
Experiments in Value Function Approximation
with Sparse Support Vector Regression

Tobias Jung and Thomas Uthmann

Institut für Informatik
Johannes Gutenberg-Universität

55099 Mainz, Germany
{tjung,uthmann}@informatik.uni-mainz.de

Abstract. We present first experiments using Support Vector Regres-
sion as function approximator for an on-line, sarsa-like reinforcement
learner. To overcome the batch nature of SVR two ideas are employed.
The first is sparse greedy approximation: the data is projected onto the
subspace spanned by only a small subset of the original data (in feature
space). This subset can be built up in an on-line fashion. Second, we use
the sparsified data to solve a reduced quadratic problem, where the num-
ber of variables is independent of the total number of training samples
seen. The feasability of this approach is demonstrated on two common
toy-problems.

1 Introduction

One central approach to solve reinforcement learning (RL) problems relies on es-
timating value functions either from simulation-based experience or model-based
search (e.g. [10]). For problems with large or continuous state spaces it becomes
necessary to represent the value function by some form of function approximator
in order to generalize estimated values from previously visited states to similar
but never seen before ones. Although many different approximation architec-
tures are possible – both parametric (e.g. Neural Networks, RBF-Networks, tile
coding) and non-parametric (e.g. locally weighted regression) have been tried to
a varying degree of success – value function approximation remains one of the
key obstacles in scaling RL to high-dimensional control tasks.

Support Vector Machines (SVM) could represent a powerful alternative: in
principle unharmed by the dimensionality, trained by solving a well defined op-
timization problem, and with generalization capabilities presumably superior to
local instance-based methods. The goal of our ongoing work reported herein is
to utilize SV-Regression to approximate the value function in common RL al-
gorithms. Related results are limited to off-line learning: in [3] SVR has been
applied along the lines of approximate value iteration. Inputs to the SVR were
the real targets, solved by value iteration on a subset of states, and presented
in batches to the approximator. However, for the on-line case this has not been
attempted before, as far as we are aware.

J.-F. Boulicaut et al. (Eds.): ECML 2004, LNAI 3201, pp. 180–191, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Experiments in Value Function Approximation 181

A reason could be that value function approximation is plagued by some pe-
culiar characteristics that do not agree very well with the instance-based nature
of SVR. We are facing the following two problems: First, RL proceeds itera-
tively. Thus training samples arrive one at a time from an endless stream which
is generated while the learning agent interacts with its environment. Second,
many RL algorithms usually rely on bootstrapped samples that are continually
updated with new estimates. Therefore we have to track a highly non-stationary
target function and need to access and modify the stored training samples. Both
of these points pose no problems for parametric function approximators, since
their gradient based training deals naturally with incremental learning. Non-
parametric function approximators, however, are memory-based and must ex-
plicitly remember all training data. Either adding a new example or updating
an old one both amount to a change to the stored training samples. In this case,
however, learning cannot be done incrementally so that we have to re-train the
SVR every time-step anew. Moreover, a SVR is usually solved by a constrained
quadratic optimization problem where the number of variables equals the num-
ber of training examples. Clearly, a constantly increasing number would sooner
or later render the computational cost completely prohibitive. In order to keep
this problem tractable it is necessary to keep this number from growing linearly
in time.

Fortunately, we do not have to remember every training sample. As was
pointed out in [4] one can eliminate those from the final expansion that are lin-
ear dependant (in feature space) without changing the obtained solution. Thus,
it is reasonable to store only a few selected examples in a reduced dictionary.
Examples of how to arrive at sparse dictionaries can be found in [9, 12, 7], along
with applications of how to benefit from it. In particular, in [6, 5] a sparse algo-
rithm is presented that greedily adds examples to the reduced dictionary and is
especially suited to on-line applications. Together with this sparsification proce-
dure the authors propose in [6] an incremental SVR-algorithm where the solution
is obtained by only considering the samples in the reduced dictionary. This way,
the per-time-step complexity is limited by the intrinsic dimensionality of the data
in the feature space instead of the ever increasing number of arriving training
examples.

Here we will pursue a similar approach and apply their greedy sparsification
method to obtain a function approximator suitable for RL. The remainder of
the paper is structured as follows: Sect. 2 briefly reviews RL, Sect. 3 and Sect. 4
describe the modified sparsification method. In Sect. 5 everything is wrapped
up in some experiments that demonstrate the feasability of this approach, and
Sect. 6 concludes.

2 A Brief Reminder of Reinforcement Learning

Reinforcement learning belongs to a class of optimal control methods that are
based on estimating value functions either from simulation-based experiences
(Monte-Carlo or Temporal Difference branch) or model-based search (Dynamic

182 Tobias Jung and Thomas Uthmann

Programming branch), e.g. see [1, 10]. In this work we make the following as-
sumptions: we consider the case of time-discrete control tasks with continuous
states and discrete action set. Once the value function is known we assume that
the learner has access to a model to derive the best course of actions.

The goal is to (approximately) compute the value function which is here
defined to be the infinite horizon, discounted sum of rewards

V π(s) = Eπ
(∞∑

t=0

γtrt

∣∣∣ s0 = s
)

(1)

when starting in state s and choosing actions according to policy π. Here γ ∈
[0, 1) denotes the discount factor and ri the reward obtained while traversing
from si to si+1. For a given policy π we can compute V π by iteratively applying
the TD(0) rule

V (s)← V (s) + α[r + γV (s′)− V (s)] (2)

where s′ and r is the state and reward following s while executing π, and α ∈ [0, 1]
is the step size. Applying (2) infinitely often to every state (assuming a finite
state set) in arbitrary order is guaranteed to yield (1). Once the value function
V πk is known for a fixed policy πk (policy evaluation step) we can derive the
greedy policy w.r.t. V πk to otain a new policy πk+1

πk+1(s) = argmax
a

∑
s′

P a(s, s′)[Ra(s, s′) + γV πk(s′)] (3)

in the so called policy improvement step. Many popular RL algorithms adhere to
the framework of alternately carrying out policy evaluation and policy improve-
ment. Roughly speaking, they only vary the extent to which policy evaluation
is executed before improving the current policy. Throughout this paper we will
use an on-line variant thereof, see algorithm 1 below.

Algorithm 1. Model-based sarsa with instance-based function approximator

Experiments in Value Function Approximation 183

3 Sparse Support Vector Regression

3.1 The SVR Problem

We start by restating the standard formulation1 of the SVR problem with ε-
insensitive cost function [8]. Consider some training data {(x1, y1), . . . , (x�, y�)},
where xi ∈ IRn are the input-patterns and yi ∈ IR are the target outputs. The
overall idea is to map the input-patterns into some high-dimensional feature
space, and to perform linear regression in that feature space. Let Φ be the non-
linear function that maps the input-patterns to this feature space. Considering
functions f(·) = 〈w, Φ(·)〉+ b that are linearly parametrized in the feature space
the objective is to find one that minimizes the regularized risk

Rreg(w) = C
1
�

�∑
i=1

|yi − (〈w, Φ(xi)〉+ b)|ε +
1
2
‖w‖2 (4)

where C is a constant penalizing complexity. The ε-insensitive cost function
| · |ε def= max(0, | · | − ε) only takes into account deviations larger than ε and
enforces sparsity in the final regressor. It is known that the function minimizing
(4) can be expressed solely in terms of the input-patterns (Representer Theorem)
and has the form f(·) =

∑�
i=1(α

∗
i − αi)〈Φ(xi), Φ(·)〉 + b. The coefficients α∗

i , αi

of the solution satisfy α∗
i , αi ≥ 0 and α∗

i αi = 0. They are obtained by solving
the constrained quadratic optimization problem (dual)

max
α∗,α∈IR�

− 1
2

�∑
i,j=1

(α∗
i − αi)(α∗

j − αj)〈Φ(xi), Φ(xj)〉

−ε
�∑

i=1

(α∗
i + αi) +

�∑
i=1

yi(α∗
i − αi) (5)

s.t. 0 ≤ α∗
i , αi ≤ C i = 1 . . . �

�∑
i=1

(α∗
i − αi) = 0

What is commonly referred to as ‘kernel-trick’ allows us to replace the inner
product in feature space 〈Φ(xi), Φ(xj)〉 by a Mercer kernel function k(xi,xj).
Thus once the solution to (5) has been worked out we obtain the final regressor

f(x) =
�∑

i=1

(α∗
i − αi)k(xi,x)

where usually many of the coefficients α∗
i , αi vanish.

1 Note that we stick to the standard notation of denoting the input with xi and
the output with yi. Since SVR is used to approximate the value function, we are
actually dealing with input-output pairs of the form (s, Ṽ (s)), with Ṽ (s) being the
new estimated target for the (vector-valued) state s

184 Tobias Jung and Thomas Uthmann

3.2 Sparse Greedy Matrix Approximation

Unfortunately SVM methods were developed primarily with batch function ap-
proximation in mind. The setting of on-line learning differs considerable: here we
assume that we have a (possible infinite) stream of incoming data. Recall that
we wish to apply SVR as function approximator for sarsa-like on-line reinforce-
ment learning (cf. Algorithm 1). At every step t we add the current state and its
(re-) estimated value to the stored instances and thus end up with a training set
consisting of all updates made to this point. At every time step we also need to
make a new prediction that incorporates the previous changes. Hence we need to
re-train the SVR once every single step. As there is generally no efficient way to
get this done incrementally this task would be computationally completely in-
feasable: it would require that we solve the ever-increasing optimization problem
(5) in t variables once every step2. Likewise the time to perform the prediction
would also increase linearly in t.

Clearly the per-time-step complexity should not depend on the iteration
count t. One way to deal with this problem are sparse greedy approximation
techniques [6, 9]. The underlying idea is based on the observation that usually
the mapped data Φ(xi) spans a subspace whose effective dimension is surpris-
ingly low when compared to the dimension of the feature space. Therefore we
can easily remove many of the input-patterns with negligible impact in the pre-
cision. This can be done by picking a subset (called ‘dictionary’ in [6]) of the
input-patterns and representing the remaining patterns as linear combination in
feature space. Thus after having chosen a dictionary of m inputs {x̃1, . . . , x̃m} we
can approximate the remaining features {Φ(x1), . . . , Φ(x�)}\{Φ(x̃1), . . . , Φ(x̃m)}
by

Φ(xi) ≈ Φ̃(xi) :=
m∑

j=1

aijΦ(x̃j)

Since the approximation is carried out in feature space, we need to find coeffi-
cients aij such that the distance di := ‖Φ(xi)− Φ̃(xi)‖2 is minimized. Remem-
bering to replace the inner products with kernels, this is equivalent to

min
ai∈Rm

k(xi,xi)− 2
m∑

j=1

aijk(x̃j ,xi) +
m∑

j,l=1

aijailk(x̃j , x̃l) (6)

or written in more convenient matrix notation minai{kii−2aT
i k̃i+aT

i K̃ai} where
[K̃]ij = k(x̃i, x̃j), kii = k(xi,xi), and k̃i = (k(x̃1,xi), . . . , k(x̃m,xi))T . Setting
the derivates to zero we find that the minimizer of (6) is given by

ai = K̃−1k̃i (7)

Once we have determined ai for input-pattern xi we simultaneously obtain

di = kii − k̃T
i ai (8)

2 In everything but the most trivial problem the step count easily ranges in the
100,000s and more

Experiments in Value Function Approximation 185

as the distance to the span of the dictionary. Using this byproduct as a criterion
to judge whether or not the current dictionary approximates a given input well
enough, the authors in [6] turn this procedure into an on-line algorithm. Imagine
running sequentially through the full training set, one can add the current xi

to the dictionary whenever the corresponding di is worse than some tolerance
TOL2.

3.3 Solving a Reduced Problem

Let [A]ij ∈ IR�×m be the matrix consisting of rows ai from (7) for the full
training set {(x1, y1), . . . , (x�, y�)} and the fixed dictionary {x̃1, . . . , x̃m}. Note
that if xk belongs to the dictionary then ak is the kth unit vector (0, . . . , 1, 0 . . .)T

since Φ(xk) is exactly representable by itself. This way we can use the reduced
kernel matrix K̃ ∈ IRm×m and the transformation A to obtain a (low-rank)
approximation to the full kernel matrix K ∈ IR�×� with K ≈ AK̃AT .

Now we come to the all-decisive step: this approximation can be used to
derive a new reduced QP in m	 � variables, which can be solved instead of the
original problem to yield approximately the same regressor but requring only a
fraction of the time. First, writing the objective function of our constrained QP
(5) in matrix notation

min
α,α∗∈IR�

−1
2
(α∗ − α)T K(α∗ −α)− ε(α∗ + α)Te + (α∗ − α)Ty (9)

we can replace in (9) kernel matrix K with its approximation AK̃AT . Next,
we define the 2m new variables α̃ = (α̃1, . . . , α̃m)T through α̃ = AT α, and
similarly α̃∗ = AT α∗. Before we can complete the change of variables we must
compensate the transformation for the remaining summands in (9) using the
(pseudo-)inverse A† = (AT A)−1AT . Thus define the new targets ỹ = A†y. Now
we arrive at a reduced QP with objective function

min
α̃,α̃∗∈IRm

−1
2
(α̃∗ − α̃)T K̃(α̃∗ − α̃)− ε(α̃∗ + α̃)T A†e + (α̃∗ − α̃)T ỹ (10)

in the 2m variables α̃, α̃∗ instead of (9). Solving the reduced problem (10) we
obtain the regressor f̃(·) =

∑m
j=1(α̃

∗
j − α̃j)k(x̃j , ·) which is approximately the

one we would have obtained solving the full problem:

f̃(·) =
�∑

j=1

(α∗
j − αj)

m∑
l=1

ajlk(x̃l, ·)

≈
�∑

j=1

(α∗
j − αj)k(xj , ·) = f(·)

To illustrate the approximation quality we ran some tests on the synthetic prob-
lem sin ‖x‖/‖x‖ where x ∈ [10, 10]2 was scaled to lie inside the unit cube. Table 1
shows that for various different settings the final test-error from the regressor ob-
tained by solving (10) closely resembles that of the full problem, at significantly
lower training costs.

186 Tobias Jung and Thomas Uthmann

Table 1. Performance of sparse greedy approximation. Results for solving the 2-
dimensional sinc function are shown for the full problem (9) and the reduced prob-
lem (10) for Gaussian kernels k(x, y) = exp(−‖x − y‖2/σ). The training set consisted
of 500 randomly drawn examples. Each regressor was tested on a 40 × 40 grid. With
‖y − AA†y‖2 we measure the error induced by projecting the data. All error-terms are
given as sum of squared errors

Kernel width σ Test-error full TOL2 m ‖y − AA†y‖2 Test Error Reduced

σ = 0.2 10−1 15 (03.0%) 9.9087 42.6080
Cfull = 2500 10−3 36 (07.2%) 7.2672 31.2892
Cred = 5000

8.4440
10−6 73 (14.6%) 0.2134 20.2643

σ = 0.1 10−1 25 (05.0%) 8.4494 35.7908
Cfull = 50 10−3 60 (12.0%) 0.5141 3.4052
Cred = 5000

0.3589
10−6 117 (23.4%) < 10−4 0.0049

σ = 0.04 10−1 58 (11.6%) 0.4152 1.1733
Cfull = 1 10−3 125 (25.0%) 0.0002 0.0043
Cred = 500

0.0037
10−6 220 (44.0%) < 10−7 0.0028

4 The Complete Algorithm

Let us now walk through a complete iteration of our SVR-RL approximator. Let
t be the current iteration count and (xt, yt) the current sample from algorithm 1.
Assume we have assembled the following

– Xold ∈ IR�×m and yold ∈ IR� the training set of all � sufficiently ‘different’
instances (see Step 1 below) seen up to time t where usually � < t.

– Ddict = {x̃1, . . . , x̃m} the dictionary consisting of m linear independent in-
puts where m	 t.

– K̃−1
old ∈ IRm×m the inverse of [K̃]ij = k(x̃i, x̃j) (which is not stored).

– Aold ∈ IR�×m consisting of rows ai from (7).
– (AT y)old ∈ IRm

– (AT A)−1
old ∈ IRm×m

– ỹold ∈ IRm the targets ỹold := A†
oldyold = (AT A)−1

old(ATy)old for the reduced
problem (10).

Step 1: Tribute to the non-stationarity of RL. First we need to check whether xt

is a state for which we already have stored a value. In that case we will interpret
yt as an update (a new estimated value). Otherwise we need to add it to the
training set, goto step 2. The criterion we use is proximity in feature space,
that is if

min
i=1...�

‖Φ(xt)− Φ(Xold[i, :])‖2 < TOL1 (11)

is below some chosen tolerance TOL1 we update that component from yold for
which the index in (11) attains its minimum, i.e. the ‘nearest’ state. Once yold is
modified to yield ynew we need to compute ỹnew which, unfortunately, cannot be
done incrementally in this case. Thus we first need to re-compute (AT y)new =
AT

oldynew and then ỹnew = (AT A)−1
old(AT y)new. Finally we need to re-train the

regressor, proceed with step 3.

Experiments in Value Function Approximation 187

Step 2: Sparse Approximation. The current state is sufficiently new and thus
added to the full training set: append a row in Xnew =

[
XT

old xt

]T and ynew =(
yT

old yt

)T . Increment the number of training samples �. Now we test if xt can
be approximated by Ddict: compute at from (7) using K̃−1

old and obtain dt from
(8). If dt is below some chosen tolerance TOL2 then xt is approximately linearly
dependent on the dictionary and thus does not contribute to the number of
variables in the reduced problem, goto case 2.2. Otherwise, we need to add
xt to the dictionary, goto case 2.1.

Case 2.1: Add xt to the dictionary and increment its size m. Since xt was linearly
independent the approximation coefficient at becomes

(
0, . . . , 0, 1

)T and so every
expression involving Aold is very cheaply updated:

Anew =
[
Aold 0
0T 1

]
, (AT A)−1

new =
[
(AT A)−1

old 0
0T 1

]
(12)

(AT y)new =
[
(AT y)old
yt

]
, ỹnew =

[
(AT A)−1

old 0
0T 1

] [
(AT y)old
yt

]
=

[
ỹold

yt

]
(13)

However, augmenting the dictionary means updating K̃−1
old. Fortunately, this can

be done efficiently since K̃new and K̃old differ only by a rank-1 update. Again
denote by k̃t =

(
k(x̃1,xt), . . . , k(x̃m,xt)

)T and ktt = k(xt,xt). Then [8]

K̃−1
new =

[
K̃old k̃t

k̃T
t ktt

]
=

[
K̃−1

old + η−1ataT
t −η−1at

−η−1aT
t η−1

]
(14)

where η = (ktt − k̃T
t K̃−1

oldk̃t) and at from (7). goto step 3.

Case 2.2 The current input xt is linearly dependent on the dictionary, thus Ddict,
its size m, and K̃−1

new = K̃−1
old remain unchanged. Append the approximation

coefficients at from (7) as row in Anew =
[
AT

old at

]T . To update (AT A)−1
old note

that (AT A)new = (AT A)old + ataT
t and so, using the matrix inversion lemma,

we obtain the recursive update formula

(AT A)−1
new = (AT A)−1

old −
(AT A)−1

oldataT
t (AT A)−1

old

1 + aT
t (AT A)−1

oldat

(15)

Now we take care of (AT y)new, and ỹnew. While the first part is obtained easily,
the second part has no recursive update and must be computed anew

(ATy)new = (AT y)old + ytat, ỹnew = (AT A)−1
new(AT y)new (16)

Again, goto step 3.

Step 3: Solve the reduced problem. Finally, we use the sparsified training set
{(x̃1, ỹ1), . . . , (x̃m, ỹm)} with ỹold = (ỹ1, . . . , ỹm)T to solve the reduced QP (10).

188 Tobias Jung and Thomas Uthmann

Algorithm 2. Sparse on-line SVR for sarsa function approximation

5 Experiments

We applied the sarsa and SVR combination to two control tasks with continuous
states. The training procedure consisted of a series of trials each starting in a
state chosen randomly and proceeding thereafter until the goal was reached.

The first domain is a 21 × 21 gridworld embedded inside the unit cube.
Starting in the bottom row the goal was to get to the upper right corner (1, 1)
in minimum time. Reaching the goal ends the episode, every other step entails
a cost of -1. Actions were the four compass directions. The corresponding value
function is made discontinuous by introducing a vertical barrier. Parameters
for the sarsa component were γ = 1, α = 0.7, and ε = 0.1, the last choice
has been made as to ensure sufficient exploration. For the SVR component we
chose C = 10, ε = 0.1, TOL1 = 0.005, and TOL2 = 0.1. Kernels were the Gaussian
k(x, y) = exp(−‖x− y‖2/σ). The QP was solved using the C++ package libSVM
[2]. Figure 1 shows the resulting approximation for various kernel widths σ after
5000 trials. As could be expected, wide kernels entail a large approximation error
near the barrier. Yet in all cases a nearly optimal path to the goal was learned.

As second task we tried the well-known mountain car problem. The objec-
tive is trying to drive a car to the top of a steep hill. However, the car is not
powerful enough to directly drive to the goal. Instead it must first go up the
opposite direction to build up enough momentum. The two dimensional state
space consists of the position and speed, and again was scaled to lie inside the

Experiments in Value Function Approximation 189

Fig. 1. Approximated value function for the gridworld task after 5000 trials for wide
and narrow kernels. Black dots mark the states that were admitted to the dictionary.
From left to right: σ = 0.2 with m = 21, σ = 0.05 with m = 63, and the optimal value
function. The bottom row shows the corresponding approximation error and a derived
greedy policy

unit cube. Three actions are possible: forward, backward, and coast. Failing to
reach the goal within 500 steps terminates the trial, but no additional penalty
is incurred. The remaining setup and simulated dynamics are identical to those
used in [10]. The parameters for SVR and sarsa were the same as before.

First, we were interested in the on-line performance. In Fig. 2 we compare the
results of our SVR method with the very popular tile coding function approxi-
mator [11]. We used 10 overlapping tilings, each consisting of 10× 10 grids. As
baseline we also included the optimal number of steps computed on a 200× 200
grid. To make the results more comparable, each trial started at the bottom of
the valley with zero velocity. The performance measure we considered were the
steps-to-goal during a trial and the return of the corresponding greedy policy,
which was evaluated independently. Each curve shows the average of 10 com-
pletely different runs. As can be seen from the plots the overall performance
of SVR is roughly on par with tile coding, and even exceeds it later on. The
total number of parameters (i.e. weights) that have to be adjusted in the SVR
expansion (m = 37 for σ = 0.05) is only a fraction of the number of weights in
tile coding (10× 10 × 10). However, we should also mention that in return the
overall computional costs are considerably higher for SVR.

Second, we plotted the approximation quality for various kernel widths after
10000 trials, where as before each trial started in a randomly chosen state, see
Fig. 3. Although we could evidently derive a fairly optimal policy previously,

190 Tobias Jung and Thomas Uthmann

Optimal

CMAC
 sigma 0.20
 sigma 0.10
 sigma 0.05

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 10 100 1000 10000

T
im

e−
to

−
go

al

Trials (log scale)

Optimal

CMAC
 sigma 0.20
 sigma 0.10
 sigma 0.05

−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

 1 10 100 1000 10000

E
va

lu
at

io
n:

 r
ew

ar
d

of
 g

re
ed

y
po

lic
y

Trials (log scale)

2000

1200

1600

800

400

0

 10

Trials (log scale)

 sigma 0.05

 sigma 0.10

 sigma 0.20

 sigma 0.20

 sigma 0.10

 sigma 0.05

 1 100 1000

In
st

an
ce

s
D

ic
tio

na
ry

 40

 50

 30

 20

 10
 10000

Fig. 2. Comparing SVR to tile coding in the mountain car task. Each curve shows the
average of 10 different runs. Left: time-to-goal per trial. Middle: return of the respective
greedy policy. The last plot compares the number of instances stored with the size of
the dictionary

Fig. 3. Approximated value function for the mountain car task after 10000 trials for
various kernel widths σ. Black dots mark the states that were admitted to the dictio-
nary. From left to right: σ = 0.2 with m = 19, σ = 0.1 with m = 33, and σ = 0.05 with
m = 57. For wide kernels the discontinuities are smeared out. With narrow kernels the
boundaries are sharpened and more pronounced

the quality of the approximation near the discontinuities (in particular for wide
kernels) is far from good. Note the way in which the states in the dictionary are
distributed. The circular, spiraling pattern corresponds to the initial trajectories
of the learner, oscillating back and forth between the two hill tops.

6 Conclusion and Future Research

We demonstrated experimentally that on-line RL in conjunction with SVR func-
tion approximation is possible. The SVR method described in this paper relied
on solving a reduced QP obtained from projecting the data on a small subset
of the original training samples. This way the main workload during training
only depends on the effective dimensionality of the data which can be consid-
ered as being asymptotically independent of the total number of training pairs
encountered in the RL algorithm. Another consequence is that one obtains a
very sparse regressor which, when used as predictor in subsequent operations
such as the policy improvement step, again helps to reduce the computational

Experiments in Value Function Approximation 191

complexity. The resulting SVR-RL framework was shown to solve two common
toy-problems and to approximate the optimal value function.

The algorithm and simulations that were presented can only be considered
as a first step to demonstrate the overall feasability of this approach. Additional
conceptual and algorithmic refinements and more experimentation are needed.
The framework very naturally carries over to other RL methods: currently we
are extending it to include the model-free case and to perform TD(λ) policy-
evaluation. In particular, we expect it to work well when coupled with off-line
control methods like partially optimistic policy-iteration, since here the updates
to the value function can be carried out in a batch manner.

References

1. D. Bertsekas and J. Tsitsiklis. Neuro-dynamic programming. Athena Scientific,
1996.

2. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector ma-
chines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

3. T. Dietterich and X. Wang. Batch value function approximation via support vec-
tors. In NIPS 14, pages 1491–1498, 2002.

4. T. Downs, K. E. Gates, and A. Masters. Exact simplification of support vector
solutions. Journal of Machine Learning Research, 2:293–297, 2001.

5. Y. Engel, S. Mannor, and R. Meir. Kernel recursive least squares. In Proc. of 13th
European Conference on Machine Learning. Springer, 2002.

6. Y. Engel, S. Mannor, and R. Meir. Sparse online greedy support vector regression.
In Proc. of 13th European Conference on Machine Learning. Springer, 2002.

7. S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel represen-
tation. Journal of Machine Learning Research, 2:243–264, 2001.

8. B. Schölkopf and A. Smola. Learning with Kernels. Cambridge, MA: MIT Press,
2002.

9. A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine
learning. In Proc. of 17th ICML, 2000.

10. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

11. R. S. Sutton. Generalization in reinforcement learning: successful examples using
sparse coarse coding. In NIPS 7., pages 1038–1044, 1996.

12. C. Williams and M. Seeger. Using the nyström method to speed up kernel machines.
In NIPS 13, pages 682–688, 2001.

	1 Introduction
	2 A Brief Reminder of Reinforcement Learning
	3 Sparse Support Vector Regression
	3.1 The SVR Problem
	3.2 Sparse Greedy Matrix Approximation
	3.3 Solving a Reduced Problem

	4 The Complete Algorithm
	5 Experiments
	6 Conclusion and Future Research
	References

