Model Approximation
for HEXQ Hierarchical Reinforcement Learning

Bernhard Hengst

National ICT Australia, University of New South Wales, Sydney NSW 2052, Australia
bernhard.hengst@nicta.com.au

Abstract. HEXQ is a reinforcement learning algorithm that discovers
hierarchical structure automatically. The generated task hierarchy rep-
resents the problem at different levels of abstraction. In this paper we
extend HEXQ with heuristics that automatically approximate the struc-
ture of the task hierarchy. Construction, learning and execution time,
as well as storage requirements of a task hierarchy may be significantly
reduced and traded off against solution quality.

1 Introduction

Not only do humans have the ability to form abstractions, but we control the
amount of detail required to represent complex situations for decision making.

Take the familiar problem of deciding the best way to travel to a business
conference or holiday destination. We first choose the mode of transport and
best route between major cities. To make this decision we may even take into
consideration potential connections and delays at either end for each mode of
primary transport. However, the side we get out of bed on the morning of de-
parture or the way we leave our home (front door, back door or garage door) is
unlikely to be an influencing factor in our decision, although in the final execu-
tion of the plan will need to decide to get out of the bed on one side and use
one of the doors to exit the home. How can a reinforcement learner model these
pragmatics?

Interestingly, hierarchical reinforcement learning (HRL) can provide a natu-
ral solution. In hierarchical reinforcement learning the overall problem may be
broken down into smaller subtasks and represented as a task hierarchy. Subtasks
at the top or the root of the task hierarchy tend to model the more global as-
pects of the problem at a coarser level. Subtasks near the bottom or the leaves
of the task hierarchy tend to model the more local aspects of the problem in
finer detail. Hierarchical reinforcement learners generally search for an optimal
solution! to the overall problem by considering the subtasks at all levels in the
task hierarchy. It can be expensive to search a subtask hierarchy, particularly
when there are several levels with a high branching factor. In practice, for many
problems, it may be possible to find good solutions by ignoring details at the
lower levels when deciding the subtask policies at higher levels.

! Optimal in some sense, e.g. hierarchical or recursively.

J.-F. Boulicaut et al. (Eds.): ECML 2004, LNAT 3201, pp. 144-155, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Model Approximation for HEXQ Hierarchical Reinforcement Learning 145

The contribution of this paper is to present several model approximations
by setting the degree of coarseness that is used in the construction, learning
and execution of a task hierarchy for hierarchical reinforcement learning. We
will consider approximations to the decomposed value function by limiting the
hierarchical depth of evaluation. We will also look at the degree of coarseness at
which subtask termination conditions are modelled with two different heuristics.
The main benefit is to speed up the learning and execution of the hierarchical
policy, and to reduce the total number of subtasks required to represent the
problem.

Different approaches to hierarchical reinforcement learning include Options
[7], HAMQ [6] and MAXQ [2], and more recently ALisp [1] and HEXQ [4].
Each approach can be interpreted in terms of a task hierarchy in which a higher
level parent subtask may invoke the policy of its child subtask as an abstract
action over several time steps. Parent subtasks are represented using a semi
Markov decision problem formalism (e.g. [8]). This formalism extends Markov
decision problems by allowing actions to be temporally extended. We will use the
abbreviation, MDP, to refer to both Markov and semi-Markov decision problems.

HEXQ in particular, is designed to automatically construct a task hierarchy
based on a search for invariant subtasks. It performs automatic safe state ab-
straction during the construction process, not only finding reusable subtasks, but
abstracting subtasks at the next level. The approximations work automatically
during HEXQ hierarchy construction. The degree of coarseness is set manually
and trades off efficiency against solution quality.

We will start with a simple illustrative example where a robot must learn
to navigate through a multi-storey building. We review the automatic problem
decomposition by HEX(Q, noting in particular the hierarchy of abstract mod-
els generated. Three approximation heuristics are then introduced and results
presented showing the computational saving.

2 Simple Grid-World Maze

This example is based on similar grid-world room problems found elsewhere in
the literature (eg [7]), except here we add another dimension to allow us to
illustrate the generality over multiple levels of hierarchy. In this problem a robot
must find its way to a goal location in middle of the ground floor of a 10 storey
building after starting anywhere at random. The lower two floors of the building
are shown in figure 1 (a). The floors are interconnected by four lifts. Each floor
has nine identical interconnected rooms as shown in (c). Each room is discretised
into a nine by nine array of locations. The position of the robot in the building is
described by three variables, the floor-number (0-9), the room-number on each
floor (0-8) and the location-in-room (0-80). The encoding of room numbers is
the same on each floor. The encoding of room locations is the same for each
room.

The robot has six primitive actions to move one cell North, South, East, West
or pressing Up or Down. The first four actions are used to navigate on each floor

146 Bernhard Hengst

Floor 1

\

. Lifts

a floor

/
[

goal — i
Floor 0 /I\

@ | | (b)

Fig. 1. (a) Two floors of a ten storey building showing an identical room layout for
each floor and four lifts interconnecting the floors. (b) a typical room showing door
exits and possible location of the lifts and destination. (c) a typical floor plan showing
the location of the lift wells and possible destination location.

and are stochastic in the sense that the robot moves in the intended direction
80% of the time and 20% of the time slips to either the left or right with equal
likelihood. The Up and Down actions are deterministic and work only in the
four elevators cells on each floor by moving the robot one floor up or down. A
move into a barrier leaves the robot where it is. Each primitive action costs one
unit and the robot is rewarded with 100 units when it signals arrival at the goal
position by pressing Up.

The flat reinforcement learning? problem defines the state space as the Carte-
sian product of the three variables, uses the six primitive actions above and
minimises the number of steps to reach the goal.

3 HEXQ Hierarchical Decomposition

The hierarchical reinforcement learner HEXQ, using the same information as
the flat learner, solves the problem by first constructing a task hierarchy. The
decomposition process is briefly described next. A more detailed account can be
found in [4].

HEXQ is designed to tackle any finite episodic multivariate MDP. The al-
gorithm is not given the underlying model beforehand, but must discover it for
itself, as well as automatically constructing the task hierarchy. It first orders
the variables by their frequency of change as the robot takes exploratory ran-
dom actions. Clearly the location-in-room will change most frequently followed

2 1t is assumed the reader has at least an introductory knowledge of reinforcement
learning. Introductory material can be found in [5] and [10].

Model Approximation for HEXQ Hierarchical Reinforcement Learning 147

by room-number. The floor-number will change rarely. HEXQ constructs a three
level task hierarchy with one level for each variable. It begins construction of leaf
node subtasks based on the most frequently changing variable, location-in-room.

HEXQ tests individual location-in-room state transitions and the rewards
received to see if they are invariant in all contexts defined by the value of the
other variables. Because we are dealing with stochastic problems we need to test
the invariance of the probability distribution of possible next states and rewards.
This is achieved using a Chi squared test on samples from different contexts or
time periods. Invariance is also violated if any of the other variables changes
value or the problem terminates. Any state-action pair causing a transition that
is not invariant is designated an ezit. HEXQ partitions the state space into blocks
where each block has the property that it is possible to find a policy to reach
and take any block exit with certainty. Reusable subtasks are constructed to be
the different ways of exiting each block of the partition.

For the multi-storey maze, there is only one block (a room) that includes
all location-in-room states. Exits are at the doorways, the lifts and the goal
location. The room block is illustrated in figure 1 (b). For example, pressing
up in an elevator location may change the floor-number. Therefore, (location-
in-room=at-elevator, action=up) is an example of an exit. Other intra-room
transitions are invariant throughout the building with the same probability of
transitioning to the next state and with the same probability of receiving the
reward. The subtasks are the 17 ways to exit a room and require 7 smaller MDPs
to find the different policies to reach each of the 7 exit states (4 doorways, two
lifts and 1 goal)?.

In constructing the second level of subtasks, HEXQ uses the Cartesian prod-
uct of the block identifier from the level below and the next variable in the fre-
quency ordering, the room-number, to define an abstract projected state space.
In this case, as there is only one block at the bottom level, the state space is
simply described by the nine states of the room-number variable. The state space
is abstracted because the detail of intra-room locations has been factored out. It
is projected because we are ignoring the floor-number variable. The procedure
of finding invariant transitions is repeated at this level, except that this time the
actions are the room exiting policies from the level below and referred to using
the exit notation from level 1%. Exits at the second level are declared when the
remaining variable, the floor-number, changes or the problem terminates.

Again, the second level partition only contains one block, a whole floor,
as illustrated in figure 1 (c). There are 9 exit state-action pairs at this level.
For example, (state=north-west-room,action=(navigate-to-lift1,press-up)). Note

3 A subtask is a policy to reach an exit state and take the exit action. Note that at
each doorway state there are three actions that can result in an exit because of the
stochastic slip. At each elevator, actions Up and Down are both exit actions. Hence
there are 17 possible exit state-action pairs in total.

1 Exits at level 2 and above use a nested notation, (s?,(s',a)), where (s',a) is an
abstract action at level 2 that has the task of reaching and executing the exit (s', a)
at level 1. s° is a level e state, a is a primitive action.

148 Bernhard Hengst

Top level
Level 3 navigation task
over 10 floors

1 HH A
__!__!__

Level 2 Floor navigation

e R e e
i [() T e T e

Level 1 Room navigation
primitive actions

Fig. 2. The HEXQ generated task hierarchy.

that this time the exit action is temporally extended or abstract, as are all actions
at this level. Because the policy to navigate to a lift can be shared between the
two tasks to catch a lift up or down, only five smaller MDPs are required to
find policies for the 9 subtasks. Nevertheless, even though only 5 MDPs are
required, why do we need two separate ones for the robot to find its way to the
north-west room and also two for the north-east room when the state space is at
the granularity of rooms? The reason is that the best way to navigate between
rooms may be influenced by where exactly in the destination room the elevators
are located. By ignoring this detail we will later see how to save two MDPs and
possibly four subtasks at this level.

The top level of the task hierarchy is a single MDP with only 10 abstracted
floor states. The total task hierarchy constructed by HEXQ for the multi-storey
building problem is shown in figure 2. There are 9 subtasks in the middle level
implemented using 5 MDPs and 17 subtasks at the bottom level using 7 MDPs.

The value function, given a policy for each subtask, is found by simply sum-
ming the value of a state in each of the invoked subtasks on a path through the
hierarchy®. To find the best action in any subtask state it is necessary to perform
a depth first search in the task hierarchy using the recursive equation:

Vin(s) = max[Vi5_y(s) + 7, (g,)] (1)

where V¥ (s) is the optimum value function for state s in subtask m. Abstract
action a invokes child subtask m — 1. Block ¢ contains state s. For leaf subtasks
Vo _1 =0 as all primitive actions are considered exit actions and do not invoke
lower level routines.

5 The decomposition of the HEXQ value function was inspired by MAXQ but differs
in its formulation in that the reward on subtask exit is not included in the internal
value of a subtask state.

Model Approximation for HEXQ Hierarchical Reinforcement Learning 149

The HEXQ action-value function E for all states s in block g is the expected
value of future rewards after completing the execution of the (abstract) action
a and following the hierarchical policy, in this case the optimal policy, *, there-
after. Function E plays the same role in a hierarchic fashion as the action-value
function @ in flat reinforcement learning. It is the action-value function E that
is learnt by HEXQ for each subtask.

E; (g,a) =Y P7(s'|g,a)[Reit + V;5,(s)] (2)

P7™(s']g, a) is the probability of transition to a next state s” after (abstract) action
a terminates from any state s € g and R, is the expected final primitive reward
on transition to state s’.

HEXQ employs two forms of safe state abstraction, subtask reusability and
subtask abstraction. Subtask reusability means multiple instances of the same
subtask are only represented once. Subtask abstraction means that the states of
each subtask block are aggregated at the next level in the hierarchy. Safe state
abstraction means that for the task hierarchy generated by HEXQ the value
function calculated using the above recursion is identical to the value function
for the flat learner executing the same policy.

For this problem HEXQ saves over an order of magnitude in value function
storage space and converges an order of magnitude faster than flat Q-learning.
It is desirable to reduce the space and time requirements even further and still
find good solutions within the resources available. We will now describe three
heuristics that allow HEXQ to automatically construct a more compact task
hierarchy.

4 Varying the Coarseness of the Value Function

HEXQ uses a best first search® as a result of the recursion present in equation 1
to decide the best next action. This search is necessary even after learning has
completed as the compacted value function needs to be reconstituted to execute
the optimal policy.

Limiting the depth of the search will approximate the hierarchial optimal
policy if the expected internal reward inside each subtask at the depth limit is
a near constant multiple, say &, of the primitive reward on exit of the subtasks.
The full depth search value function is then a multiple, k 4+ 1, of the limited
depth search value function. This follows as the value function is defined as the
expected sum of future rewards and each reward is effectively increased by k
times its value. Changing a value function by a constant factor does not change
the optimal policy.

Special cases of this condition include subtasks where internal rewards offer
a substantially diminished contribution to the value function, i.e. k is close to
zero, and cases where the internal rewards are the same and the exit rewards
are the same for all subtasks at the specified search depth.

6 As does MAXQ [2].

150 Bernhard Hengst

Recall that in Q learning the optimal value of a state V*(s) = max, @*(s, a).
In the extreme case in which we limit the depth of search to zero for HEXQ, the
value contribution of the child subtask is ignored, that is, V,* _; = 0. Equation 1
simplifies to V% (g) = max, E,(g,a) for every subtask m in the task hierarchy,
reducing nicely to the usual “flat”) learning representation for the most abstract
approximation of the problem.

It is important to note that limiting the search to a particular depth does
not effect the ability to operate at more detailed levels”. For example, at level
3 a depth limit of 1, searches to level 2, and at level 2 the search extends to
level 1. Also, an overall solution to the original problem is always guaranteed as
all subtasks terminate by construction. The degradation of the solution quality
with a reduced search depth will depend on the how closely we can match the
above criteria.

Original HEXQ

i
J] |vaueDepthi[

[~

} ,f alue Depth O

e

T T T 1

log(reward per 1000 time steps)
o -_ r w
o o - L)) r (4] w [} =
)

N
5}

2 25 3 35
log(1000s of time steps)

Fig. 3. Performance comparison for value function evaluations depth limited to zero
and one against the original HEXQ results.

In the multi-storey building example, limiting the value function to a depth of
zero at the top level would result in choosing an arbitrary (e.g. the first) elevator
from the abstract action list to reach the next floor. In this case the robot may
lengthen its journey considerably by travelling to a non-optimal elevator. At the
room level a depth zero value function search would ignore the robot’s location
in a room to decide how best to reach the room containing the elevators or goal.
Again this may increase the journey time. Increasing the depth of search to 1
results in a much better solution as the distance to each elevator room is included
in the decision at the top level and location in room is included for navigating
about a floor.

The results for limiting the depth of value function search to zero and one
are illustrated in figure 3. A depth zero search improves the learning time of
HEXQ but performance suffers significantly. The deterioration is explained by
the depth zero search not considering distance to elevators when deciding how

" Levels are numbered from the leaf to root nodes.

Model Approximation for HEXQ Hierarchical Reinforcement Learning 151

Table 1. HEXQ performance for various depth limited searches of the value function.
A depth limit of 2 is equivalent to the original HEXQ solution and is taken as the 100%
baseline.

Depth | Storage | Execution | Performance
% % %

2 4257 100|918 100 |3.31 100.0
1 4257 100|216 28 |3.26 98.5

0 4257 100 | 32 3 (282 853

to travel between floors. With the value function search depth limited to one,
the learning time shows no improvement, but the performance is close to that
of the original HEXQ result.

The major benefit, however, from limiting the depth of search is the signifi-
cant and noticeable improvement in the time it takes to make the next decision
to act. In table 1 the column headed Fzxecution gives the number of E values
that need to be looked up to evaluate equation 1. It is a direct measure of the
time complexity to decide on the next primitive action when executing the task
hierarchy from its root task. With a search depth limited to zero the execution
time reduces to only 3% of that required for the original HEXQ solution. At a
depth limit of one, the execution time is reduced to 28% and achieves 98.5% of
the optimal performance.

For the Tower of Hanoi puzzle, decomposed by HEXQ in [4], inherent con-
straints in the puzzle ensure that the cost of an abstract action is constant at
each level. This satisfies the criteria above and means that a depth zero search
is sufficient to ensure an optimal policy. It reduces the time complexity of the
search from exponential to linear in the number of discs. For the 7 disk version
this means a reduction in E table lookups from 67 = 279, 936 to only 42, a more
than 3 orders of magnitude saving per search!

While for hierarchical execution most searches do not need to start at the
top level, in many problems hierarchically greedy execution leads to a better
policy [2], and this means a new search is initiated from the root node after
every primitive action step.

In applications where actions need to be taken in real time, the available
computing resources may limit the amount of processing that can be devoted
to deciding the next best action. Employing iterative deepening [9] of the value
function search will provide these reinforcement learners with an anytime solu-
tion to maximise their performance.

Limiting the depth of the value function search does not reduce the storage
requirements to represent the value function as show in table 1. The next two
approximations save on storage as well, by constructing more approximate task
hierarchies.

5 Varying the Coarseness of Exit States

Recall from section 3 that when constructing level 2 of the task hierarchy, the
learner is working with the room-number abstract states to learn how to navigate

152 Bernhard Hengst

on a floor. To reach the North-West room HEXQ constructs two MDPs. This is
necessary because the optimal policy to navigate from room to room may depend
on which of the two elevators in the North-West room is the desired destination.

This suggests another approximation. The robot’s task can be simplified by
navigating to the North-West room without resolving the location of its two
elevators. Having entered the room, the robot can focus on reaching its desired
elevator.

A multi-dimensional state in an original problem is represented as a sequence
of abstract states at each level of the task hierarchy. We will refer to this sequence
description of a state as the hierarchical state. A hierarchical exit state at any
level is the hierarchical state associated with an exit. It is the sequence of states
in an exit. The hierarchical exit state for the exit (s¢, (s¢71, (... (s',al)...))) at
level e is (s', s2,...,5%). When hierarchical exit states are the same for different
exits, HEXQ only constructs one MDP for these exits. When they differ, separate
MDPs are required to ensure safe state abstraction.

The hierarchical lift exit states for the North-West room clearly differ as the
lifts are at different locations. HEXQ therefore constructs separate MDPs.

One way to approximate, is to only generate different MDPs if the most
abstract states in the hierarchical state sequence differ. We refer to this as a
depth zero exit state coarseness.

The exit value function, E at level 2 in the building example stores values
using abstract room states. When there is only one MDP for both elevator exits
in the North-East room, function E cannot learn to distinguish between them. It
will store a value that is in the range between the distances to the two elevators.

HS depth 0 Original HEXQ

~
y

w
3]

il Combine lifts |

e

w

g
&
E
S 25 K All
% 2 En [;"‘/ A | Combine lifts
S \
g / / | original HEXQ |
o HS depth 0
15 17 19 24 23 25 27 29 3.1 33 3s

log(1000s of time steps)

Fig. 4. Performance comparison for approximations combining exit states, exits and
for all approximations against the original HEXQ.

The results for a depth zero exit state coarseness are shown in figure 4 as
“HS depth 0” and in table 2 as row “HS-0”. This approximation does not effect
the execution efficiency as all subtasks are retained and hence the branching is
unaltered in the task hierarchy for the value function search. It does improve the
learning time and the storage requirements as a direct result of the reduction in
the number of MDPs from 5 to 3 at level 2 in the task hierarchy.

Model Approximation for HEXQ Hierarchical Reinforcement Learning 153

Table 2. Performance characteristics for approximations combining exit states (HS-0),
combining exits (C.Lifts) and for all approximations, tabled against the original HEXQ
taken as the 100% baseline.

APPROX. | STORAGE EXEC. PERFORM.
% % %
HEXQ | 4257 100|918 1001 3.31 100.0
HS-0 3951 93 [918 100 |3.30 97.7
C.LiFTs | 3351 79 [270 29 |3.18 92.2
ALL 3108 73 | 15 2 13.17 95.9

It is easy to imagine, matching the hierarchical exits states to any depth to
reduce the coarseness, thereby creating a similar trade-off in resource require-
ments and performance to the variable depth value function search.

6 Varying the Coarseness of Exits

The final approximation we will consider is to combine exits. In flat reinforcement
learning if two actions have the same transition and reward function for all
states then one of them can be eliminated without effecting the optimal policy.
This leads to the intuition in hierarchical reinforcement learning that abstract
actions that have the same transition and reward function in the same context
at an abstract state level may be replaced by just one abstract action to a first
approximation.

Take our multi-storey building example. The two room leaving exits that
involve taking each lift up to another floor always end up in the same room-
number and are therefore combined. Similarly, the two elevator-down room exits
are combined. In this case, combining exits at level 1 reduces the number of
abstract actions and the number of exits at level 2. Now there is only one exit
at level 2 to move up and one to move down in the North-West room. Similarly
the number of exits for the North-East room has been reduce from 4 to 2.

The precise lift to use is now no longer resolved and HEXQ can reduce the
number of MDPs required. When the robot enters the lift room it will travel
to the nearest lift, as there is no longer an abstract action allowing it to choose
between them.

Moving up a level in the task hierarchy, we can also combine the exits to
move up a floor, and those for moving down a floor, for similar reasons.

Combining exits makes it easier for MDPs to exit and this will in general
increase the internal value function of a subtask. On the other hand there is an
increased loss of control as exits cannot be discriminated at the next level. The
net effect on the value function and resultant policy will depend on each specific
problem instance.

HEXQ relies on the exit values E to be independent of how a subtasks is
entered to allow subtasks abstraction. When exits are combined, the exit value
will now depend on how the MDP was entered. Nevertheless, combining exits

154 Bernhard Hengst

will provide an approximation to the safe state abstracted case because of the
criteria that the combined states have the same transition and reward function at
the abstract level. The criteria can be made more stringent by only combining
exits with equal transition and reward functions down to a specified level of
coarseness, making this approximation variable as well.

The graph labelled “Combined lifts” in figure 4 and row “C.Lifts” in table 2
show the effect of combining the lift exits discussed above. Storage requirements
are reduced to 79% because one MDP can be saved at the bottom level of the
task hierarchy by combining the lifts, two MDPs are saved at the room level by
combining the inter-floor actions and the number of abstract actions is reduced.

Even with the value function being evaluated to its maximum depth the
execution time drops to 29% as the branching is reduced. Combining lift exits
reduces the performance to 92.6%

It is possible to combine each of the three room leaving actions for the same
exit state. The issue here is that the while the next abstract room states are
always the same, the probability distribution varies for each exit action due to
varying directional stochasticity of the actions. Nevertheless, combining door
exits achieves a performance of 99.7% of the original HEXQ solution.

If all the approximations discussed above (zero depth search, combining exit
states and exits) are activated concurrently we save 27% in storage requirements,
learning is 250% faster and execution speeds up by a factor of 50. All these
saving are achieved with only a 4.1% drop in performance as shown in figure 4
and table 2. How the approximations interact is not easy to predict. Indeed,
computational complexity and performance may improve simultaneously.

7 Discussion and Future Work

When introducing heuristic approximations we admit the possibility of subopti-
mal results and aim to find trade-offs with computational complexity.

The variable coarseness heuristics discussed in this paper cannot give any op-
timality guarantees, but they contribute to simpler solutions. It is of course easy
to find examples where these approximations show poor performance. Future
work on defining more precisely the conditions under which the approximations
are particulary appropriate is suggested. Estimation of solution quality in re-
lation to a hierarchical optimal solution would also be useful, for example, by
measuring the limits on abstract transition probabilities and task rewards and
employing bounded parameter MDPs [3].

These approximations are invoked automatically during the discovery of the
task hierarchy and the coarseness depth is set manually. It is conceivable that
the appropriate level of coarseness of each approximation may itself be able to
be learnt at different levels in the task hierarchy to achieve good performance.

For future practical applications of hierarchical reinforcement learning it is
important to find ways to scale up to more complex problems and to do so with-
out a designer having to manually construct a good and efficient task hierarchy.
The approximation techniques in this paper can of course be used to assist man-

Model Approximation for HEXQ Hierarchical Reinforcement Learning 155

ual problem decomposition for other approaches to hierarchical reinforcement
learning.

We have presented and demonstrated rational approximations that signifi-

cantly improve the learning time, reduce the storage requirements and deliver
any-time performance during the automatic construction of a task hierarchy over
and above that achieved with HEXQ.

Acknowledgements

National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council.

References

10.

. David Andre and Stuart J. Russell. State abstraction for programmable reinforce-

ment learning agents. In Rina Dechter, Michael Kearns, and Rich Sutton, editors,
Proceedings of the Eighteenth National Conference on Artificial Intelligence, pages
119-125. AAAT Press, 2002.

. Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value

function decomposition. Journal of Artificial Intelligence Research, 13:227-303,
2000.

Robert Givan, Sonia M. Leach, and Thomas Dean. Bounded-parameter markov
decision processes. Artificial Intelligence, 122(1-2):71-109, 2000.

Bernhard Hengst. Discovering hierarchy in reinforcement learning with HEXQ.
In Claude Sammut and Achim Hoffmann, editors, Proceedings of the Nineteenth
International Conference on Machine Learning, pages 243-250. Morgan-Kaufman,
2002.

Tom M. Mitchell. Machine Learning. McGraw-Hill, Singapore, 1997.

Ronald E. Parr. Hierarchical Control and learning for Markov decision processes.
PhD thesis, University of California at Berkeley, 1998.

Doina Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis,
Univeristy of Massachusetts, Amherst, 2000.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Whiley & Sons, Inc, New York, NY, 1994.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, Upper Saddle River, NJ, 1995.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, Massachusetts, 1998.

	1 Introduction
	2 Simple Grid-World Maze
	3 HEXQ Hierarchical Decomposition
	4 Varying the Coarseness of the Value Function
	5 Varying the Coarseness of Exit States
	6 Varying the Coarseness of Exits
	7 Discussion and Future Work
	References

