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Abstract. In this paper, we study how a logical form of scientific mod-
elling that integrates together abduction and induction can be used to
understand the functional class of unknown enzymes or inhibitors. We
show how we can model, within Abductive Logic Programming (ALP),
inhibition in metabolic pathways and use abduction to generate facts
about inhibition of enzymes by a particular toxin (e.g. Hydrazine) given
the underlying metabolic pathway and observations about the concentra-
tion of metabolites. These ground facts, together with biochemical back-
ground information, can then be generalised by ILP to generate rules
about the inhibition by Hydrazine thus enriching further our model. In
particular, using Progol 5.0 where the processes of abduction and induc-
tive generalization are integrated enables us to learn such general rules.
Experimental results on modelling in this way the effect of Hydrazine in
a real metabolic pathway are presented.

1 Introduction

The combination of abduction and induction has recently been explored from a
number of angles [5]. Moreover, theoretical issues related to completeness of this
form of reasoning have also been discussed by various authors [33,13,11]. Some
efficient implemented systems have been developed for combining abduction and
induction [19] and others have recently been proposed [23]. There have also re-
cently been demonstrations of the application of abduction/induction systems
in the area of Systems Biology [35,36,18] though in these cases the generated
hypotheses were ground. The authors know of no published work to date which
provides a real-world demonstration and assessment of abduction/induction in
which hypotheses are non-ground rules, though this is arguably the more inter-
esting case. The present paper provides such a study.

The research reported in this paper is being conducted as part of the MetaLog
project [32], which aims to build causal models of the actions of toxins from
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empirical data in the form of Nuclear Magnetic Resonance (NMR) data, together
with information on networks of known metabolic reactions from the KEGG
database [30]. The NMR spectra provide information concerning the flux of
metabolite concentrations before, during and after administration of a toxin.

In our case, examples extracted from the NMR data consist of metabolite
concentrations (up-down regulation patterns extracted from NMR spectra of
urine from rats dosed with the toxin hydrazine). Background knowledge (from
KEGG) consists of known metabolic networks and enzymes known to be in-
hibited by hydrazine. This background knowledge, which represents the present
state of understanding, is incomplete. In order to overcome this incomplete-
ness hypotheses are entertained which consist of a mixture of specific inhibitions
of enzymes (ground facts) together with general rules which predict classes of
enzymes likely to be inhibited by hydrazine (non-ground). Hypotheses about
inhibition are built using Progol5.0 [19] and predictive accuracy is assessed for
both the ground and the non-ground cases. It is shown that even with the re-
striction to ground hypotheses, predictive accuracy increases with the number
of training examples and in all cases exceeds the default (majority class). Ex-
perimental results suggest that when non-ground hypotheses are allowed the
predictive accuracy increases.

The paper is organised as follows. Chapter 2 introduces the biological prob-
lem. Background to logical modelling of scientific theories using abduction and
induction is given in Chapter 3. The experiments of learning ground and non-
ground hypotheses are then described in Chapter 4. Lastly, Chapter 5 concludes
the paper.

2 Inhibition in Metabolic Pathways

The processes which sustain living systems are based on chemical (biochemical)
reactions. These reactions provide the requirements of mass and energy for the
cellular processes to take place . The complex set of interconnected reactions
taking place in a given organism constitute its metabolic network [14,22,2].

Most biochemical reactions would never occur spontaneously. They require
the intervention of chemical agents called catalysers. Catalysers of biochemical
reactions - enzymes - are proteins tuned by millions of years of evolution to catal-
yse reactions with high efficiency and specificity. One additional role of enzymes
in biochemical reactions is that they add “control points” to the metabolic net-
work since the absence or presence of the enzyme and its concentration (both
controlled mainly by the transcription of the corresponding gene) determine
whether the corresponding reaction takes place or not and to which extent.

The assembly of full metabolic networks, made possible by data accumulated
through years of research, is now stored and organized on metabolic databases
and allows their study from a network perspective [21,1]. Even with the help of
this new Systems Biology approach to metabolism, we are still far apart from
understanding many of its properties. One of the less understood phenomena,
specially from a network perspective, is inhibition. Some chemical compounds
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Fig. 1. A metabolic sub-network involving metabolites affected by hydrazine. Infor-
mation on up/down changes in metabolite concentrations after hydrazine treatment
is obtained from NMR spectra. This information is combined with KEGG metabolic
diagrams, which contain information on the chemical reactions and associated enzymes.

can affect enzymes impeding them to carry out their functions, and hence af-
fecting the normal flux in the metabolic network, which is in turn reflected in
the accumulation or depletion of certain metabolites.

Inhibition is very important from the therapeutic point of view since many
substances designed to be used as drugs against some diseases can eventually
have an inhibitory side effect on other enzymes. Any system able to predict the
inhibitory effect of substances on the metabolic network would be very useful in
assessing the potential harmful side-effects of drugs.

In this work we use experimental data on the accumulation and depletion
of metabolites to model the inhibitory effect of hydrazine (NH2-NH2) in the
metabolic network of rats. Figure 1 shows the metabolic pathways sub-network
of interest also indicating with “up” and “down” arrows, the observed effects of
the hydrazine on the concentration of some of the metabolites involved.

This sub-network was manually built from the information contained in the
KEGG metabolic database [30]. Starting from the set of chemical compounds
for which there is information on up/down regulation after hydrazine treatment
coming from the Nuclear Magnetic Resonance (NMR) experiments, we tried to
construct the minimal network representing the biochemical links among them
by taking the minimum pathway between each pair of compounds and collaps-
ing all those pathways together through the shared chemical compounds. When
there is more than one pathway of similar length (alternative pathways) all of
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them are included. Pathways involving “promiscuous” compounds (compounds
involved in many chemical reactions) are excluded. KEGG contains a static rep-
resentation of the metabolic network (reactions connecting metabolites). NMR
data provides information on the concentrations of metabolites and their changes
with time. These data represent the variation of the concentration of a number
of chemical compounds during a period of time after hydrazine injection. The
effect of hydrazine on the concentrations of chemical compounds is coded in a
binary way. Only up/down changes (increasing/decreasing) in compound con-
centrations immediately after hydrazine injection are incorporated in the model.
Quantitative information on absolute or relative concentrations, or fold changes
are not used in the present model.

In this sub-network the relation between two compounds (edges in the net-
work) can comprise a single chemical reaction (solid lines) or a linear pathway
(dotted lines) of chemical reactions in the cases where the pathway between
those compounds is composed by more than one reaction but not involving
other compounds in the network (branching points). The directionality of the
chemical reactions is not considered in this representation and in fact it is left
deliberately open. Although metabolic reactions flow in a certain direction un-
der normal conditions, this may not be the case in “unusual” conditions like the
one we are modelling here (inhibition). Inhibition of a given reaction causes the
substrates to accumulate what may cause an upstream enzyme to start working
backwards in order to maintain its own substrate/product equilibrium.

The “one to many” relations (chemical reactions with more than one sub-
strate or product) are indicated with a circle. The enzymes associated with the
relations (single chemical reactions or linear pathways) are shown as a single
enzyme or a list of enzymes.

3 Logical Modelling of Scientific Theories

Modelling a scientific domain is a continuous process of observing the phenom-
ena, understanding these according to a currently chosen model and using this
understanding, of an otherwise disperse collection of observations, to improve
the current general model of the domain. In this process of development of a
scientific model one starts with a relatively simple model which gets further
improved and expanded as the process is iterated over. Any model of the phe-
nomena at any stage of its development can be incomplete in its description.
New information given to us by observations, O, can be used to complete this
description. As proposed in [4,5], a logical approach to scientific modelling can
then be set up by employing together the two synthetic forms of reasoning of
abduction and induction in the process of assimilating the new information in
the observations. Given the current model described by a theory, T , and the ob-
servations O both abduction and induction synthesize new knowledge, H, thus
extending the model, T , to T ∪H, according to the same formal specification of:
T ∪ H |= O and T ∪ H is consistent.
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Abduction is typically applied on a model, T , in which we can separate two
disjoint sets of predicates: the observable predicates and the abducible predi-
cates. The basic assumption then is that our model T has reached a sufficient
level of comprehension of the domain such that all the incompleteness of the
model can be isolated (under some working hypotheses) in its abducible pred-
icates. The observable predicates are assumed to be completely defined in T ;
any incompleteness in their representation comes from the incompleteness in the
abducible predicates. In practice, observable predicates describe the scientific
observations, and abducible predicates that describe underlying relations in our
model that are not observable directly but can, through the model T , bring
about observable information. We also have background predicates that are aux-
iliary relations that help us link observable and abducible information (e.g. they
describe experimental conditions or known sub-processes of the phenomena).

Having isolated the incompleteness of our model in the abducible predicates,
these will form the basis of abductive explanations for understanding, according
to the model, the specific observations that we have of our scientific domain. Ab-
duction generates in these explanations (typically) extentional knowledge that is
specific to the particular state or scenario of the world pertaining to the obser-
vations explained. Adding an explanation to the theory then allows us to predict
further observable information but again restricted essentially to the situation(s)
of the given observations. On the other hand, inductive inference generates in-
tentional knowledge in the form of general rules that are not restricted to the
particular scenaria of the observations. The inductive hypothesis thus allows
predictions to new, hitherto unseen, states of affairs or scenarios.

A cycle of integration of abduction and induction in the process of model
development emerges. Abduction is first used to transform (and in some sense
normalize) the observations to an extensional hypothesis on the abducible pred-
icates. Then induction takes this as input (training data) and tries to generalize
this extentional information to general rules for the abducible predicates. The
cycle can then be repeated by adding the learned information on the abducibles
back in the model as partial information now on these incomplete predicates.

As an example consider the integration of abduction and induction for mod-
elling inhibition as shown in Figure 2. The purpose of the abduction process is
to generate hypotheses about inhibited enzymes from the NMR observations of
metabolite concentration. For this purpose we need a logic program which mod-
els how the concentration of metabolites (e.g. up-down regulations) is related to
inhibition of enzymes (see Section 3.2 for such a model). The purpose of the in-
duction process is to learn from the abduced facts, general rules about inhibition
of enzymes in terms of chemical properties of the inhibitor, functional class of
enzymes etc. Part of the information about inhibition required by the induction
process can be obtained from databases such as BRENDA [29]. However, for
many inhibitors the available data may not be enough to generate any general
rule. The results of abduction, from the previous stage, then act as invaluable
training examples for the induction process.
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Fig. 2. An Abductive/Inductive framework for modelling inhibition.

In general, the integration of abduction and induction enhances the model
development. Moreover, it provides a better opportunity to test the correctness
of the generated hypotheses as this can increase the scope of testing. In a tight
integration of abduction and induction the choice of an explanation in the first
abductive phase of the cycle is linked to the second phase of how well the ex-
planation generalizes through induction. Such frameworks of tight integration
already exist, e.g. Progol 5.0 [19], ACL [17], SOLDR [34], CF-Induction [12],
HAIL [23]. We will use Progol 5.0 to carry out the experiments in our study in
this paper.

3.1 Modelling in Abductive Logic Programming

A framework that allows declarative representations of incomplete theories is
that of Abductive Logic Programming (ALP) [16,15]. In this framework a model
or a theory, T , is described in terms of a triple (P, A, IC) consisting of a logic
program, P , a set of abducible predicates, A, and a set of classical logic formu-
las IC, called the integrity constraints of the theory. The program P contains
definitional knowledge representing the general laws about our problem domain
through a complete definition of a set of observable predicates in terms of each
other, background predicates (which are again assumed to be completely speci-
fied in P ) and a set of abducible predicates that are open. Abducible predicates
appear only in the conditions of the program rules with no definition in P . The in-
tegrity constraints, IC, represent assertional knowledge that we may have about
our domain, augmenting the model in P , but without defining any predicates.

Given such an ALP theory the inference of abduction (i.e. of abductive ex-
planation) is then specialized accordingly in the following way:

Definition 1. Given an abductive logic theory (P, A, IC), an abductive expla-
nation for an observation O, is a set, ∆, of ground abducible atoms on the
predicates A such that:

– P ∪ ∆ |=LP O

– P ∪ ∆ |=LP IC.
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where |=LP denotes the logical entailment relation in Logic Programming1.

The abductive explanation ∆ represents a hypothesis which when taken to-
gether with the model described in the theory T explains how a nonempty exper-
imental observable O could hold. An abductive explanation partially completes
the model as described in the theory T . The important role of the integrity
constraints IC, is to impose validity requirements on the abducible hypotheses
∆. They are modularly stated in the theory, separately from the basic model
captured in P , and they are used to augment this with any partial information
that we may have on the abducible predicates or other particular requirements
that we may want the abductively generated explanations of our observations to
have. In most practical cases the integrity constraints are of the form of clausal
rules: B1 ∧ ... ∧ Bn → A1 ∨ ... ∨ Ak where A1, ..., Ak and B1, ..., Bn are positive
literals. In these constraints, k can be possibly zero (we will then write the con-
clusion as false) in which case the constraint is a denial prohibiting any set of
abducibles that would imply the conjunction B1, ..., Bn.

3.2 Modelling Inhibition in ALP

We will develop a model for analyzing (understanding and subsequently pre-
dicting) the effect of toxin substances on the concentration of metabolites. The
ontology of our representation will use as observable predicates the single predi-
cate:

concentration(Metabolite, Level)

where Level can take (in the simplest case) the two values, down or up. In
general, this would contain a third argument, namely the name of the toxin that
we are examining but we will assume here for simplicity that we are studying
only one toxin at a time and hence we can factor this out. Background predicates
such as:

reactionnode(Metabolites1, Enzymes, Metabolites2)

describe the topology of the network of the metabolic pathways as depicted in
figure1. For example, the statement

reactionnode(′l − 2 − aminoadipate′,′ 2.6.1.39′,′ 2 − oxo − glutarate′)

expresses the fact that there is a direct path (reaction) between the metabolites
l − 2 − aminoadipate and 2 − oxo − glutarate catalyzed by the enzyme 2.6.1.39.
More generally, we can have a set of metabolites on each side of the reaction and
a set of different enzymes that can catalyze the reaction.

Note also that these reactions are in general reversible, i.e. they can occur in
either direction and indeed the presence of a toxin could result in some reactions
1 For example, when the program P contains no negation as failure then this entail-

ment is given by the minimal Herbrand model of the program and the truth of
formulae in this model.
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changing their direction in an attempt to compensate (re-balance) the effects
of the toxin. The incompleteness of our model resides in the lack of knowledge
of which metabolic reactions are adversely affected in the presence of the toxin.
This is captured through the declaration of the abducible predicate:

inhibited(Enzyme, Metabolites1, Metabolites2)

capturing the hypothesis that the toxin inhibits the reaction from Metabolites1
to Metabolites2 through an adverse effect on the enzyme, Enzyme, that nor-
mally catalyzes this reaction. For example,

inhibited(′2.6.1.39′,′ l − 2 − aminoadipate′,′ 2 − oxo − glutarate′)

expresses the abducible hypothesis that the toxin inhibits the reaction from
l − 2 − aminoadipate to 2 − oxo − glutarate via the enzyme 2.6.1.39.

Hence the set of abducibles, A, in our ALP theory (P, A, IC), contains the
only predicate inhibited/3. Completing this would complete the given model.
The experimental observations of increased or reduced metabolite concentra-
tion will be accounted for in terms of hypotheses on the underlying and non-
observable inhibitory effect of the toxin represented by this abducible predicate.

Given this ontology for our theory (P, A, IC), we now need to provide the
program rules in P and the integrity constraints IC of our model representation.
The rules in P describe an underlying mechanics of the effect of inhibition of
a toxin by defining the observable concentration/2 predicate. This model is
simple in the sense that it only describes at an appropriate high-level the possible
inhibition effects of the toxin, abstracting away from the details of the complex
biochemical reactions that occur. It sets out simple general laws under which
the effect of the toxin can increase or reduce their concentration, Examples of
these rules in P are:

concentration(X,down):-
reactionnode(X,Enz,Y),
inhibited(Enz,Y,X).

concentration(X,down):-
reactionnode(X,Enz,Y),
not inhibited(Enz,Y,X),
concentration(Y,down).

The first rule expresses the fact that if the toxin inhibits a reaction producing
metabolite X then this will cause down concentration of this metabolite. The
second rule accounts for changes in the concentration through indirect effects
where a metabolite X can have down concentration due to the fact that some
other substrate metabolite, Y , that produces X was caused to have low con-
centration. Increased concentration is modelled analogously with rules for ”up”
concentration. For example we have

concentration(X,up):-
reactionnode(Y,Enz,X),
inhibited(Enz,X,Y).
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where the inhibition of the reaction from metabolite X to Y causes the concen-
tration of X to go up as X is not consumed due to this inhibition.

Note that for a representation that does not involve negation as failure, as we
would need when using the Progol 5.0 system, we could use instead the abducible
predicate inhibited(Enz, TruthV alue, Y, X) where TruthV alue would take the
two values true and false. The underlying and simplifying working hypotheses
of our model are:

(1) the primary effect of the toxin can be localized on the individual reactions
of the metabolic pathways;

(2) the underlying network of the metabolic pathways is correct and complete;
(3) all the reactions of the metabolic pathways are a-priori equally likely to be

affected by the toxin;
(4) inhibition in one reaction is sufficient to cause change in the concentration

of the metabolites.

The above rules and working hypotheses give a relatively simple model but
this is sufficient as a starting point. In a more elaborate model we could relax the
fourth underlying hypothesis of the model and allow, for example, the possibility
that the down concentration effect on a metabolite, due to the inhibition of one
reaction leading to it, to be compensated by some increased flow of another
reaction that also leads to it. We would then have more elaborated program P
rules that express this. For example, the first rule above would be replaced by:

concentration(X,down):-
reactionnode(X,Enz,Y),
inhibited(Enz,Y,X),
not compensated(X,Enz).

compensated(X,Enz):-
reactionnode(X,Enz1,Y),
different(Enz1,Enz),
increased(Enz1,Y,X).

where now the set of abducible predicates A includes also the predicate
increased(Enzyme, Metabolites1, Metabolites2) that captures the assumption
that the flow of the reaction from Metabolites1 to Metabolites2 has increased
as a secondary effect of the presence of the toxin.

Validity requirements of the model. The abducible information of
inhibited/3 is required to satisfy several validity requirements captured in the in-
tegrity constraints IC of the model. These are stated modularly in IC separately
from the program P and can be changed without affecting the need to recon-
sider the underlying model of P . They typically involve general self-consistency
requirements of the model such as:

concentration(X, down), concentration(X, up) → false
expressing the facts that the model should not entail that the concentration of
any metabolite is at the same time down and up.
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Example Explanations. Let us illustrate the use of our model and its possible
development with an example. Given the pathways network in figure 1 and the
experimental observation that:

concentration(′2 − oxo − glutarate′, down)

the following are some of its possible explanations

E1 = {inhibited(2.3.1.61,′ succinate′,′ 2 − oxo − glutarate′)}
E2 = {inhibited(2.6.1.39,′ l − 2 − aminoadipate′,′ 2 − oxo − glutarate′)}
E3 = {inhibited(1.1.1.42,′ isocitrate′,′ 2 − oxo − glutarate′)}

Combining this observation with the additional observation that

concentration(′isocitrate′, down)

makes the third explanation E3 inconsistent, as this would imply that the con-
centration of isocitrate is up. Now if we further suppose that we have observed

concentration(′l − 2 − aminoadipate′, up)

then the above explanation E2 is able to account for all three observations with
no added hypotheses needed. An alternative explanation would be

E
′
2 = {inhibited(2.6.1.39,′ l − 2 − aminoadipate′,′ 2 − oxo − glutarate′),

inhibited(1.2.1.31,′ l − 2 − aminoadipate′,′ l − lysine′)}
Applying a principle of minimality of explanations or more generally of maximal
compression we would prefer the explanation E2 over E

′
2.

Computing Explanations by ALP and ILP systems. There are several
systems (e.g. [28,27]) for computing abductive explanations in ALP. Also some
ILP systems, such as Progol 5, can compute abductive explanations as well as
generalizations of these. Most ALP systems, unlike ILP systems, do not em-
ploy an automatic way of comparing different explanations at generation/search
time and selecting from these those explanations that satisfy some criterium of
compression or simplicity. On the other hand, ALP systems can operate on a
richer representation language, e.g. that includes negation as failure. Hence al-
though Progol 5 can provide compact and minimal explanations ALP systems
can provide explanations that have a more complete form.

In particular, Progol 5 explanations are known to be restrictive [33,23], in
that for a single observation/example they can not contain more than one ab-
ducible clause. Despite this in many domains where this single clause restriction
is acceptable, as is the case in our present study of inhibition in metabolic net-
works, ground explanations of Progol 5 are closely related to (minimal) ALP
explanations. ALP explanations may contain extra hypotheses that are gener-
ated from ensuring that the integrity constraints are satisfied. Such hypotheses
are left implicit in Progol 5 explanations. This means that Progol 5 and ALP
explanations have corresponding predictions, modulo any differences in their vo-
cabularies of representation. For example, referring again to Figure 1, a Progol
5 explanation for the two observations for metabolites l − 2−aminoadipate and
succinate would be:
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EILP = {inhibited(2.6.1.39, true,′ l−2−aminoadipate′,′ 2−oxo−glutarate′),
inhibited(1.2.7.3, false,′ 2 − oxo − glutarate′,′ succinate′)}

This explanation does not carry any information on the rest of the network that
is not directly connected with the observations and the abducible hypotheses
that it contains. The corresponding ALP explanation(s) have the form:

EALP = {inhibited(2.6.1.39,′ l − 2 − aminoadipate′,′ 2 − oxo − glutarate′),
not inhibited(1.2.7.3,′ 2 − oxo − glutarate′,′ succinate′)} ∪ ERest

where ERest makes explicit further assumptions required for the satisfaction of
the integrity constraints. In this example, if we are interested in the metabolite
isocitrate then we could have two possibilities:

E1
Rest = {not inhibited(1.1.1.42.,′ 2 − oxo − glutarate′,′ isocitrate′),

not inhibited(1.1.1.42.,′ isocitrate′,′ 2 − oxo − glutarate′)
E2

Rest = {not inhibited(1.1.1.42.,′ 2 − oxo − glutarate′,′ isocitrate′),
inhibited(1.1.1.42.,′ isocitrate′,′ 2 − oxo − glutarate′)

These extra assumptions are left implicit in the ILP explanations as they have
their emphasis on maximal compression. But the predictions that we get from
the two types of ALP and ILP explanations are the same. Both types of explana-
tions predict concentration(′2− oxo− glutarate′, down). For isocitrate the first
ALP explanation predicts this to have down concentration whereas the second
one predicts this to have up concentration. The non-committal corresponding
ILP explanation will also give these two possibilities of prediction depending on
how we further assume the flow of the reaction between 2− oxo− glutarate and
isocitrate. In our experiments, reported in the following section, we could ex-
amine a-posteriori the possible ALP explanations and confirm this link between
ground Progol 5 explanations with minimal ALP explanations.

4 Experiments

The purpose of the experiments in this section is to empirically evaluate the
inhibition model, described in the previous section, on a real metabolic pathway
and real NMR data.

4.1 Experiment 1: Learning Ground Hypotheses

In this experiment we evaluate ground hypotheses which are generated using the
inhibition model given observations about concentration of some metabolites.

Materials. Progol 5.02 is used to generate ground hypotheses from observa-
tions and background knowledge. As a part of background knowledge, we use
the relational representation of biochemical reactions involved in a metabolic
pathway which is affected by hydrazine. The observable data is up-down regula-
tion of metabolites obtained from NMR spectra. These background knowledge
and observable data were explained in Section 2 and illustrated in Figure 1.
2 Available from: http://www.doc.ic.ac.uk/ ˜ shm/Software/progol5.0/
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for i=1 to 10 do
Tsi = m test example randomly sampled from E
Tri = E − Tsi

for j in (2,4,6,8,10) do
Trij = j training example randomly sampled from Tri

end
end
for i=1 to 10 do

for j in (2,4,6,8,10) do
Hij = learned hypotheses using the training set Trij

Aij = predictive accuracy of Hij on the test set Tsij

end
end
for j in (2,4,6,8,10) do

Plot average and error bars of Aij versus j (i ∈ [1..10])

Fig. 3. Experimental method used for Experiment 1. E is the set of all examples and
in this experiment m = 7.

Methods. In the first attempt to evaluate the model we tried to predict the con-
centration of a set of metabolites which became available later during the Met-
alog project. Hence, we have used the previously available observations (shown
in black arrows in Figure 1) as training data and the new observations (shown
in blue arrows in Figure 1) as test data. According to our model, there are many
possible hypotheses which can explain the up-regulation and down-regulation of
the observed metabolites. However, Progol’s search attempts to find the most
compressive hypotheses. The following are examples of hypotheses returned by
Progol:

inhibited(’2.6.1.39’,true,’l-2-aminoadipate’,’2-oxo-glutarate’).
inhibited(’2.3.1.61’,false,’2-oxo-glutarate’,’succinate’).
inhibited(’1.13.11.16’,false,’succinate’,’hippurate’).
inhibited(’2.6.1.-’,true,’taurine’,’citrate’).
inhibited(’3.5.2.10’,true,’creatine’,’creatinine’).
inhibited(’4.1.2.32’,true,’tmao’,’formaldehyde’).
inhibited(’4.3.1.6’,true,’beta-alanine’,’acryloyl-coA’).

Using these ground hypotheses, the model can correctly predict the concen-
tration of six out of the seven new metabolites. In order to evaluate the predictive
accuracy of the model in a similar setting, we generate random test sets (with
size equal to seven) and use the remaining examples for training. Figure 3 sum-
marises the experimental method used for this purpose.

The model which has been used for evaluating the hypotheses generated by
Progol explicates the Closed World Assumption (CWA). In other words, we are
working under the assumption that a reaction is not inhibited unless we have a
fact which says otherwise:
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Fig. 4. Performance of the hypotheses generated by Progol in Experiment 1.

inhibited(Enz,false,X,Y):-
reactionnode(Y,Enz,X),
not(inhibited(Enz,true, , )).

When we include this we will call this evaluation, mode 2, and without it we
will call the evaluation mode 1.

The predictor which we have used in our experiments converts the three class
problem which we have (‘up’, ‘down’ and ‘unknown’) to a two class prediction
with ‘down’ as the default class. For this purpose we use the following test
predicate:

concentration1(X,up):-
concentration(X,up),
not(concentration(X,down)).

concentration1(X,down).

Results and discussion. The results of the experiments are shown in Figure 4.
In this graph, the vertical axis shows the predictive accuracy and the horizontal
axis shows the number of training examples. According to this graph, we have
a better predictive accuracy when we use the closed world assumption (Mode 2)
compared to the accuracy when we do not use this assumption (Mode 1). The
reason for this is that the closed world assumption allows the rules of the model
(as represented in Progol) have apply in more cases than without the assumption.
According to the number of up and down regulations in the examples, the default
accuracy is 64.7%. For both Mode 1 and Mode 2, the overall accuracy is above
the default accuracy and inreases with the number of training examples.
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for i in (1,4,8,16) do
for j=1 to n do

Tsij = i test examples randomly sampled from E
Trij = E − Tsij

end
end
for i in (1,4,8,16) do

for j=1 to n do
Hij = learned hypotheses using the training set Trij

Aij = predictive accuracy of Hij on the test set Tsij

end
end
for i in (1,4,8,16) do

Plot average of Aij versus j (j ∈ [1..n])

Fig. 5. Experimental method used for Experiment 2. E is the set of all examples and
in this experiment n = 17.

4.2 Experiment 2: Learning Non-ground Hypotheses

As mentioned in the previous sections, abduction and induction can be combined
to generate general rules about inhibition of enzymes. In this experiment we
attempt to do this by further generalising the kind of ground hypotheses which
were learned in Experiment 1.

Materials and Methods. Background knowledge required for this experi-
ment can be obtained from databases such as BRENDA [29] and LIGAND [31].
This background information can include information about enzyme classes, co-
factors etc. For example, information on the described inhibition by hydrazine
and/or presence of the pyridoxal 5’-phosphate (PLP) group can be extracted
from the BRENDA database when such information exists. In our experiments
for learning non-ground hypotheses we include the possibility that a given chem-
ical compound can be inhibiting a whole enzymatic class, since this situation is
possible in non-competitive inhibition. For example, a very strong reducer or ox-
idant affecting many oxidoreductases (1.-.-.-). In our case, since the mechanism
(competitive/non-competitive) of inhibition of hydrazine is unknown, we leave
this possibility open. In this experiment we use all available observations and
we apply a leave-out test strategy (randomly leave out 1, 4, 8 and 16 test exam-
ples and use the rest as training data). The experimental method is detailed in
Figure 5.

Results and discussion. In this experiment Progol attempted to generate
general rules for inhibition effectively trying to generalize from the ground facts
in the abductive explanations. Among the rules that it had considered were:
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Fig. 6. Performance of ground and non-ground hypotheses generated by Progol using
a leave-out test strategy as detailed in Figure 5.

inhibited(Enz, true, M1, M2) : −reactionnode(M2, Enz, M1), class(Enz, 2.6.1)
inhibited(Enz, true, M1, M2) : −reactionnode(M2, Enz, M1), class(Enz, 4.1.2)

expressing the information that reactions that are catalysed by enzymes in either
of the two classes ’2.6.1’ and ’4.1.2’ are inhibited by Hydrazine. These rules had
to be eventually rejected by the system as they are inconsistent with the given
model. This is because they imply that these reactions are inhibited in both di-
rections while the model assumes that any reaction at any particular time only
flows in one direction and hence can only be inhibited in that direction. In fact,
the available data is not sufficient for the learning method to distinguish the
direction in which the reactions of the network flow. Moreover, it is not appro-
priate to learn such a relation as we know that metabolic pathways reactions
are reversible and so depending on the circumstances they can flow in either
direction (see Section 2). The problem therefore is a problem of representation
where we simply want to express that these reactions are inhibited in the one
direction that they flow whatever this direction might be.

Nevertheless it was instructive to accept these (seemingly overgeneral) rules
into our model by adopting a default direction of the reactions of the network
involved (i.e. whose enzymes fall in these two classes) and examine the effect
of this generalization on the predictive accuracy of our new model compared
with the case where the ground abductive explanations are added to the model.
This comparison is shown in Figure 6 indicating that the predictive accuracy
improves after generalization.
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5 Conclusions

We have studied how to use abduction and induction in scientific modelling
concentrating on the problem of inhibition of metabolic pathways. Our work has
demonstrated the feasibility of a process of scientific model development through
an integrated use of abduction and induction. This is to our knowledge the first
time that abduction and induction are used together in an enhancing way on a
real-life domain.

The abduction technique which is used in this paper can be compared with
the one in the robot scientist project [18] where ASE-Progol was used to generate
ground hypotheses about the function of genes. Abduction has been also used
within a system, called GenePath [35,36], to find relations from experimental
genetic data in order to facilitate the analysis of genetic networks. Bayesian net-
works are among the most successful techniques which have been used for mod-
elling biological networks. In particular, gene expression data has been widely
modelled using Bayes’ net techniques [7,6,10]. On the MetaLog project Bayes’
nets have also been used to model metabolic networks [24]. A key advantage of
the logical modelling approach in the present paper compared with the Bayes’ net
approach is the ability to incorporate background knowledge of existing known
biochemical pathways, together with information on enzyme classes and reac-
tion chemistry. The logical modelling approach also produces explicit hypotheses
concerning the inhibitory effects of toxins.

A number of classical mathematical approaches to metabolic pathway anal-
ysis and simulation exist. These can be divided into three main groups based
around Biochemical Systems Theory (BST), Metabolic Control Analysis (MCA)
and Flux Balance Analysis (FBA). BST and MCA are oriented toward dynamic
simulation of cellular processes based on physicochemical laws [8,9,25]. How-
ever, progress towards the ultimate goal of complete simulation of cellular sys-
tems [25] has been impeded by the lack of kinetic information and attention
in the last decade has been diverted to analysing the relative importance of
metabolic events. FBA [26,3] unlike BST and MCA, does not require exact ki-
netic information to analyse the operative modes of metabolic systems. FBA,
which includes the techniques of Elementary Flux Mode Analysis and Extreme
Pathway Analysis, only requires stochiometric parameters (the quantitative re-
lationship between reactants and products in a chemical reaction). However, by
contrast with the approach taken in the present paper, BST, MCA and FBA
are not machine learning approaches, and most importantly do not incorporate
techniques for extending the structure of the model based on empirical data.

In the present study we used simple background knowledge concerning the
class of enzymes to allow the construction of non-ground hypotheses. Despite
this limited use of background knowledge we achieved an increase in predictive
accuracy over the case in which hypothesis were restricted to be ground. In future
work we hope to extend the representation to include structural descriptions of
the reactions involved in a style similar to that described in [20].
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