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Abstract. This paper describes a method that can be seen as an im-
provement of the standard progressive sampling. The standard method
uses samples of data of increasing size until accuracy of the learned con-
cept cannot be further improved. The issue we have addressed here is
how to avoid using some of the samples in this progression. The paper
presents a method for predicting the stopping point using a meta-learning
approach. The method requires just four iterations of the progressive
sampling. The information gathered is used to identify the nearest learn-
ing curves, for which the sampling procedure was carried out fully. This
in turn permits to generate the prediction regards the stopping point.
Experimental evaluation shows that the method can lead to significant
savings of time without significant losses of accuracy.

1 Introduction

The existence of large datasets creates problems for many data mining algorithms
that are readily available. Memory requirements and processing times are often
rather excessive. Besides, using all the data does not always lead to marked
improvements. The models generated on the basis of a part of the data (sample)
are often precise enough for the given aim, while the computational cost involved
is incomparably lower.

These problems have motivated research in different data reduction methods.
In this paper we are concerned with one particular data reduction method, which
is oriented towards reducing the number of examples to be used, and is often
referred to as sampling.

The aim of the sampling methods is, in general, to determine which propor-
tion of the data should be used to generate the given model type (e.g. a decision
tree). At the same time, we want the model to be comparable to the model that
would be generated using all the available data. The existing methods can be
divided into two groups: Static sampling methods and dynamic sampling meth-
ods [3]. As for the first group, the aim is generate a sample by examining the
data, but without considering the particular machine learning algorithm to be
used afterwards. Some researchers refer to this method as a filter approach.

In contrast to this the dynamic sampling methods take the machine learning
algorithm into account. The final sample is determined by searching though
the space of alternatives. The system explores the alternatives in a systematic
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manner and the performance of the machine learning algorithm is used to guide
the future search. Some researchers refer to this method as a wrapper approach. It
was shown that the dynamic (wrapper) methods obtain in general better results
than the static (filter) methods, although they tend to be slower [3].

One particular dynamic method that can be used in conjunction with large
datasets is called efficient progressive sampling [2]. The method starts with a
small data sample and in each subsequent step uses progressively larger sample to
generate a model and to check its performance. This continues until no significant
increase in accuracy is observed. One important characteristic is the size of the
samples used in each subsequent step. The sizes follow a geometric progression.
Another important aspect is how convergence is detected. The authors use a
method referred to as LRLS (linear regression with local sampling). This method
works as follows. Supposing the algorithm is examining sample ni, LRLS uses
10 samples of similar size to generate models and estimate their accuracies.
These estimates are supplied to linear regression algorithm and the inclination
of the resulting line is examined. If it is about horizontal (i.e. the inclination is
sufficiently near to zero), the process of sampling is terminated. As it was shown
by the authors, this method worked well with the large datasets considered.
However, a question arises when exactly this method is useful.

We have re-implemented a similar method and used it on a conjunction of
both large and medium size datasets. We have verified that in many medium size
datasets the method required more time than a simple scheme that would learn
from all the data. This is easy to explain. The method constructs a succession
of models using progressively increasing samples. However, in many cases the
accuracy will simply keep increasing and hence the stopping condition will not
be satisfied. This means that the algorithm will process all the data, but with
an additional overhead of using a succession of increasing samples beforehand.

Our aim was to improve the method so that it could be applied to any dataset,
no matter what its size is. The basis strategy relies on eliminating some samples
from consideration. We use previous knowledge about the algorithm itself, that
is, meta-learning on past results. This is justified by quite good previous results
with this technique [6].

The rest of the paper is organized as follows. Section 2 describes the proposed
method in detail. Section 3 describes the evaluation method and experimental
results obtained. Finally, we present the conclusions.

2 Predicting the Stopping Point in Sampling

Dynamic sampling methods use a succession of models generated by a given
learning algorithm on the basis of a sequence of progressively increasing samples.
The aim is to determine the point in which the accuracy does not increase
any more. We call this point a stopping point. Fig. 1 shows a typical learning
curve and the stopping point is represented by p∗. Our aim is to predict the
point p∗ using an initial segment consisting of #p points. Let us examine again
the learning curve represented in Fig. 1. Suppose the points p1, p2, p3 and p4
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Fig. 1. Learning Curve

constitute the initial segment. So, our aim is to estimate the stopping point using
these four points, without considering the points further on.

The prediction of p∗ is done on the basis of previous knowledge about the
algorithm in question. The knowledge used is in the form of learning curves ob-
tained before on other (similar) datasets. The aim is to use these curves to predict
the stopping point on a curve that is only partly known (we have information
about the initial segment only).

The details of this method are described in the following. First, we will dis-
cuss how the learning curves are represented. Then, we will show how certain
learning curves are identified on the basis of existing information for the pur-
pose of prediction. Finally, we show how the prediction of the stopping point is
generated. The reader can consult Fig. 2. for an overview of the method.

2.1 Representation of Learning Curves
and Identifying the Stopping Point

Suppose we have datasets {D1, D2, ..., Dn} and for each one we have a learning
curve available (later we will discuss a variant of this basic method which uses
N learning curves per dataset). Each learning curve is represented by a vector
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Fig. 2. The basic algorithm for predicting stopping points
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< Ai,1, Ai,2, .., Ai,z >, where Ai,m represents the accuracy of the given algorithm
on dataset Di on m-th sample in the sequence. Following Provost et al. [2]
the sizes follow a geometric progression. The sequence spans across the whole
dataset.

The particular stopping point p∗i for dataset i can be readily identified.
This is done as follows. First, we identify the global maximum using Ai,pmax =
max(Ai,j). Then, given a tolerance ε, we identify the earliest point in the se-
quence whose accuracy is within the tolerance limit of the global maximum. This
can be formulated as follows:

p∗i = min{n : |Ai,pmax − Ai,n| < ε} (1)

2.2 Identification of Appropriate Learning Curves
for the Purpose of Prediction

Suppose we are interested in dataset D and we have information about the initial
segment of the learning curve (e.g. the first #p=4 points). We employ a nearest
neighbor algorithm (k-NN) to identify similar datasets (as in [6]) and retrieve the
appropriate learning curves. Here the k-NN algorithm represents a meta-learner
that helps us to resolve the issue of predicting the stopping point. As k-NN uses
a distance measure to identify k similar cases, we need to adapt the method to
our problem. Here we just use the information concerning the initial segment.
The distance function between datasets Di and Dj is defined by

d(i, j) =
#p∑

m=1

(Ai,m − Aj,m)2 (2)

where m spans across the initial segment.

2.3 Generating the Prediction Concerning the Stopping Point

Once k learning curves have been identified, we can generate the prediction
regards the stopping point on a new curve. This is done by retrieving the stopping
points associated with k learning curves and generating a prediction using this
information. Let us see how this is done in detail.

Let the associated indeces of the k most similar learning curves be n1,
n2, ..., nk. Then let the stopping points of each curve be p∗n1

, p∗n2
, ..., p∗nk

. In gen-
eral, the values can differ. One obvious way to estimate the stopping point pi on
the basis of this information is by using the median (or the mean) value1.

2.4 Using Aggregated Learning Curves

It is a well known fact that the performance of many algorithms may vary
substantially, as data is drawn from a given source. This phenomenon is usually
1 In all experiments reported here we have used the median, as it is less sensitive to

outliers.
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referred to as variance [4]. The problem is even more apparent if we use small
samples. As a consequence, the learning curves do not always look like the one
shown in Fig. 1 which is monotonically increasing. The curves obtained from
real data often include points that appear to jump up and down. This has an
adverse effect on the method described earlier.

To minimize this problem we have decided to generate a smoothed-out curve
on the basis of N learning curves per dataset. Each individual learning curve
is obtained using a different portion of the data, using a method similar to N
cross-validation. Each point Ai,m, the m-th point of smoothed curve for dataset
i, represents the mean of the corresponding points of the individual learning
curves.

In the following the method described in this section is referred to shortly as
MPS (meta-learning + progressive sampling).

3 Empirical Evaluation

To evaluate the method MPS proposed above we have used the leave-one-out
evaluation strategy. We identify a dataset, say Di, and the aim is to predict
the stopping point for this dataset. All other datasets except Di (and with the
associated initial segments) are used to generate the prediction p̂∗i , in the way
described earlier. The predicted stopping point is compared to the true stopping
point (retrieved from our database). Besides, we also compare the errors associ-
ated with the two stopping points and the times used to obtain each solution.

We have used 60 datasets in the evaluation. Some come from UCI [1], others
were used within project METAL [5]. All datasets used are shown in Table 2 in
the Appendix.

The samples are generated using a geometric progression as follows. The size
of mi-th sample is set to the rounded value of 26+0.5×mi. Thus the size of the first
sample is 26.5, giving 91 after rounding, and the second sample is 27, giving 128
etc. Table 1 shows the relationship between the sample number and the actual
sample size.

Table 1. Relationship between the sample number and the actual sample size

m 1 2 3 4 5 ... 10 15 20 25

size 91 128 181 256 362 ... 2048 11585 65536 370728

We have used C5.0 [8] as the base algorithm. That is, our aim was to predict
the stopping point of C5.0 on the basis of the initial segment. In the experiments
reported here the initial segment included 4 points (#p=4). The tolerance limit
ε was set to 0.001. In the experiments presented here we also used the dataset
size as a predictive attribute. For each dataset we have retrieved a smoothed-out
curve.
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Regards the meta-learning method, we have used k-NN. In the experiments
reported here k was set to 32.

3.1 Results Concerning Savings and Losses

The results obtained are shown in Fig. 3. As we can see, there is on the whole
quite good agreement between the predicted stopping point and the true value.
Here we use the re-scaled values shown in Table 1. The points can be divided into
three groups. The first one includes perfect predictions (p̂i = p∗i ). The second
group includes all cases for which p̂i < p∗i . That is, if we followed the prediction,
the sampling process would terminate somewhat prematurely. In general, one
would expect that this would affect the error of the base algorithm (in general
the error will be a bit larger than it would be, if it terminated at the right point).
The third group includes all cases for which p̂i > p∗i . In general, this will not
affect the error, unless of course, the base algorithm suffers from overfitting.
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Fig. 3. Comparison between predicted and true stopping points

We can analyse the situation in Fig. 3 more closely and examine the differ-
ences between the predicted and the true value and calculate The Mean Absolute
Error (MAE). This calculation gives the value 1.04. In other words, our predic-
tions are about 1.04 steps off the ideal value.

Let us now see what would happen if we used a fixed prediction throughout.
The best fixed prediction is the mean of the true stopping points (12.59). If
we used this, the Mean Absolute Error (MAE) would be 2.67. This value is
substantially larger than the value obtained using the method MPS.

We can analyse the computational savings achieved. We compare two sit-
uations. One involves using the traditional progressive sampling method while

2 This value lead to the best results. Later on we discuss this issue further.



256 Rui Leite and Pavel Brazdil

trying to identify the true stopping point. In general we need to run through at
least p∗i points.

The second situation involves our method, that is training the base algorithm
on #p=4 points to be able to obtain the predicted stopping point. In addition,
we need to train the base algorithm on the corresponding sample. So we can
compare how many points we effectively skip and this gives an indication of the
computational savings. If we carry out the calculations, we see that on average
the savings is 7.6 points (varying between 2 and 20). That is, our method avoids
constructing and evaluating at least 7x10 classifiers on average when compared
to the progressive sampling method.

3.2 Results Concerning Actual Times and Accuracies

The analysis presented so far was oriented towards comparing the predicted stop-
ping point with the actual one. In this section we will provide figures concerning
actual times, and also, analyse the impact of being off target on accuracy of the
base algorithm.

In Fig. 4 we compare the times of two approaches. The first one is our method
(MPS), which requires training #p+1 classifiers (vertical axis). The second one is
the baseline method representing a simplified version of the progressive sampling
method [2] (horizontal axis). As can be seen in practically all datasets the method
leads to time significant savings. Our method is 12.25 faster on average.
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Fig. 4. Comparison of total training times
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Fig. 5. Comparison of accuracies

The comparison of accuracies of the two methods for various datasets is
shown in Fig. 5. The differences in accuracies for the two methods are relatively
small. However, as could be expected, the accuracy of our method is a bit lower
than the accuracy of the baseline method. On average the difference is 0.51%.
This could be considered as the price to pay for the speed-up.
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Closer analysis shows that for 32 datasets the difference is zero. On the other
hand, in few datasets there is a noticeable difference. This is due to the fact that
the method has identified a stopping point which is in fact premature.

4 Parameters of Our Method:
The Values Used and Future Work

The method described involves various parameters. Our aim here is to briefly
review the set of parameters involved and justify why certain choices were made
and discuss futher work.

As has been pointed out earlier, the method requires that experiments be
conducted on different datasets. The aim of these is to obtain learning curves
that are stored for future use together with the true stopping point. As each
learning curve is represented by a sequence of points, we need to determine how
the learning curves are represented, how many learning curves are constructed
per dataset and how the true stopping point is identified.

Given a new dataset, the method uses a k-NN to identify the most similar
cases. In this step we need to determine the size of the initial segment of the
learning curve in the matching procedure and which characteristics of the dataset
should be taken into account. Finally we need to set the value of k in the k-NN
procedure.

All these parameters can be varied and we could study what the effects of
these variations on the overall result. We have done some studies to this effect,
but obviously an exhaustive study is not practicable. In the following we give a
short overview of our position on these issues and point out to further work that
could be carried out.

Choice of Datasets: The study carried out by Provost et al [2] was limited to
relatively few large datasets. We have used many more datasets (60) here, but
we did not follow any particular strategy when selecting these. Further work
could be carried out to see what the results would be if we focused the study on
certain datasets only (e.g. datasets above certain size or satisfying some other
criterion).

Representation of the Learning Curve: Each learning curve is represented by a
sequence of points. The sample sizes follow a geometric progression. Both the
initial size (91 cases) and the increment represent parameters of the method are
considered fixed. Other settings could be tried in future, although we do not
think the results could be improved dramatically this way. Besides, instead of
saving point-to-point information about learning curves, one could take a model-
based approach. In principle it would be possible to fit a predefined type of curve
through the points and save the curve parameters. The distance measure could
then be redefined accordingly. As the curve fitting is subject to errors, it remains
to be seen, whether this approach would lead to better results.
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Number of Curves Constructed per Dataset: We have used both a single curve
and N=10 curves per dataset. As has been pointed out earlier, the N curves
were compacted into a single aggregated smoothed-out curve. The results with
this curve (representing 10 individual curves) were much better than the results
with a single curve. The number of curves (10 in our case) is a parameter of the
method. Further work could be done to determine the advantages / disadvan-
tages of using other values. In one earlier study [7] we have used also 10 curves
per dataset, without generating a smoothed-out curve. The k-NN matching pro-
cedure was more complex. The initial segment obtained on a new dataset was
then matched against all the individual curves and average distance calculated.
The overall results were comparable to the results presented here. The advantage
of using smoothed-out curves is that the matching procedure is much simpler.
A more comprehensive comparison could be carried out in future. Besides, we
could try to establish whether one method is significantly better than another.

Detection of the True Stopping Point: As has been described earlier the detec-
tion of the true stopping point involves constant ε, which was set to 0.001 (the
differences of accuracy less than this value are considered insignificant). The
choice of this value affects both the position of the stopping point on a curve
and the overall precision of the method. If a larger value were chosen (e.g. 0.01),
the stopping point would, in general, appear earlier. More work could be done
to characterize the effect of these choices quantitatively.

Size of the Initial Segment of the Learning Curve Used in Matching: As has been
pointed out earlier, the size of the initial segment was set to 4 points. We have
experimented with other different values. Reducing the number (e.g. to 1,2 or 3)
led, on the whole, to comparable or inferior performance. Increasing the number
did not seem to bring further benefits and this is why we have settled for the
value of 4.

Using Data Characteristics: In this work we have used not only the learning
curves, but in addition, used one particular characteristic of the dataset, which
is dataset size (i.e. number of cases). Dropping this attribute led to marked
decrease of performance (MAD would rise from 1.04 to 1.89).In future we intend
to investigate whether some other characteristics could be useful (e.g. number
or entropy of classes etc.).

Weights of the Initial Segment and the Dataset Characteristics: As the k-NN
matching procedure uses both the initial segment consisting of N points and one
characteristic - the dataset size - it is important to determine the weights that
should be attributed to each of these items in the k-NN matching procedure.

We have begun by using equal weights for all parts, but then found that this
was not the best setting. To our surprise the best results were obtained when
relatively large weight was attributed to dataset size (94%), and relatively little
weight to the initial segment (6%). Despite its rather small weight, the initial
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segment was important. If it were dropped all together (corresponding to giving
it weight 0), the overall MAD value would rise from 1.04 to 1.2.

An interesting question arises why the dataset size appears to be so impor-
tant. We have carried out a study to clarify this. The results are shown in Fig.
6, showing where the stopping points lie for different datasets. Each dataset is
represented by a point positioned at a particular coordinate X,Y. The X coor-
dinate (horizontal axis) corresponds to the dataset size and Y coordinate (the
vertical axis) to the stopping point. Both values are rescaled values, expressed
in terms of the points in the geometrical progression adopted (see Table 1 for
details on re-scaling). As can be seen many points lie on the diagonal. These are
the datasets for which the stopping point lies exactly at the end. In all these
cases the best thing to do is to use all the data. The finding above suggests that
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Fig. 6. Dataset sizes vs stopping points (both expressed in terms of the number of the
sample)

we could use a simplified method probably without deterioration of performance.
If we can confidently classify a case using a k-NN on the basis of the dataset
size only, we could skip construction of the initial segment. Future work could
be carried out, to evaluate how this would work in practice. Another interesting
issue is how well the method would work if we focussed the attention on large
datasets only, where presumably the stopping point does not coincide with the
full data. This will be investigated in future.

Value of k in the k-NN Procedure: In our experiments we have used the value
k=3. We have experimented with other different values (both lower and higher
than 3), but the results were on the whole comparable or inferior to the ones
obtained with the setting used. These results could be validated further by con-
ducting further experiments.
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5 Conclusions

We have described a method that can be seen as an improvement of the stan-
dard progressive sampling. We have been concerned with the issue of how to
avoid using some of the samples in this progression. We have employed a meta-
learning approach that enables us to predict the position of the stopping point.
The method requires just four iterations of the progressive sampling and the
information gathered is used to identify the nearest learning curves. This in turn
permits to generate the prediction regards the stopping point.

We have carried out experimental evaluation of the method using 60 datasets.
We have shown that the method can lead to significant savings of time. The
experimental results indicate that it is possible to skip 7 or 8 samples on average,
leading to significant savings of time. On average our method is 12.25 faster than
the standard method. The accuracy of the method presented is a bit lower, but
this is an acceptable price to pay for the speed-up.

The work carried out led to some unexpected surprises, however. We have
found that some dataset characteristics, such as dataset size, are quite informa-
tive and help to improve the results. We have carried out a study that helps to
explain why the dataset size appears to be important. An interesting issue arises
whether there are other characteristics that could be used, which would work
even better, this should be investigated in future.
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Appendix

Table 2. Datasets used

dataset n cases dataset n cases dataset n cases

acetylation 1511 connect.4 67557 Adult 32560
covtype 581012 Byzantine 17750 dis 3772
contraceptive 1473 heart.disease.clev. 1541 dna.splice 3186
hypothyroid 3163 ibm.stock.val 8087 isolet 7797
injury.severity 7636 krkopt 28056 internetad 3279
kr.vs.kp 3196 led24 3200 letter.recognition 20000
led7 3200 mfeat 2000 mushrooms 8124
musk.clean2 6598 mushrooms.exp 8416 nettalk 146934
musk 6598 nursery 12960 parity 1024
optdigits 5620 quisclas 5891 page.blocks 5473
recljan2jun97 33170 pendigits 10992 task1 111077
pyrimidines 6996 taska.part.hhold 17267 quadrupeds 5000
taska.part.related 18254 sat 6435 taskb.hhold 12934
segmentation 2310 ad 3279 shuttle 58000
adult 48842 sick 3772 agaricus.lepiota 8124
sick.euthyroid 3163 allbp 3772 spambase 4601
allhyper 3772 splice 3190 allhypo 3772
thyroid0387 9172 allrep 3772 triazines 52264
ann 7200 waveform21 5000 car 1728
waveform40 5000 cmc 1473 yeast 1484
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