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Abstract. Stochastic (a.k.a. Markov) Games pose many unsolved prob-
lems in Game Theory. One class of stochastic games that is better under-
stood is that of Common Interest Stochastic Games (CISG). CISGs form
an interesting class of multi-agent settings where the distributed nature
of the systems, rather than adverserial behavior, is the main challenge
to efficient learning. In this paper we examine three different approaches
to RL in CISGs, embedded in the FriendQ, OAL, and Rmax algorithms.
We show the performance of the above algorithms on some non-trivial
games that illustrate the advantages and disadvantages of the different
approaches.

1 Introduction

Learning in Common Interest Stochastic Games (CISGs) provides an interesting
intermediate ground between single-agent reinforcement learning (RL) [1] and
general multi-agent RL (MARL). CISGs pose all the standard challenges of
single-agent RL, in particular the need to balance exploration and exploitation [2]
and to exhaust information (i.e propagate new experience) [1,3]. In addition,
they challenge the agents to coordinate behavior, without confronting the more
difficult task of optimizing behavior against an adversary [4].

CISGs require inter-agent coordination at two levels: (i) selecting whether to
explore or exploit in unison; (ii) coordinating the exploration and exploitation
moves. This requirement stems from the dependence of the team’s next state on
the actions of all its members. Hence, it is impossible for the team to explore
(or exploit) unless all agents explore/exploit together. Moreover, even when the
model is known, multiple Nash equilibria are likely to exist, and the agents still
face the task of reaching consensus on which specific Nash equilibrium to play.

We compare three algorithms for learning in CISGs: OAL [5], FriendQ [6],
and Rmax [7]. They were selected because each embodies a different approach
to these learning tasks, while guaranteeing convergence to optimal behavior in
CISGs. We examine diverse variants of these algorithms with the aim of gaining
better understanding of their performance w.r.t. their approach to exploration-
exploitation, information exhaustion, and coordination tasks.

The main phenomenon demonstrated by our experiments is the high sensi-
tivity of FriendQ and OAL to the topology and dynamics of the environment
vs. Rmax’s stability. Even moderate-sized physical domains lead to numerous
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Nash-equilibria, where Rmax’s exploration bias, efficient implicit model-based
coordination and information exhaustion lead to superior performance.

The paper is structured as follows: Section 2 provides the necessary back-
ground on multi-agent reinforcement learning. Section 3 describes the algorithms
involved. Section 4 describes our experiments, and Section 5 concludes the paper.

2 Multi-agent Reinforcement Learning

In MARL, the environment is modeled as a Stochastic Game(SG). An SG is
a tuple 〈P, S, A, R, T 〉 where: P is a set of n agents; S, a state space; A =
×Ai=1...n, a set of joint-actions, where Ai is the set of private-actions available
to agent i; R = {R1, R2, . . . , Rn} is a set of reward functions for the agents
where Ri : S × A → R is the reward function for agent i and Ri(s, a) is the
expected reward for agent i when joint action a ∈ A is performed in state s ∈ S;
and T : S ×A× S → [0, 1] is a stochastic transition function where T (s, a, s′) is
the probability of reaching state s′ when joint action a is played in state s. In
CISGs, all agents have identical interests, i.e., Ri = Rj ∀i, j ∈ P .

Each agent in an SG attempts to maximize its expected value, i.e., its ex-
pected sum of discounted rewards: E[

∑∞
t=0 γt(ri,t)] where ri,t is agent i’s reward

at time t, and γ ∈ (0, 1) is a discount factor. In CISGs, this means that agents
attempt to maximize their common expected value. Thus, CISGs can model RL
by a distributed team of agents.

A deterministic joint policy π = {π1 . . . πn} is a mapping from states to joint
actions where πi(s) is agent i’s part of the joint action π(s) = (π1(s), . . . , πn(s)).
Every CISG has at least one deterministic policy π∗ that achieves optimal
value. Any such policy π∗ satisfies π∗(s) = argmaxaQ∗(s, a). Q∗(s, a) is called
the Q value of s and a. It is the expected sum of rewards received for tak-
ing action a in state s and behaving optimally thereafter, i.e.,: Q∗(s, a) =
R(s, a) + γ

∑
s′∈S T (s, a, s′)maxa′∈A Q∗(s′, a′).

A joint policy {π1...πn} is a Nash equilibrium if each individual policy πi is
a best response to the others. That is V (s, {π1...πi...πn}) ≥ V (s, {π1...π

′
i...πn})

for all i ∈ P , s ∈ S, and individual policy π′
i �= πi, and where V (s, π) is the

expected return when joint policy π is played starting from state s. An optimal
Nash equilibrium is a Nash equilibrium that maximizes the expected return.

We shall concentrate on CISG learning under perfect monitoring, where each
agent sees the actions of all agents. OAL and FriendQ rely on this assumption.
Rmax can handle scenarios in which each agent sees its own private action only.

3 The Learning Algorithms

Next we describe the three different reinforcement learning algorithms we stud-
ied.

3.1 FriendQ

FriendQ [6] extends basic Q-learning into CISGs. It attempts to learn Q-values
without maintaining a model of the environment. After taking a joint action
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a = (a1, ..., an) in state s at time t and reaching state s′ with reward rimm the
agents update the Q-value of 〈s, a〉 as follows:
Qt(s, a1, . . . , an)← (1− αt)Qt−1(s, a1, . . . , an)+

+αt(rimm + γ maxb1,...,bn Q(s′, b1, . . . , bn))
where αt ∈ (0, 1] is a learning rate parameter and γ the discount factor. Given
that

∑∞
t=0 αt = ∞,

∑∞
t=0 α2

t < ∞ and that every joint action is performed in-
finitely often in every state, the Q-values are guaranteed to converge asymptoti-
cally to Q∗ [8]. In online learning, convergence to optimal behavior is considered.
This is achieved using “Greedy in the Limit with Infinite Exploration”(GLIE)
learning policies. In GLIE every state-action pair is visited infinitely often, and
in the limit, the action selection is greedy w.r.t. the Q-values w.p.1. Two com-
mon GLIE policies are Boltzman distributed action selection and ε-greedy action
selection. FriendQ lacks a measure for private actions, required for Boltzman ex-
ploration, so we use it with ε-greedy exploration only. In ε-greedy exploration,
each agent randomly picks an exploratory private-action with probability ε, and
with probability 1−ε takes it’s part of an optimal (greedy) joint-action w.r.t. the
current Q-value. ε is asymptotically decreased to zero over time.

All agents make the same observations, so they maintain identical Q-values.
But two problems arise: (i) Because randomization is used to select exploration
or exploitation, the agents cannot coordinate their choice of when and what
to explore. (ii) In case of multiple optimal policies, i.e., several joint actions
with maximal Q values in a certain state, the agents must agree on one such
action.The original FriendQ algorithm has no explicit mechanism for handling
these issues. Here, we examined some enhanced versions of FriendQ: We begin
with Uncoordinated FriendQ (UFQ), the simple version described above. We
then examine the effect of adding coordination of greedy joint actions by utilizing
techniques introduced in [9], basically, a shared order over joint actions is used for
selecting among equivalent Nash equilibria. If such an order is not built into the
agents, it is established during a preliminary phase (see [9] for more details). This
version is referred to as Coordinated FriendQ (CFQ). For comparison we also
combine this equilibrium selection technique with the model based Q-learning
algorithm used by OAL. We call this combination ModelQ (MQ). We continue
with Deterministic FriendQ (DFQ) in which the agents explore and exploit in
unison, always exploring the least tried joint action. An exploratory action is
taken each 
1/ε�′th move. Finally we add Eligibility Traces [1] to DFQ (ETDFQ).

3.2 OAL
OAL [5] combines classic model-based Q-learning with a new fictitious play
algorithm for action and equilibrium selection named BAP (Biased Adaptive
Play). The Q-value update rule is:

Qt+1(s, a) = Rt(s, a) + γ
∑

s′
Tt(s, a, s′)max

a′
Qt(s′, a′)

where Rt, the approximated mean reward, and Tt, the approximated transition
probability are estimated using the statistics gathered up to time t. Using GLIE
policy, OAL converges in the limit to optimal behavior.
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An OAL agent records the last m joint-actions taken at each state. Each
round, the agent randomly samples k joint-actions from the last m joint-actions
(k < m) taken at the current state. Greedy private-action selection is done using
BAP. BAP treats the stage-games in the CISG (the single-state games induced
by the Q-values at each state). At each round BAP builds and plays a Virtual
Game (VG) for the current stage-game. The VG has reward 1 for any optimal
equilibrium and reward 0 for all other joint actions. Unless equilibrium-selection
conditions are met, BAP chooses the best response private-action according to
the current model and w.r.t. the current history sample, i.e., private-action that
maximizes expected payoff assuming the history sample represents the other
agents strategies1. If equilibrium selection conditions are met – i.e., if in all k
current samples the other agents chose the same part of some optimal equilibrium
(w.r.t. the current VG) and if, in at least one of the k samples, a complete optimal
joint action was played – the agent plays its part of the last such action in the
sample. (Recall that different agents may sample different past plays).

OAL can use Boltzman distributed exploration. In Boltzman exploration a
private action ai ∈ Ai is taken with probability eER(ai)/τ

∑
a′∈Ai

eER(a′)/τ where ER(ai)

is the expected payoff of private-action ai. τ , the temperature, is a positive
parameter decreased over time asymptotically to zero. High temperatures cause
the actions to be all nearly equi-probable and when τ → 0 action selection
becomes completely greedy. We also examine OAL with an addition of Prioritized
Sweeping [3] to the underlying Q-learning algorithm (PSOAL).

3.3 Rmax

Rmax [7] is a model-based algorithm designed to handle learning in MDPs and in
zero-sum stochastic games. The agent maintains a model of the environment, ini-
tialized in a particular optimistic manner. It always behaves optimally w.r.t. its
current model, while updating this model (and hence its behavior) when new
observations are made. Because the initialization and model-update steps are
deterministic, so is the whole algorithm. Recall that a CISG can be viewed as
an MDP controlled by a distributed team. [9] observes that such a team can
coordinate its behavior given a deterministic algorithm such as Rmax. At each
point in time, all agents have an identical model of the environment and know
what joint-action needs to be executed next2. Thus, each agent plays its part of
this action. When a number of actions are optimal w.r.t. the current state, the
agents utilize a shared order over joint-actions to select among these actions.
[9] shows how such an order can be set-up, how even weaker coordination de-
vices that do not require such an order can be used, and how these ideas can be
employed even under imperfect monitoring.

The model M ′ used by Rmax consists of n + 1 states S′ = {s0, ..., sn} where
s1, ..., sn correspond to the real states and s0 is a fictitious state3. The transition
1 This is known as fictitious play [10].
2 Knowledge of fellow agents (private) action sets can be acquired online.
3 The model may be constructed online as states are discovered.
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probabilities in M ′ are initialized to TM ′(s, a, s0) = 1 ∀〈s, a〉 ∈ S′ × A. The
reward function is initialized to RM ′ (s, a) = Rmax ∀〈s, a〉 ∈ S′×A, where Rmax

is an upper bound on maxs∈S,a∈AR(s, a). Each state/joint-action pair in M ′ is
classified either as known or as unknown. Initially, all entries are unknown.

Rmax computes an optimal policy with respect to M ′ and follows this policy
until some entry becomes known. It keeps the following records: (i) number
of times each action was taken at each state and the resulting state. (ii) the
actual rewards rac received at each entry. An entry (s, a) becomes known after
it has been sampled K1 times, such that with high probability TM (s, a, s′)−ρ ≤
PE(s, a, s′|K1) ≤ TM (s, a, s′) + ρ where TM is the transition function in M ,
PE(s, a, · |K1) the empirical transition probability according to the K1 samples,
and ρ the accuracy required from M ′. When (s, a) becomes known the following
updates are made: TM ′(s, a, ·)← PE(s, a, · |K1) and RM ′(s, a)← rac(s, a). Once
a new entry becomes known, Rmax computes the new deterministic optimal
policy w.r.t. the updated model M ′ and follows it.

The known (worst-case) polynomial bounds on K1 are impractical. In the
experiments we violated these bounds. This enables to eliminate knowledge of
the state space size. We also do not assume Rmax is known, instead we initialize
Rmax to some positive value and update it online to be twice the highest reward
encountered so far.

3.4 Discussion of Algorithms

Efficiency of GLIE learning policies depends on the topology and dynamics of
the environment. If the probability to explore falls low before “profitable” parts
of the environment are sufficiently sampled, the increasing bias to exploit may
keep the agents in sub-optimal states. This means that GLIE policies can ex-
hibit significant differences depending on the particular schedule of exploration.
GLIE policies also suffer from their inability to completely stop exploration at
some point. Thus, even when greedy behavior is optimal, the agent is unable
to attain optimal return. The exploration method of Rmax is less susceptive to
the structure of the environment. As long as Rmax cannot achieve actual re-
ward ε-close to optimal it will have a strong bias for exploration since unknown
entries seem very attractive. This strategy is profitable when the model can be
learned in a short time. However, the theoretical worst-case bounds for conver-
gence in Rmax [7] are impractical. In practice, much lower values of K1 suffice.
Bayesian exploration [11,12] and locality considerations might help to obtain
better adaptive bounds, but we did not pursue these approaches here.

GLIE makes learning “slower” as the agents get “older”. To accelerate learn-
ing one must use new experience in an exhaustive manner (i.e, use current ex-
perience to improve behavior in previously visited states). Eligibility traces are
used to propagate information in model-free algorithms. In model-based algo-
rithms an exhaustive computation per new experience is too expensive (in cpu
time) and Prioritized Sweeping [3] is a well known solution, yet not exhaustive.
Rmax makes one exhaustive computation each time a new entry becomes known
(and does no further computation).
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Exploration in FriendQ and OAL algorithms is not coordinated. Each of
the agents independently chooses an exploratory action with some diminishing
probability. Thus, joint-actions that have no element (private-action) of some
optimal joint-action have a lower chance of being explored. Hence, some popu-
lar techniques for decreasing exploration in the single agent case lead to finite
exploration in the multi agent case. For example taking ε = 1/time for ε-greedy
policies will make the chance of exploring such joint actions 1/timen, where n
is the number of agents.

Equilibrium selection in Rmax and CFQ comes with no cost. In OAL it is
essentially a random protocol for achieving consensus. This protocol may take
long to reach consensus w.r.t. the current Q-values, but provides for another
exploration mechanism at early stages, when Q-values are frequently updated.

Parameter tuning is task specific and based more on intuition and trial and
error than on theoretical results. FriendQ has a range of parameters for decaying
the learning rate, the exploration probability and the eligibility traces which also
pose inter-parameter dependencies. For decreasing the learning rate parameter
we used the results presented in [13]. OAL takes parameters for history sample
size and for exploration. In this respect, we found Rmax superior. It has a single
and very intuitive parameter - number of visits to declare an entry known.

4 Experimental Results and Analysis

We exhibit results on two 2-agent grid games. The games were designed to evalu-
ate the effects of exploration, coordination and information exhaustion methods
on performance in different environments. The game environments are grids in
which the agents can move using the actions up, down, left, right, stand. Agent
position pairs constitute the state space of the underlying stochastic game.

The games were played under deterministic and stochastic transition proba-
bilities. In stochastic mode, each action (excluding stand) succeeds with proba-
bility 0.6. With probability 0.1 the agent is moved to an adjacent cell or stays
in place. stand succeeds w.p.1.

We tested the algorithms on the first set of experimental conditions (see
below Game1 with deterministic setup) with a range of different parameters.
The parameters that achieved best results were then used throughout:
FriendQ
Exploration: ε-greedy with – (i) εt ← 1/count0.5000001

t where countt is the
number of exploratory steps taken by time t. (ii) εt ← 0.99998countt. (unless
specified otherwise, (i) is used)4. Learning rate: αs,a ← 1/n(s, a)0.5000001 where
n(s, a) is the number of times action a was taken in state s.
OAL
Exploration: For ε-greedy, εt ← 1/count0.5000001

t , as in FriendQ. For Boltzman
exploration the temperature parameter was decreased by τ ← 100/count0.7 His-
tory: Random history sample size = 5. History memory size m = 20 (m must

4 Exponential decay of ε violates the “infinite exploration” condition for convergence.
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satisfy m ≥ k× (number of agents+2).) We refer to OAL with ε-greedy explo-
ration as ε-OAL, and to OAL with Boltzman exploration as B-OAL.

Rmax
Sampling: values of 50, 100, 200 for K1 (visits to mark an entry known) were
tested. Accuracy of policy iteration: Offline policy iterations was halted
when the difference between two successive approximations was less than 0.001

Each set of experimental conditions, other than those related to Rmax, was
subjected to 100 repeated trials. For Rmax, 20 trials were done using K1=50,
40 with K1=100 and 40 with K1=200. The discount factor was 0.98 in all trials.

S(A)

S(B)

T(B)

T(A)

Fig. 1. Game 1 - Initial and Goal states.

4.1 Game 1

This game was devised to emphasize the effects of equilibrium selection methods.
It has a single goal state (the only reward yielding state) and several optimal
ways of reaching it. The game is depicted in Figure 1. S(X) and T (X) are
the respective initial and goal positions of agent X . The underlying SG has 71
states. The goal state T (both agents in goal positions) generates a reward of 48.
Upon reaching the goal the agents are reset to their initial position. The optimal
behavior is to reach T in four steps. Under deterministic setup, this yields an
average reward per step of 12. There are 11 optimal different equilibria. The
optimal policies are the same under the stochastic setting, with ∼6.14 average
reward per step. Algorithms were executed for 107 rounds on both settings.
For the deterministic setup Table 1 classifies the number of trials (of 100 in
total) according to the algorithms and learned policies. Here xFQ is a variant of
FriendQ in which the agents explore in unison but do not coordinate exploratory
actions. The suffix “εed” of DFQεed denotes exponential decay of ε. In the
present context, the agents’ learning of an optimal policy means that their greedy
choice of actions is optimal. Because of continued exploration, this does not

Table 1. Game1 – Number of Trials Per Learned Policies under Deterministic Setup.

steps to

goal

UFQ CFQ xFQ DFQ DFQεed ε-OAL B-OAL B-OALPS MQ Rmax

4 62 49 47 100 100 26 49 41/60 1 100

5 38 49 46 62 51 19/60 49

6+ 2 7 12 29

∞ 21
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necessarily yield optimal behavior. Figure 2 presents the average reward obtained
by the agents over time under deterministic setup.
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Variations of FriendQ on deterministic Game-1. Average reward over time.
 Averaged over 100 trials, 10,000,000 rounds per trial
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(a) FriendQ variants
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e-OAL and MQ on deterministic Game-1. Average reward over time.
Averaged over 10,000,000 rounds

e-OAL averaged over all trials
e-OAL averaged over trials that converged to opt

MQ averaged over all trials

(b) ε-OAL and MQ
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Rmax, B-OAL and B-OALPS on deterministic Game-1.
Average reward over time, Averaged over 1,000,000 rounds

Rmax K1=200
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(c) Rmax and B-OAL

Fig. 2. Game 1 – Avg. Reward under Deterministic Setup. Graphs for Rmax and
B-OAL are over 106 Rounds Only.

FriendQ converges quickly to second-best behavior (Fig. 2a). From that point
on, the average learning curve of UFQ, CFQ and xFQ increases stepwise rather
than continuously. This results from a sudden switch of the FriendQ agents from
sub-optimal to optimal behavior upon restructuring of the Q-values series. We
would expect ε-OAL to present a similar trend but when OAL converges to the
second-best behavior in the first 5 × 105 rounds, it fails to order the Q-values
properly even after 107 rounds. In DFQ since exploration is deterministic this
switch is always after 7× 106 rounds(Fig. 2a).

Surprisingly, UFQ fares better than CFQ (Fig. 2a). At an early learning stage
dis-coordination leads to exploration. We discovered that, later on, the estimated
Q-values of optimal actions are rarely equal, and thus, coordinating exploitation



An Experimental Study of Different Approaches to Reinforcement Learning 83

does not pose a problem (at the examined time interval). Exponential decay of
ε supplies more exploration at an early period then polynomial decay leading to
faster convergence of DFQεed(Fig. 2a). The eligibility traces do not contribute
much in this example. We found the parameters of eligibility traces very hard to
tune and very sensitive to change in other parameters or environment dynamics.

OAL agents converge relatively quickly to optimal or second-best behavior,
and from that time onwards stick to their behavior (Figs 2b,c). B-OAL converges
faster and more often to optimal than ε-OAL. This stems from more exploration
supplied by the Boltzman method than by the ε-greedy method in early period of
learning. Later on, ε-greedy maintains a low exploration probability that decays
very slowly while Boltzman exploration drops faster to zero. Thus, when ε-OAL
learns optimal behavior it keeps achieving only near-optimal average-reward. As
expected Prioritized Sweeping improves the performance of B-OALPS.

The performance of ModelQ is inferior to that of OAL (Fig. 2b) presumably
because ModelQ does not explore as much as OAL: at early stages of learning
fictitious play provides OAL with other means of exploration. When the agents
make many stochastic action choices in early stages of learning, fictitious play
amplifies the random behavior. However, at later stages of learning, deviation
from constant action choice is rare and will probably not affect fictitious play.

The results on the stochastic setup are presented in Figure 3. By contrast
to the deterministic case, MQ performs better than ε-OAL. This improvement
is attributable to additional exploration stemming from the stochastic nature
of the environment. For the same reason CFQ performs the same as UFQ. The
slower climb of DFQεed in relation to U/CFQ at first 106 rounds is because the
additional early exploration supplied by εed is redundant in the stochastic case.
The slightly higher return gained by DFQεed later on is due to the faster decay
of ε. Rmax behaves similarly in the stochastic and deterministic setups. While
the other algorithms achieve only near-optimal return Rmax spends the same
amount of time to discover all entries and then attains optimal return.

Rmax’s strong exploration bias results in low return until model entries are
known (Fig. 3c). From that point on, Rmax attains an optimal return. Very low
K1 values, which mean rough transition probability estimates, are enough for
computing optimal behavior.

The phenomena observed in Game 1 repeated in Game 2. Therefore, in the
following we discuss only phenomena not observed in Game 1.

4.2 Game 2

This game was designed to minimize the effects of equilibrium selection and to
show how GLIE policies may keep agents exploiting suboptimal possibilities and
the importance of coordinated exploration. The game has four goal states and
one optimal equilibrium. The game is depicted in Figure 4(a). It consists of an
additional element, an object that can be moved by the agents. Agents can push
the object by standing to its right(left) and moving left(right) and pull the object
by standing to its right(left) and moving right(left). However, the object is too
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Fig. 3. Game1 – Avg. Reward and Success Percentage under Stochastic Setup.

heavy for one agent and requires cooperation of the two agents to be moved.
The manner by which the object is moved is depicted in figure 4(b).

The agents’ goal is to move the object into one of the upper corners of the
grid, at which point the game is reset to its initial state. Moving the object to the
upper right (G1) or left (G2) corner yields a reward of 80 and 27, respectively. The
optimal behavior is to move the object to G1 in 8 steps. The average reward per
step of an optimal strategy under deterministic setup is 10, and the discounted
return is ∼ 465. The “second best” strategy is moving the object to G2 in 3
steps, with an average reward per step of 9 and discounted return of ∼ 440. The
optimal and second best strategies are the same under stochastic setup. The
average reward per step of the optimal policy is ∼ 4.8. The underlying CISG
contains 164 states. Algorithms were executed for 3× 107 rounds.

Table 2 classifies the number of trials (of 100 in total) according to the
algorithms and learned policies under the deterministic setup.

Figure 5 shows the average reward over time obtained by the different algo-
rithms under the deterministic setup. The results are averaged over all trials.
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S(A) S(B)

�G2 G1

(a) Initial state and Goal states.

A
←

B
←� � A B�

(b1) Moving the object by pushing simultaniosly.
(Agents’ order does not matter).

A
→

B
→� � A B�

(b2) Moving the object by pushing and pulling
simultaniosly. (Agents’ order does not matter).

Fig. 4. Game 2.

Table 2. Game2 – Number of Trials Per Learned Policies under Deterministic Setup.

Goal steps
to goal

CFQ CFQεed DFQεed ε-OAL B-OAL Rmax

G1 8 100 1 100

G2 3 99 39/60 54 91

G2 4 1 21/60 46 8
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FriendQ and OAL on deterministic Game-2. Average reward over time.
Averaged over 100 trials, 30,000,000 rounds per trial.
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(b) Rmax; B-OAL; DFQeed

Fig. 5. Game 2 – Avg. Reward under Deterministic Setup. Rmax and Boltzman OAL
are presented on a scale of 3 × 106 rounds.

The main reasons for the poor performance of OAL and CFQ in this game are
(i) random exploration has a greater chance of reaching G2 than G1. Discovering
G2 before G1 further reduces the chance of visiting G1 because of the increasing
bias towards exploitation. (ii) exploration of the CFQ and OAL agents is not
coordinated. If reaching G2 is the current greedy policy then G1 will not be
visited unless both agents explore simultaneously. Fig. 5a shows that CFQ does
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better with polynomial decay of ε then with exponential decay. This stems from
finite exploration supplied by exponential decay. However, this finite amount of
exploration is sufficient given coordinated exploration as shown by Fig. 5b.

5 Summary

We presented an experimental study of three fundamentally different algorithms
for learning in CISGs. Our results illustrate the strength and weaknesses of
different aspects of these algorithms in different settings, highlighting the accen-
tuated importance of effective exploration in this class of games, the importance
of coordinated exploration, the confidence gained by deterministic behavior and
the benefits of exhaustion of information. For lack of space we did not exhibit
or discuss situations in which it is impractical or inefficient to explore the whole
state space. Such situations may occur when optimum can be gained in any local
subset of states or when the state space is large in relation to agents lifetime.

A longer version of this paper containing additional results and analysis is
available from the authors.
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