAN—elimination of predicate quantifiers. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 161–165. Springer, Heidelberg (1996)

    Google Scholar 

  24. Poole, D., Goebel, R., Aleliunas, R.: Theorist: a logical reasoning system for defaults and diagnosis. In: Cercone, N., McCalla, G. (eds.) The Knowledge Frontier: Essays in the Representation of Knowledge, pp. 331–352. Springer, Heidelberg (1987)

    Google Scholar 

  25. Przymusinski An, T.C.: algorithm to compute circumscription. Artificial Intelligence 38, 49–73 (1989)

    Article  MathSciNet  Google Scholar 

  26. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 119–140. Plenum Press, New York (1978)

    Google Scholar 

  27. Takimoto, E., Maruoka, A.: Conservativeness and monotonicity for learning algorithms. In: Proceedings of the 6th Annual Conference on Computational Learning Theory, pp. 377–383. ACM Press, New York (1993)

    Chapter  Google Scholar 

  28. Yamamoto, A.: Hypothesis finding based on upward refinement of residue hypotheses. Theoretical Computer Science 298, 5–19 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inoue, K., Saito, H. (2004). Circumscription Policies for Induction. In: Camacho, R., King, R., Srinivasan, A. (eds) Inductive Logic Programming. ILP 2004. Lecture Notes in Computer Science(), vol 3194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30109-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30109-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22941-4

  • Online ISBN: 978-3-540-30109-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics