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Abstract. In this work two relevant considerations in the ICA-based es-
timation of atrial activity (AA) in atrial fibrillation (AF) episodes from
real electrocardiogram (ECG) recordings are presented. Firstly, the im-
pact of low-pass filtering preprocessing on the extraction quality of AA is
analyzed, showing an average improvement over 17% in spectral concen-
tration (SC) when low-pass filtering is applied after ICA with respect to
the application of the same filtering before ICA. Secondly, it is demon-
strated that the ICA mixing matrix obtained from one AF segment can
also be used to estimate the AA present in different segments of the same
recording, thus proving the pseudostationarity of the mixing matrix. Re-
sults over 32 AF segments show a mean cross-correlation of Rdp = 81.5%
between the directly estimated AA and the estimated using presudosta-
tionarity. Changes in spectral concentration from one case to the other
(∆SCdp = 1.4%) are negligible.

1 Introduction

One of the most important research areas where independent component analy-
sis (ICA) techniques have proved their success is in biomedical engineering [1],
with a relevant increase of novel applications during the past years. Regarding
the electrocardiogram (ECG), it is well known the extraction of the fetal ECG
from maternal recordings [2], the separation of breathing artifacts and other dis-
turbances [3], analysis of ST segments for ischemia detection [4], identification of
humans using the ECG [5], ventricular arrhythmia detection and classification [6]
and the study of atrial fibrillation (AF).

AF is the most common sustained arrhythmia encountered by clinicians and
occurs in approximately 0.4% to 1.0% of the general population. Its prevalence
increases with age, and up to 10% of the population older than 80 have been
diagnosed with AF [7]. ICA and methods related to blind signal separation have
also been applied to AF. In this sense, principal component analysis (PCA) has
been used both to extract the atrial activity (AA) from the 12–lead surface ECG
in patients with AF [8] and to measure the degree of local organization of this
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arrhythmia [9]. Regarding ICA, it has also been applied for the extraction of AA
in AF episodes from the surface ECG [10, 11], the suppression of artifacts from
internal epicardial recordings [12] and the discrimination among supraventricular
arrhythmias [13]. This contribution presents the impact of traditional filtering
steps, used for ECG preprocessing, that may decrease ICA performance in the
estimation of AA in AF episodes. Next the paper shows the empirical demon-
stration of the instantaneous linear mixing model of an AF recording, through
the corroboration of the ICA mixing matrix pseudostationarity (MMPS).

2 Methods

The suitability of ICA to extract the AA from the ECG in patients with AF has
been already demonstrated [11] and the results compared to other AA estimation
methods [14]. Nevertheless, the ICA-based optimal estimation of AA still remains
as an open issue in continuous development [15]. The following sections deal with
these considerations, starting with a short description of AF and its ICA model.

2.1 Atrial Fibrillation and ICA Suitability

The manifestation of AF is characterized by uncoordinated atrial activation with
consequent deterioration of atrial mechanical function [7]. AF occurs when the
electrical impulses in the atria degenerate into a chaotic pattern, resulting in
an irregular and rapid heartbeat due to the unpredictable conduction of these
impulses across the atrioventricular node [7]. On the ECG, AF is described by the
replacement of P waves by fibrillatory waves that vary in size, shape, and timing,
being the topic of intensive research because it is the most common sustained
cardiac arrhythmia [7]. ICA can be applied to AF due to the fulfillment of these
conditions [16]: independence of the sources, nongaussianity and nonorthogonal
observations generated by instantaneous linear mixing of the sources [11]. These
considerations can be proved through the study of the electrophysiological me-
chanisms regarding the generation of AF and the matrix-form solution of the
forward problem of electrocardiography [17].

2.2 Impact of ECG Preprocessing

Preprocessing is used over ECG recordings to improve the later analysis or pro-
cessing stages. The most widely used involves notch filtering, to cancel out mains
interference, high pass filtering, to eliminate baseline wandering and low-pass fil-
tering to reduce thermal and muscular noise [18]. Additionally, ICA works much
better with low noise data, thus allowing for a better separation of the inde-
pendent components [19]. On the other hand, linear filtering does not affect the
fulfillment of the ICA model [19], hence, having a column vector of observations
x(t) obtained by linearly mixing a column vector of sources s(t) with a mixing
matrix A, the ICA model is x(t) = As(t) [19].

Filtering the set of observed signals to obtain a new observation vector xf (t),
will generate the ICA model xf (t) = Asf(t), where the mixing matrix A is the
same as before and the source column vector sf(t) corresponds to the set of
sources s(t) filtered with the same filtering applied to x(t).
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Fig. 1. Proposed methodology for the mixing matrix pseudostationarity analysis. In

each AF segment the AA can be directly estimated (ÂAd1 and ÂAd2) or indirectly via

the pseudostationarity property (ÂAp1 and ÂAp2).

A problem with low-pass filtering is that it reduces the information in the
data, since high-frequency features of the data are lost. Hence, this information
reduction may involve a reduction of independence [19]. In addition, low-pass
filtering performs some kind of averaging over the data, and sums tend to increase
Gaussianity [19], thus, decreasing ICA performance.

2.3 Mixing Matrix Pseudostationarity

The signal vector from the AF recording can be identified with the observations
in ICA, the set of sources being composed of the independent atrial and ventric-
ular activities and other nuisance signals. The mixing matrix entries will can be
associated to the transfer coefficients relating the potentials from the heart to-
wards the body surface [17]. Apart from the direct observation or the comparison
to other techniques [14], one way to corroborate that an AF recording satisfies
the ICA model, may consist of verifying the similarities of the mixing (or sepa-
ration) matrices between two different segments. If the matrix is preserved then
it will be reasonable to consider that AF fulfills the ICA model. Nonetheless, the
study and proper electrophysiological interpretation of the variations across the
144 entries of a 12 × 12 matrix is not easy to perform.

As an alternative each AF recording can be divided into two non-overlapped
segments (see Fig. 1). In the first segment we can define the directly estimated
atrial activity, ÂAd1, as the activity obtained after performing ICA over it. This
will also give us the mixing and separation matrices for the first segment, A1

and W1, respectively, where W1 = A−1
1 . With the same procedure, it is possible

to obtain ÂAd2 and matrices A2 and W2 for the second segment. Hence, the
verification of the MMPS will consist of applying the separation matrices W1

and W2 over the second and first ECG segments, respectively, to obtain the
activities ÂAp2 and ÂAp1 (see Fig. 1). Evaluating the similarity between ÂAd1

and ÂAp1, for segment 1, and ÂAd2 and ÂAp2, for segment 2, it will be possible
to assess the preservation of the matrix. Considering the real world limitations,
it is reasonable to define this behavior as MMPS.

2.4 Measurement of Atrial Activity Estimation Quality

The estimation of AA from real AF recordings represents an inverse problem
where true sources are impossible to observe. Considering the spectral mor-



1082 José Joaqúın Rieta et al.
P

re

Time (seconds)

P
os

t
L
ea

d
V

1

0 1 2 3 4 5 6 7 8

Fig. 2. Estimated AA waveforms from patient #10 for the pre-ICA and post-ICA low-
pass filtering. Lead V1 from the same patient is included for comparison purposes.

phology of AA, with a very pronounced peak, no harmonics and insignificant
amplitudes above 15Hz [8, 20], it is possible to define a performance extraction
index to evaluate the AA extraction quality based on the spectral concentration,
that can be defined as [15]

SC =

(∫ 1.17fp

0.82fp

PAA(f)df

) /(∫ fs
2

0

PAA(f)df

)

(1)

where fp is the frequency of the AF main peak, PAA is the power spectral density
(PSD) of the AA and fs is the sampling frequency. SC can evaluate the spectral
variation due to the presence of other nuisance signals outside the main peak
band. Hence, for a concrete AA, a higher SC will indicate a more efficient elim-
ination of non-AA components. The PSD was obtained via the Welch–WOSA
method, discarding the content above 20Hz due to its low contribution.

3 Results and Discussion

The low-pass filtering impact was by its application before and after ICA. The
study was carried out over the authors’ own database comprising 12-lead AF
recordings from 16 patients sampled at 1kHz with segments of 8 seconds. This
recording time is long enough because it includes several cardiac cycles and other
human events, like breathing, that may affect the transfer coefficients. The low-
pass filtering applied in this study was a linear phase Chebyshev type II digital
filter, with no ripple in the pass-band and 40dB ripple in the stop-band, the
cut-off frequency being 70Hz. Next, the FastICA algorithm was used due to its
robust performance and fast convergence [19]. Fig. 2 plots the AA filtering before
(pre) and after (post) the ICA stage. The same Fig. also shows lead V1 from the
ECG, because it is considered as the lead with higher AA contribution [7]. As
can be seen, the post-ICA AA is much more approximated to the AA contained
in the ECG. Fig. 3 plots the PSD of the AA signals from Fig. 2. The main
atrial frequency and spectral morphology is quite similar for both signals, but
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Fig. 3. PSD and SC for the AA in the first segment of patient #10 (Fig 2). (a) Pre-ICA

low-pass filtering. (b) Post-ICA low-pass filtering and directly estimated activity ÂAd1

using W1. (c) Indirectly estimated activity ÂAp1 via W2 from the second segment.

Table 1. Percentages of SC for each patient and mean values for the whole database.
SCpre is for low-pass filtering previous to ICA and SCpost for the reverse methodology.

Pat.01 Pat.02 Pat.03 Pat.04 Pat.05 Pat.06 Pat.07 Pat.08

SCpre 30.4 37.9 41.9 45.8 49.9 34.2 31.1 21.6
SCpost 63.0 44.9 57.7 47.1 84.5 47.0 45.4 55.8
∆post−pre 32.6 6.9 15.8 1.3 34.5 12.7 11.2 34.2

Pat.09 Pat.10 Pat.11 Pat.12 Pat.13 Pat.14 Pat.15 Pat.16

SCpre 36.6 34.7 38.2 40.5 43.0 28.1 33.3 36.7
SCpost 43.3 47.9 49.9 65.4 61.3 42.2 44.3 62.0
∆post−pre 6.7 13.1 11.6 24.9 18.3 14.1 11.0 25.3

SCpre = 36.7 SCpost = 53.9 ∆post−pre = 17.1

the pre-ICA estimation (Fig. 3.a) shows larger spectral components below 5Hz
and above 10Hz that are notably reduced with post-ICA (Fig. 3.b). Hence, the
SC for this latter case is higher and the AA extraction performance is better.

Table 1 shows preprocessing (SCpre) and postprocessing (SCpost) values for
all the patients, ∆post−pre being the percentage of increase in SC. Similar anal-
ysis have been performed regarding notch filtering and high-pass filtering. The
results, though are not presented in this contribution, show an irrelevant impact
over the ICA separation performance.

To study the MMPS a recording of 20 seconds in length was selected, then,
FastICA was applied over the first 8 seconds (segment 1), giving us ÂAd1, A1

and W1. Segment 2 was comprised of the last 8 seconds, obtaining ÂAd2, A2

and W2. The post-ICA low-pass filtering strategy was selected and applied over
both segments. Next, by using the separation matrices, the AA estimation was
obtained indirectly to verify the MMPS: ÂAp1 was extracted using W2 and ÂAp2

with W1, respectively. Fig. 4 shows the result over the AF segment in Fig. 2.
The similarity obtained is significant, thus corroborating the MMPS. Also for
this AA pair, the cross-correlation percentage is 81.7%.

Regarding SC for the AA pairs, Fig. 3.b plots the PSD and SC for ÂAd1

from Fig. 4 and the result for ÂAp1 can be seen in Fig. 3.c. Comparing both Figs.
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Fig. 4. Waveform of the directly estimated atrial activity ÂAd1 from the first segment

of patient #10 (see Fig. 2) and the same activity obtained via the MMSP ÂAp1.
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Fig. 5. Column comparison for the entries, in absolute value, of the mixing matrices
A1 and A2 related to the AA source from the ECG recording of Fig. 2.

the differences in spectral morphology and main peak frequency are negligible.
There is a variation in the main peak amplitude and the spectral concentration
(SCd1 vs SCp1) quite acceptable when dealing with real AF recordings.

Fig. 5 plots the columns of the mixing matrices A1 and A2 associated to the
AA source. Observe the similarities in the leads with largest AA contribution.
Finally Fig. 6 concentrates the MMPS results for the 16 patients in the database.
Above each patient number there are six bars, the first three ones for the first
AF segment and the others for the second segment. Within each bar group, the
first bar indicates SCd1 in percentage, i.e., the spectral concentration of ÂAd1.
The second bar is SCp1 associated to ÂAp1 and the third bar is cross-correlation
percentage, Rdp1. The same is applicable for the other bar group on the right,
but for the second segment. The differences between the SCd and SCp pairs
are generally small, being the cross-correlation below 75% in only 6 of the 32
analyzed cases. The mean difference between SCd and SCp is ∆SCdp = 1.47% in
spectral concentration. Regarding the correlation value, its mean for the same 32
situations is Rdp = 81.56± 10.74%, thus reinforcing the large similarity between
ÂAd and ÂAp for all the cases analyzed.

Note that this application assumes the fulfillment of the ICA model, hence, it
will only be possible to derive the spatial filters (mixing matrix) and the sources
from the ECG, when the physical sources associated to heart’s activity are spa-
tially stationary [1]. Contraction of the atria during fibrillation, the ventricles in
the cardiac cycle or any other relative movement from sources to observations,
could violate the assumption of spatial stationarity. The authors consider that
these variations do not affect significantly the ICA model in AF: firstly, results
of the AA have demonstrated its validity [10, 11], secondly, the main atrial fre-
quency of AA obtained using ICA is in agreement with the results obtained via
other accepted AA extraction techniques [20]. Finally, the MMPS corroboration
gives the definitive support to say that the 12-lead ECG of an AF recording
fulfills the instantaneous linear mixing ICA model.
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Fig. 6. MMPS analysis results for the whole patient database.

4 Conclusions

This contribution has demonstrated that preprocessing has a significant im-
pact on the separation performance of ICA-based AA estimation. The study
has proved that low-pass filtering, though itself is a linear operation, involves
a data reduction that decreases the quality of the ICA-based AA estimation.
To solve this problem, the ICA approach has to be applied before the low-pass
filtering and then, any other post-ICA processing could be performed over the
data. Besides, the impact of notch and baseline wander filtering is not relevant.

Moreover, it has been demonstrated that the AA from one segment can
be recovered with the separation matrix from other segment. This observation,
defined as the MMPS, gives the definitive support to the fulfillment of the ICA
model for AF. In addition, this fact may imply the birth of other studies on
the evolution and periodicity of the mixing matrix entries across the cardiac
cycle or the patient’s own breathing, not only in atrial fibrillation, but in other
supraventricular arrhythmias and cardiac pathologies where atrial and ventricu-
lar activities can be regarded as decoupled or independent.

Acknowledgements. This work was partly funded by the research incentive pro-
gram of the Valencia University of Technology and TIC2002-00957. The authors would
like to thank the cardiologists from the Universitary Clinical Hospital of Valencia
(Spain), for their clinical advice and kind help in obtaining the signals.

References

1. Jung, T.P., Makeig, S., Lee, T.W., McKeown, M.J., Brown, G., Bell, A.J., Se-
jnowski, T.J.: Independent component analysis of biomedical signals. Interna-
tional Conference on Independent Component Analysis and Blind Signal Separa-
tion (ICA) 2 (2000) 633–644

2. Zarzoso, V., Nandi, A.K.: Noninvasive fetal ECG extraction: blind separation
versus adaptive noise cancellation. IEEE Trans. Biomed. Eng 48 (2001) 12–18

3. Barros, A.K., Mansour, A., Ohnishi, N.: Adaptive blind elimination of artifacts
in ECG signals. International Workshop on Independence & Artificial Neural
Networks (I&ANN’98) (1998) 1380–1386
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