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Abstract. Recently, there are active discussions on the possibility of
non-invertible watermarking scheme. A non-invertible scheme prevents
an attacker from deriving a valid watermark from a cover work. Re-
cent results suggest that it is difficult to design a provably secure non-
invertible scheme. In contrast, in this paper, we show that it is possible.
We give a scheme based on a cryptographically secure pseudo-random
number generator (CSPRNG) and show that it is secure with respect to
well-accepted notion of security. We employ the spread spectrum method
as the underlying watermarking scheme to embed the watermark. The
parameters chosen for the underlying scheme give reasonable robustness,
false alarm and distortion. We prove the security by showing that, if there
is a successful attacker, then there exists a probabilistic polynomial-time
algorithm that can distinguish the uniform distribution from sequences
generated by the CSPRNG, and thus contradicts the assumption that
the CSPRNG is secure. Furthermore, in our scheme the watermark is
statistically independent from the original work, which shows that it is
not necessary to enforce a relationship between them to achieve non-
invertibility.

1 Introduction

There are many discussions on the uses of watermarking schemes in resolving
ownership disputes. An interesting and well-known scenario is the inversion at-
tacks studied by Craver et al. [7]. Under this scenario, Alice has the original image
I and a secret watermark WA. She releases the watermarked image Ĩ = I + WA

into the public domain. Given Ĩ and not knowing WA, Bob (who is an attacker)
wants to find a watermark WB that is present in both Ĩ and I. If such a water-
mark WB is found, Bob can create confusion of the ownership by claiming that:
(1) Ĩ is watermarked by his watermark WB, and (2) the image Ĩ − WB is the
original. If Bob can successfully and efficiently find such WB, we say that the
scheme is invertible.

Craver et al. [7] give an attacker when the underlying watermarking scheme
is the well-known spread spectrum method. To overcome such attackers, they
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propose a protocol that employs a secure hash, and claim that it is non-invertible.
Qiao et al. [8, 9] also give watermarking schemes for video and audio which
are claimed to be non-invertible. Subsequently, there are a number of works
[10, 1, 2] exploiting weaknesses of known non-invertible schemes. Ramkumar et
al. [10] give an attack for the scheme by Craver et al. [7], and they also give an
improved scheme. On the other hand, [1, 2] give a formal definition of ambiguity
attacks and mention that most proposed non-invertible schemes either do not
come with a satisfactory proof of security, or the proofs are flawed. They also
point out that if the false alarm of the underlying watermarking scheme is high
(for e.g. 2−10), then successful ambiguity attacks are possible. However, there
is no mention of cases when the false alarm is low. Thus, it is interesting to
know whether non-invertibility can be achieved when false alarm is low. Due to
the difficulty of obtaining a non-invertible scheme, [2] propose to use a trusted
third party (TTP) to issue valid watermarks. Although using a TTP is provably
secure, there is still a question of whether it can withstand attackers that probe
the system. The development of the studies of non-invertibility seems to lead
to the conclusion that a stand-alone (in the sense that there is no TTP) non-
invertible scheme does not exist. In this paper, in contrast, we argue that with
low false alarm, it is possible to have a non-invertible scheme. We support our
argument by giving a provably secure protocol that employs a cryptographically
secure pseudo-random number generator (CSPRNG). The main idea is to show
that if the scheme is invertible, then the CSPRNG is not secure, and thus lead
to a contradiction.

Our protocol requires a computationally secure one-way function, whose ex-
istence is a major open problem in computer science. Nevertheless, it is well
accepted that such functions exist. In practice, many cryptographic protocols
rely on this unproven assumption.

Actually, we show that our protocol is secure against ambiguity attacks, of
which inversion attacks are a special case. Given a work Ĩ, a successful ambiguity
attack outputs a watermark W that is embedded in Ĩ, and a key K that is used
to generate W . In a weaker form, the attack is also required to output an original
I. In our discussion, we do not require the attacker to do so.

There are two components in our scheme. The first component addresses
the issue of robustness, false alarm and distortion. This component is often
called the underlying watermarking scheme. Due to the theoretical nature of this
problem, we adopt the usual assumption that the hosts and noise are Gaussian,
and distortion is measured by Euclidean 2-norm. In our protocol, we employ the
well-known spread spectrum method as the underlying scheme.

The second component consists of key-management and watermark genera-
tion. In our setting, Alice (the owner) has a secret key KA, and she generates a
watermark WA using a CSPRNG with KA as the seed. Next, she watermarks the
original I using WA. To prove the ownership, Alice needs to reveal (or show that
she knows) KA and WA. Interestingly, our scheme does not use the original I to
derive the key KA, nor the watermark WA. Hence the watermark is statistically
independent from the original. This is in contrast to the method given by Craver
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et al. [7], where Alice computes the hash of the original I, and uses the hash
value h(I) to generate the watermark WA. Hence, to achieve non-invertibility, it
is not necessary to enforce a relationship between the watermark and the original
work.

We give our main idea of our protocol in Section 2. We further give precise
notations and describe the models that we use in Section 3. The details of the
non-invertible scheme will be given in Section 4, followed by a proof of security
in Section 5. Finally we give some remarks (Section 6) and conclude our paper
(Section 7).

2 Main Idea

In our scheme, a watermark W is a sequence of −1 and 1 of length n, i.e.
W ∈ {−1, 1}n. We call W a valid watermark if it is generated by a CSPRNG
using some m-bit seed, where m < n. Thus, the number of valid watermarks is
not more than 2m, and not all sequences in {−1, 1}n are valid watermarks.

Suppose we have a probabilistic polynomial-time algorithm B such that given
any work Ĩ that is embedded using some valid watermark W , B can successfully
find a valid watermark Ŵ embedded in Ĩ with probability that is not negligible3.

Now, we want to use B to construct a polynomial statistical test T that dis-
tinguishes a truly random sequence from a sequence generated by the CSPRNG,
thus lead to a contradiction.

Given a sequence W , T carried out the following steps:

1. Embed W in I to get Ĩ, where I is a randomly chosen work.
2. Ask B for a valid watermark Ŵ embedded in Ĩ.
3. Declare that W is from the random source if B fails to find such a watermark,

and declare that W is generated by the CSPRNG otherwise.

By carefully choosing parameters for the underlying watermarking scheme,
the probability that a valid watermark exists in a randomly chosen Ĩ can be
exponentially small.

Hence, if W is generated by the truly random source, then it is very unlikely
that a valid watermark exists in Ĩ, and thus most of the time, B fails and the
decision by T is correct. On the other hand, if W is indeed generated from the
CSPRNG, the chances that a valid Ŵ can be found is not negligible since B is a
successful attacker. So, with probability that is not negligible, the decision made
by T is correct.

Combining the above 2 cases leads to the conclusion that T can distinguish
the two distributions. This contradicts with the assumption that the pseudo
random number generator is secure. Therefore, no such B exists, and the scheme
is non-invertible as a consequence.

3 W and Ŵ can be different.
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3 Notations and Models

3.1 Overall Setting

A work is a vector I = (x1, x2, . . . , xn) where each xi is a real number. A wa-
termark W is a sequence in {−1, 1}n. A key K is a sequence of m binary bits.
A watermark generator f : {0, 1}m → {−1, 1}n maps a key to a watermark. We
say that a watermark W is valid if and only if w is in the range of f , i.e., it is
generated from some key K by f .

The underlying watermarking scheme consists of an embedder and a detec-
tor. Given an original work I and a watermark W , the embedder computes a
watermarked work Ĩ. Given a work Ĩ and a watermark W , the detector declares
whether W is embedded in Ĩ, or not.

Before watermarking an original work I, Alice chooses a secret key KA and
generates a watermark WA = f(KA). Alice then embeds WA into I. To resolve
disputes of ownership, Alice has to reveal both the secret key KA and the wa-
termark WA. (In zero-knowledge watermarking setting [3, 6], Alice only has to
prove that she knows KA and WA).

In a successful ambiguity attack, given Ĩ, Bob (the attacker) manages to find
a pair KB and WB such that f(KB) = WB and WB is already embedded in Ĩ. A
formal description of ambiguity attacks will be presented in Section 3.3.

It is unreasonable to require a successful attacker to be always able to find
the pair KB and WB for every work Ĩ. Thus, we consider an attacker successful
as long as the probability that he succeeds, on a randomly chosen Ĩ, is non-
negligible (greater than 1/p(n) for some positive polynomial p(·)). Note that the
probability distribution to be used in the definition of a successful attacker is
important in the formulation. In Section 3.3 we will give more details on this.

We measure computational efficiency with respect to n, the number of coef-
ficients in a work. Thus, an algorithm that runs in polynomial time with respect
to n is considered efficient.

3.2 Statistical Models of Works and Watermarked Works

In this section, we give the statistical models of works. Recall that a work I is
expressed as I = (x1, x2, . . . , xn), where each xi is a real number. We assume
that I is Gaussian. That is, the xi’s are statistically independent and follow
zero-mean normal distribution. Thus, to generate a random I, each xi is to
be independently drawn from the normal distribution N (0, 1). Note that the
expected energy E(‖I‖2) is n.

Although the distribution of the original works is Gaussian, the distribution
of the watermarked works is not necessarily Gaussian. Consider the process
where an Ĩr is obtained by embedding a randomly chosen Wr from {−1, 1}n into
a randomly chosen original work I. If the embedder simply adds the watermark
to the original work, then the distribution of such watermarked work Ĩr is the
convolution of the distribution of the watermarks and that of the original works,
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which is not necessarily Gaussian. Let us denote the distribution of Ĩr as Xr and
call it the distribution of randomly watermarked works.

Now, consider the process where a valid watermark Wv is uniformly chosen
(by uniformly choosing the key for the watermark generator), and then the
watermarked work Ĩv is obtained by embedding Wv into a randomly chosen
original work I. Let us denote the distribution of such Ĩv as Xv, and call it the
distribution of valid watermarked works.

For clarity in notation, we use the symbol I to denote an original work, and
add the tilde Ĩ to denote a work drawn from either Xr or Xv

4.

3.3 Formulation of Ambiguity Attacks

We follow the formulation of ambiguity attacks given in [2] with slight but im-
portant modification.

Let B be a probabilistic polynomial-time algorithm. Given some watermarked
work Ĩ, we say that B successfully attacks Ĩ if it outputs a pair (W, K) s.t. Ĩ
contains the watermark W and W = f(K), or outputs a symbol ⊥ to correctly
declare that such pair does not exist. Let us write B(Ĩ) = PASS when the attack is
successful. We denote Pr[B(Ĩ) = PASS] to be the probability that B successfully
attacks a particular Ĩ. The probability distribution is taken over the coin tosses
made by B. Note that for Ĩ there does not exist such a pair (W, K), B has to
output ⊥ and hence is always successful.

We further denote Ĩn to be a work that consists of n coefficients, and that
is randomly drawn from the distribution of valid watermarked works Xv. Let
Pr[B(Ĩn) = PASS] to be the probability that an attack by B is successful. In
this case, the probability distribution is taken over the coin tosses made by B,
as well as the choices of watermarked Ĩn. Then we have the

Definition 1 Let B be a probabilistic polynomial-time algorithm. We say that
B is a successful attacker if, there exists a positive polynomial p(·), s.t. for all
positive integer n0, there exists an integer n > n0, and

Pr[B(Ĩn) = PASS] > 1/p(n).

In other words, B is a successful attacker if B successfully output a watermark-
key pair with probability that is not negligible.

Note that our definition is a slight modification from [2]. The definition in [2]
does not take into account cases where there is no valid watermark in a work.
Moreover, the distribution of the watermarked work Ĩ is taken over the random
choices of the original works. In our formulation, the watermarked work is drawn
from Xv, and we differentiate the case where there are some valid watermarks
in the given work from the case where there is not any.

4 Clearly these two distributions Xr and Xv are different. However, by an argument
similar to that in Section 5, it is not difficult to show that these two distributions
are computationally indistinguishable.
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This modification is important. We cannot simply say that an attacker is
successful if Pr[B(Ĩn) = PASS] is high. This is because we observe that, it is
possible to design a watermarking scheme such that for a randomly chosen work
Ĩ, the probability that it does not contain a valid watermark is very high. In that
case, a trivial algorithm that always declares “can not find a valid watermark” is
correct with high probability, and thus by definition is a successful attacker. Due
to this consideration, we decide to consider Xv in the definition, and separate
the two cases where valid watermarks do or do not exist.

3.4 Cryptographically Secure Pseudo-random Number Generator

Loosely speaking, a pseudo-random number generator (PRNG) takes a seed of
a certain length as input and outputs a string, which is of a longer length than
that of the seed.

A cryptographically secure pseudo-random number generator (CSPRNG) is
a PRNG whose output string cannot be computationally distinguished from a
truly random distribution. Formal definition of the security of CSPRNG is done
in terms of polynomial statistical tests [11]. We follow a simplified definition of
statistical tests used in [4].

Let {0, 1}n be the set of binary strings of length n, and {0, 1}∗ denotes the
set of all binary strings of all lengths. Formally, we have the following definitions.

Definition 2 A PRNG g is a deterministic polynomial-time algorithm g :
{0, 1}m → {0, 1}q(m), for some positive integer m and positive polynomial q(m).

Definition 3 A probabilistic polynomial-time statistical test T is a probabilistic
polynomial-time algorithm that assigns to every input string in {0, 1}∗ a real
number in the interval [0, 1].

In other words, T can be considered as a function T : {0, 1}∗ → [0, 1], which
terminates in polynomial time, and whose output depends also on the coin tosses
during execution. Let rn be the expected output of T over all truly random n-bit
strings drawn uniformly from {0, 1}n, and all coin tosses made by T . We have

Definition 4 A PRNG g passes test T if, for every positive integer t, and
every positive polynomial q(m), there exists a positive integer m0, such that for
all integers m > m0, the expected output of T , given a q(m)-bit string generated
by g, lies in the interval (rq(m) − m−t, rq(m) + m−t), assuming the seed of g is
uniformly distributed over {0, 1}m.

If a PRNG g does not pass a test T , we say that T has an advantage in
distinguishing g from a truly random source. Then we can define CSPRNG as

Definition 5 A CSPRNG is a PRNG g that passes every probabilistic polyno-
mial-time statistical test T .
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In other words, no test T can have an advantage in distinguishing a CSPRNG
g from a truly random source.

In this paper, we employ the CSPRNG due to Blum et al. [4]. A Blum number
N is an integer that is the product of two primes, each congruent to 3 (mod 4).
Let QRN be the set of all quadratic residues in Z

∗
N . That is, x ∈ QRN if and

only if there exists an x0 ∈ Z
∗
N such that x2

0 ≡ x mod N . Let s ∈ QRN be a
seed to the Blum CSPRNG, the i-th bit bi in the output string is computed as

bi = (s2i

mod N) mod 2. (1)

In other words, we compute the output string by squaring the current number
(starting from the seed) to get the next number, and take the least significant
bit as the output.

Following the above notations, we have the

Definition 6 A Blum PRNG is a function g : QRN → {0, 1}q(m) defined as
g(s) = b0, b1, · · · , bq(m)−1, where bi = (s2i

mod N) mod 2, N is a Blum num-
ber of length m, and q(m) is a positive polynomial of m.

It is proved in [4] that, under the well accepted assumption that integer
factorization is hard, this PRNG is secure. That is, it passes every polynomial
statistical test T . We shall refer to it as the Blum CSPRNG.

4 A Non-invertible Scheme

Now, we describe the proposed secure protocol. The parameters for the protocol
are three constants T, k and m.

In the proof of security, the parameters should be expressed in terms of n.
We will choose

k = 1/100, T = nk/2 = n/200, m =
√

n. (2)

4.1 Underlying Watermarking Scheme

The underlying watermarking scheme is essentially the spread spectrum method.
For completeness and clarity, we describe the embedding and detection processes.

Embedding: Given an original I and a watermark W , the watermarked Ĩ is

Ĩ = I + kW,

where k is a predefined parameter.

Detection: Given a work Î and a watermark W , declare that Î is watermarked
if and only if

Î · W ≥ T,

where · is the vector inner product and T is a predefined parameter.
For simplicity, we omit normalization in the embedding. Thus, the energy

‖Ĩ‖2 of a watermarked work is expected to be higher than the original work.
Our proof can be modified (but tedious) when normalization is to be included.
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4.2 False Alarm, Robustness, and Distortion (Parameters T and k)

The performance of a watermarking scheme is measured by its false alarm, ro-
bustness and distortion. Detailed analysis can be found in [5]. Here, we are more
concerned with the false alarm.

The false alarm F is the probability that a randomly chosen Ĩ is declared to
be watermarked by a random valid watermark W . That is

F = Pr[Ĩ · W > T ] (3)

where Ĩ is drawn from the distribution of randomly watermarked works Xr, and
W is uniformly chosen from W the set of valid watermarks.

The false alarm F is small. To see that, consider any given W ∈ W and
Ĩ randomly chosen from distribution Xr, it is not difficult to show that the
distribution (Ĩ ·W ) is a zero-mean normal distribution with standard derivation
δ where δ can be analytically derived. If T = C0δ where C0 > 0 is some positive
constant, then the probability that a random Ĩ satisfies (Ĩ ·W > T ) is less than
exp(−C2

0/2). Using the parameters in (2), δ < 2
√

n. Since T = n/200, it is many
times larger than the standard derivation δ.

For each Wi ∈ W , where 1 ≤ i ≤ |W|, let Fi be the probability that Ĩ ·Wi > T

for random Ĩ from Xr. By the argument above, Fi is exponentially small with
respect to n. More precisely, given the parameters in (2) and random Ĩ from Xr,

Fi = Pr[Ĩ · Wi > T ] = exp(−din) (4)

for some positive constant di. Therefore,

F =
|W|
∑

i=1

Fi Pr[W = Wi] ≤ exp(−C1n) (5)

where C1 is the maximum di in (4), which is a positive constant.
By choosing k = 1/100, the distortion introduced during embedding is 1%

of the original work. We could also choose k to be a slow decreasing function,
for e.g. k = 1/

√
log n, so that the ratio of the distortion over the energy of the

work tends to 0 as n increases. Our proof still holds for this set of parameters.
Similarly, the scheme is very robust. Since the expected inner product of a

watermarked image and the watermark is E[(I +kW ) ·W ] = kn, a noise of large
energy is required to pull the inner product below the threshold T = kn/2. In
this case, for noise with energy n (i.e. same as the original image), the watermark
can still be detected in the corrupted work with high probability.

4.3 Watermark Generation (Parameter m)

A watermark is generated using a CSPRNG f : {0, 1}m → {−1, 1}n where
m ≤ n. Thus, it takes a small seed of m bits and produces a watermark. Note
that this CSPRNG can be easily translated from the Blum CSPRNG by mapping
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the output 0 to −1, and 1 unchanged. Let W to be the range of the function f ,
and it is actually the set of valid watermarks. Clearly, |W| ≤ 2m.

Intuitively, for better security, we should have large m so that given a valid
watermark, it is computationally difficult for an attacker to find the key K, such
that f(K) = W . However, in some applications and our proof, we need the
number of valid watermark to be small, so that it is computationally difficult
for an attacker to find a valid watermark. On the other hand, if m is too small,
an attacker can look for a suitable valid watermark using brute-force search.

In our construction, we choose m =
√

n, thus |W| = 2
√

n. As a result,
it is computationally infeasible to do a brute-force search in the set of valid
watermarks. At the same time, consider a randomly watermarked work Ĩn drawn
from distribution Xr, which is of length n. With the parameters as in (2), the
probability that Ĩn contains any valid watermark W ∈ W is very small. Let us
denote this probability V (n) as a function of n, that is,

V (n) = Pr[∃W ∈ W , Ĩn · W > T ] (6)

where Ĩn is drawn from Xr. Recall from Section 4.2 that the probability Fi that
a randomly watermarked work can be declared as watermarked by a given valid
watermark Wi ∈ W is exponentially small with respect to n. In particular, Fi ≤
exp(−C1n) for some positive constant C1 and for all 1 ≤ i ≤ |W|. Therefore,

V (n) = 1 −
|W|
∏

i=1

(1 − Fi) ≤ 1 − (1 − exp(−C1n))2
m

< 2m exp(−C1n) < exp(−C1n +
√

n)

(7)

where C1 is some positive constant. Note that V (n) is a negligible function of n.

5 Proof of Security

Now, we are ready to prove that the proposed protocol is secure. We assume
that the function f is a CSPRNG. Suppose that there is a successful attacker B
as defined in Definition 1, we want to extend it to a statistical test T that has
an advantage in distinguishing sequences produced by f from that by a truly
random source. Since f is a CSPRNG, this leads to a contradiction, and thus
such a B is impossible.

Given an input W ∈ {−1, 1}n, the following steps are carried out by T :

1. Randomly pick an original work I.
2. Compute Ĩ = I + kW . That is, embed W into I.
3. Pass Ĩ to B and obtain an output.
4. If the output of B is a pair (Ŵ , K̂), such that Ŵ = f(K̂), then T declares

that W is generated by f by outputting a 0. Otherwise B outputs a ⊥, then
T declares that W comes from a random source by outputting a 1.

We want to calculate the expected output of T for the following 2 cases. If
the difference of the expected outputs of these 2 cases is non-negligible, then by
the definitions in Section 3.4, f is not a CSPRNG, thus leads to a contradiction.



22 Qiming Li and Ee-Chien Chang

Case 1: W is from a random source. Suppose W is from a random source,
then the probability that there exists a valid watermark Ŵ ∈ W in Ĩ is exactly
the probability V (n) in (7), which is negligible with respect to n as we have
shown in Section 4.3. Hence, we know that T will almost always output a 1
to correctly declare that it is from the random source, except in the unlikely
event E where Ĩ happens to contain a valid watermark. Clearly E happens with
negligible probability V (n). We observe that, when E happens, T may output
a 0 with a probability that is not negligible (since B is a successful attacker).
We consider the obvious worst case (best case for the attacker) that, T always
output 0 when E happens. In this case, the fraction of 0’s output by T is V (n),
which is still negligible. Therefore, let E1(T ) be the expected output of T , we
have

E1(T ) > 1 − V (n). (8)

Case 2: W is from the CSPRNG f . Suppose W is generated by f , then W
is a valid watermark. Since B is a successful attacker, by definition B is able to
find a valid watermark Ŵ that is already embedded in Ĩ with a probability that
is not negligible. More specifically, for any positive integer n0,

Pr[B(Ĩ) = PASS] > 1/p(n)

for some positive polynomial p(·) and for some n > n0. Hence, the probability
that T decides that W is from the CSPRNG f is more than 1/p(n). Hence, let
E2(T ) be the expected output of T in this case, and we have

E2(T ) <

(

1 − 1
p(n)

)

. (9)

Consider the difference between (8) and (9). Since V (n) is negligible but
1/p(n) is not, the difference cannot be negligible because the sum of two negligi-
ble functions is still negligible. Hence, the difference between E1(T ) and E2(T )
is not negligible. Thus T has an advantage in distinguishing the truly random
source from the the output of f , therefore f by definition is not a CSPRNG,
which is a contradiction. As a result, such a successful attacker B does not exist.

6 Remarks and Future Works

Choice of m. In our construction we require the parameter m to be small.
However, it seems that even if it is large, say m = n/2, the protocol is still secure.
Thus it would be interesting to find an alternative proof that handles large m.

Underlying watermarking scheme. For simplicity in the proof, we use a simple
watermarking scheme, and “discretized” watermark W ∈ {−1, 1}n. The draw
back is that the performance of false alarm, robustness and distortion would be
far from optimal. Recent results in communication theory offer schemes that can
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achieve much higher performance. Thus, we can have much lower false alarm,
with other requirement fixed. On the other hand, it is also not clear whether
we can make these schemes secure against inversion attacks. This is because in
these schemes, the watermark is usually derived from the original in an insecure
manner. It is interesting to investigate this issue. Furthermore, our proof requires
valid watermarks to be “sparsely populated” in {−1, 1}n. On the other hand,
schemes with high performance usually require the watermarks to be densely
populated, so as to reduce the distortion. Therefore, it is interesting to know if
our proof can be extended.

Proving ownership. As mentioned earlier, to prove the ownership of a work
Ĩ, Alice has to show that she knows a pair (KA, WA), such that WA is correctly
generated from KA and is detectable in Ĩ. However, directly revealing such a
pair in the proof might leak out information that leads to successful attacks.
One alternative is to use zero-knowledge interactive proofs to prove the relation-
ship between KA and WA without revealing the actual values. We note that it
is straight forward to apply known zero-knowledge interactive proofs efficiently
in our scheme. This is an advantage of our construction over schemes that in-
volves hash functions (such as [7]), which are difficult to prove using known
zero-knowledge interactive proofs.

Generation of watermarks. In Craver et al. [7], Alice computes a secure hash
of the original I, and uses the hash value h(I) to generate the watermark WA,
which is then embedded into I. It is commonly believed that we need to generate
the watermark from the original in a one-way manner to achieve non-invertibility
since the attacker would be forced to break the underlying one-way function.

Interestingly, our scheme does not use the original I to derive the key KA,
nor the watermark WA. Hence the watermark is statistically independent from
the original. Although we can view the hash value h(I) as the secret key KA in
our setting, our results show that it is not necessary to enforce a relationship
between the watermark and the original work.

7 Conclusions

Resistance to inversion attacks is an important requirement for a secure digital
right management system. Many schemes have been proposed to improve secu-
rity. On the other hand, there are also attacks proposed to break these schemes.
In this paper, we give a provably secure protocol that is resistant to inversion
(and ambiguity) attacks. We prove the security using well accepted techniques in
cryptography. Specifically, we show that if an inversion attack is possible, then
we can computationally distinguish a truly random sequence from a sequence
generated from a cryptographically secure pseudo-random number generator. It
is interesting to investigate how to bring our proposed protocol into practice.
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