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Abstract. As semi-supervised classification drawing more attention,
many practical semi-supervised learning methods have been proposed.
However,one important issue was ignored by current literature–how to
estimate the exact size of labelled samples given many unlabelled sam-
ples. Such an estimation method is important because of the rareness and
expensiveness of labelled examples and is also crucial in exploring the
relative value of labelled and unlabelled samples given a specific model.
Based on the assumption of a latent gaussian-distribution to the domain,
we described a method to estimate the number of labels required in a
dataset for semi-supervised linear discriminant classifiers (Transductive
LDA) to reach an desired accuracy. Our technique extends naturally
to handle two difficult problems: learning from gaussian distributions
with different covariances, and learning for multiple classes. This method
is evaluated on two datasets, one toy dataset and one real-world wine
dataset. The result of this research can be used in areas such text mining,
information retrieval or bioinformatics.

1 Introduction

Machine learning falls into two broad categories: supervised learning and unsu-
pervised learning, primarily distinguished by the use of labelled and unlabelled
data. Semi-supervised learning has received considerable attention in the litera-
ture due to its potential in reducing the need for expensive labelled data [1]. A
general strategy is to assume that the distribution of unlabelled data is linked
to their labels. In fact, this is a necessary condition for semi-supervised learning
to work. Existing approaches make different assumptions within this common
framework. Generative mixture model method[2] assumes that data comes from
some identifiable mixture distribution, with unlabelled data, the mixture compo-
nents can be identified independently. Transductive Support Vector Machines[3]
take the metrics space to be a high-dimensional feature space defined by the
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kernel, and by maximizing the margin based on the unlabelled data, effectively
assume that the model is maximally smooth with respect to the density of un-
labelled data in feature space. Co-training[4] assumes that data attributes can
be partitioned into groups that individually sufficient for learning but condition-
ally independent given the class, and working by feeding classifications made by
one learner as examples for the other and vice versa. Graph methods[5] assume
a graph structure underlying the data and the graph structure coincide with
classification goal. The nodes of the graph are data from the dataset, and edges
reflect the proximity of examples. The intuition is that close examples tend to
have similar labels, and labels can propagate along dense unlabelled data regions.

While many practical semi-supervised classification algorithms have been
proposed, an important issue is ignored: Given many unlabelled samples, what
is the minimum labelled samples we need while achieving a desired classification
performance? Given labels to more training samples lowered the classification
errors, but increased the cost when obtaining those labels. Thus, a method to
estimation the minimum labelled sample size becomes a necessity. Moreover, a
detailed analysis of labelled sample size under specific model assumption can
improve our understanding of the relative values of labelled and unlabelled sam-
ples.

In this paper, our labelled sample size estimation method was derived by
computing the bays error for a binary semi-supervised linear classifier(i.e. trans-
ductive LDA), and estimating the appropriate number of labels necessary for
the a certain classification accuracy . We chose transductive LDA in our set-
ting since as a generalization of regular LDA and based on the assumption of
a latent gaussian-distribution to the domain,it has a relatively large bias but
little variance, and avoid overfitting effectively when sample size is small. Be-
sides a theoretical underpinning, we also developed a computationally tractable
implementation based on simple parameter vector space transformation for our
estimation method. Detailed discussion and analysis are presented to show that
the technique could extend naturally to quadratic classifiers and to multi-class
classifiers. The next section provided background information on transductive
LDA as discussed in the literature of semi-supervised learning. Section 3 de-
tailed a mathematical derivation of the labelled sample size estimation method
for transductive LDA classifiers. Section 4 discussed the extension of our es-
timation method to the case of quadratic discriminant analysis and multi-class
classification. Experimental results on both toy data and real world dataset were
shown in Section 5. Summarization and future work were discussed in section 6.
the last part was the acknowledge.

2 Transductive Linear Discriminant Analysis

2.1 Formalization of Labelled Sample Size Estimation Problem

We begin with a domain of objects X = {x1, ..., xn}. Each object xi is associated
with a vector of observable features(also denoted xi). We are given labels Yl =
{y1, ..., yl} for the first l objects(l << n), and our goal is to infer the labels
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Yu = {yl+1, ..., yn} of the n−l unlabelled data. We refer to Xl = {x1, ...xl} as the
“labelled sample”, and the complement Xu = X−Xl as the “unlabelled sample”.
For now we assume a binary classification problem, with Y = Yl∪Yu ∈ {1, 0}|X|,
The labels yi are independent random variables satisfying Pr{yi = 1} = π1,
Pr{yi = 0} = 1−π1; generalization to the multi-class is straightforward. We use
R(l, u) to denote the classification error with l labelled data and u unlabelled
data while R∗ denotes bayes risk.

R∗ =
∫

min{π1f1(x), (1 − π1)f2(x)}dx

The labelled sample size estimation problem is formulated as given an acceptable
additional probability of error �err of any Bayesian solution to a classification
problem with a smooth prior, 0 < �err < 1, from current X and Yl, how many
more xk should be given labels, so that the difference between real classification
error and bayes error R(l, u) − R∗ will be less then �err.

We also assume that the underlying distributions of the samples are mixture
of gaussian with identical covariance matrix, i.e., each class conditional distri-
bution has the form pyi(·) ∼ N(µi, Σ), where pyi(·) denotes the distribution of
samples for class i. Given a large number of unlabelled samples, this assumption
is reasonable because of central limited theorem as a theoretical foundation. The
assumption of identical covariance is crucial for LDA to work. Even though such
an assumption is very strong, LDA is shown to work well in many applications in
real-word datasets. In addition, we can extend LDA to Quadratic Discriminant
Analysis(QDA) naturally to relax this assumption.

2.2 Transductive LDA

Transductive LDA is a semi-supervised version of common LDA. Expectation-
Maximization(EM) approach can be applied to this learning problem, since the
labels of unlabelled data can be treated as missing values. Let the entire training
dataset D be a union of labelled dataset L and unlabelled dataset U , and assume
each sample is independent, the joint probability density of the hybrid dataset
can be written as:

p(x|θ) =
∏

xi∈Xu

K∑
k=1

p(yi = k|θ)p(xi|yi = k; θ) ·
∏

xi∈Xl

p(yi = k)p(xi|yi = k; θ)

where k = 1 or k = 2, representing the categories. The first part of this equation
is for the unlabelled dataset, and the second part is for the labelled data.

The parameters θ = (π1, µk, Σ)T can be estimated by maximizing a poste-
riori probability p(θ|D). Equivalently,this can be done by maximizing the log
likelihood log p(D|θ) when the prior probability is uniform. The likelihood is
given as:

L(π1, µk, Σ) = (2π)−
np
2 |Σ|−n

2 ·
∏

xi∈Yu

(π1e1i + π2e2i)

∏
xi∈Yl

{(π1 · e1i)yi · [(1 − π1)e2i]1−yi}
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where eki = exp{− 1
2 (xi−µk)T Σ−1(xi−µk)}. Thus the log likelihood is l(θ; D) =

log L(π1, µk, Σ). Assume that luk = log p(xu, y = k|µk, Σ) and lu = log p(xu) =
log

∑
k p(xu, y = k|µk, Σ), where xu denotes all the x ∈ Xu. When using EM

algorithm to estimate the probability parameters π1, µk, Σ by an iterative hill
climbing procedure, the E-step and M-step are designed as follows, for the E-
step:

ruk = p(y = k|xu) =
p(xu, y = k)

p(xu)
= exp{luk − lu}

For the M-step: π1 =
∑

u
ruk+l1

u+l , π2 = 1 − π1, µk =
∑

u
rukxu+

∑
xl

k∑
u

ruk+lk
, and

µ′
k =

∑
u

rukxu∑
u

ruk
. Σ is computed as:

Σ =
∑

k(
∑

u ruk(xu − µ′
k)(xu − µ′

k)T +
∑

l(x
l
k − x̄l

k)(xl
k − x̄l

k)T )∑
u

∑
k ruk + l

where lk denotes the number of labelled data in class k, xl
k denotes the number of

xl in class k, x̄l
k is the mean of all the xl in class k. When the size of the labelled

dataset is small, EM basically performs an unsupervised learning, except that
the labelled data are used to identify the components. Detailed analysis for this
issue could be found in [2]. After the EM progress, all the parameters needed for
linear discriminant analysis are tuned, and discriminant functions for conducting
classification can be obtained based on this parameters(as described in the next
section).

3 Labelled Sample Size Estimation Technique

3.1 Bayes Risk for LDA Rule Classifier

In this section we present the equation for calculating bayes risk R∗ of a LDA
classifier Ĝ. For all feature vectors X and a class membership G, we let
L(G, Ĝ(X)) be the loss function of a misclassification, and furthermore assume
it only has 0-1 values, meaning all misclassification are charged a single unit,
as in the case of many discriminant analysis. Next, we model each class con-
ditional density as multivariate Gaussian, i.e. X |G = gk ∼ N(µk, Σ), where
gk is the class label, and the discriminant functions are therefore given by
δk(x) = xT Σ−1µk − 1

2µT
k Σ−1µk + log πk and G(x) = arg maxk δk(x). For two

classes, the LDA rule classifies to class 2 if δ2(x) > δ1(x) and class 1 otherwise.
With π2 = 1 − π1, the Bayes risk R∗ is given by

R∗ = π1P1(XT Σ−1(µ2 − µ1) >
1
2
µT

2 Σ−1µ2 − 1
2
µT

1 Σ−1µ1 + log
π1

π2
)

+π2P2(XT Σ−1(µ2 − µ1) <
1
2
µT

2 Σ−1µ2 − 1
2
µT

1 Σ−1µ1 + log
π1

π2
)

In class g1, X ∼ N(µ1, Σ), and Z1 = XT Σ−1(µ2 − µ1) is transformation of X
and is a univariate Gaussian random variable with mean µ2 − µ1)T Σ−1µ1, and
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variance σ2 = (µ2 − µ1)T Σ−1(µ2 − µ1)). Z can be transformed to a standard
Gaussian random variable Z−(µ2−µ1)T Σ−1µ1

σ ∼ N(0, 1). In class g2 , Z has similar

distribution except for its mean and Z−(µ2−µ1)T Σ−1µ2
σ ∼ N(0, 1). Thus, the

Bayes risk can be calculated as

π1P1(
Z − (µ2 − µ1)T Σ−1µ1

σ
> a1) + π2P2(

Z − (µ2 − µ1)T Σ−1µ2

σ
> a2)

where

a1 =
1
2µT

2 Σ−1µ2 − 1
2µT

1 Σ−1µ1 + log π1
π2

− (µ2 − µ1)T Σ−1µ1

σ

a2 =
1
2µT

2 Σ−1µ2 − 1
2µT

1 Σ−1µ1 + log π1
π2

− (µ2 − µ1)T Σ−1µ2

σ

Let Φ denote the cumulative distribution function for a standard Gaussian
model. R∗ can be written as π1(1 − Φ(

1
2σ2+log

π1
π2

σ )) + π2Φ(
− 1

2σ2+log
π1
π2

σ ).

3.2 Labelled Sample Size Estimation Method

The estimation of an appropriate size of the labelled samples is determined by
the required reduction in R(l, u) − R∗, which is affected by the current size of
unlabelled data,dimensionality of the sample space and the separability of the
two classes. We first derive a way to calculate R(l, u)−R∗. R(l, u) is a function
of θ, where θ = (π1, µ1, µ2, Σ

−1)T . We let θ∗ denotes the true value of θ and
θ̂ denotes the estimated value, and using Taylor series expansion of R(θ̂) up to
second term, we obtain

R(θ̂) = R(θ∗) +
∂R(θ)T

∂θ
|θ=θ∗(θ̂ − θ∗) +

1
2
tr{∂2R(θ)T

∂θ2
|θ=θ∗(θ̂ − θ∗)(θ̂ − θ∗)T }

where tr(A) denotes the trace of a matrix A. The term ∂R(θ)
∂θ |θ=θ∗ is zero

since θ∗ is an extreme point of R(θ). Assuming the bias of θ̂ is negligible, i.e.
(E{θ̂} = θ∗), R(l, u) − R∗ can be approximated as 1

2 tr{∂2R(θ)
∂θ2 |θ=θ∗cov(θ̂)}. By

asymptotic theory, as the sample size approaches infinity, θ̂ ∼ N(θ∗, J−1(θ)),
where J(θ) = −∂2l(θ)

∂θθT , with l(θ) representing the log likelihood of θ, is the ob-
served fisher information matrix of θ, and an approximation of the covariance
matrix cov(θ̂). J(θ) is calculated by the summation of two parts: Jl(θ) from the
labelled data, and Ju(θ) from the unlabelled data. Let n be the total sample size;
Jl(θ) and Ju(θ) be the observed information of a single observation for labelled
and unlabelled data respectively. If given an required reduction in classification
error �err, we can find the labelled sample size l needed from

tr{∂2R(θ)
∂θ2

|θ=θ̂(lJl(θ̂) + (n − l)Ju(θ̂))−1} < 2 · �err (∗)
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Since Jl(θ) = Jl(θ)/l′ and Ju(θ) = Ju(θ)/(n − l′), where l′ is current labelled
sample size, and since n − l ≈ n − l′ (n >> l′ and n >> l), formula (*) can be
simplified as follows,

tr{∂2R(θ)
∂θ2

|θ=θ̂(lJ1(θ̂) + J2(θ̂))−1} < 2 · �err (∗∗)

3.3 Computational Consideration

According to formula (*), quantities ∂2R(θ)
∂θ2 |θ=θ̂, Jl(θ̂) and Ju(θ̂) need to be

computed first when estimating the desired labelled sample size l. However,
when the dimensionality p of the feature space is very large, the computation is
very intensive. To illustrate, if R(θ) is a continuous function,the ∂2R(θ)

∂θ2 |θ=θ̂ is a
(p2 +5p+2)/2× (p2+5p+4)/2 dimensional matrix, not mentioning the product
of two such high-scale matrix! Finding a computationally tractable method to
compute formula (**) is therefore of great practical benefit. In this section, we
develop a method to reduce the computational load of ∂2R(θ)

∂θ2 |θ=θ̂ to a 2×2 matrix
calculation based on simple vector space transformation, while at the same time
reduce the matrix production calculation of two (p2 +5p+2)/2× (p2 +5p+4)/2
dimensional matrix production to two 2 × 2 matrix production. According to
the proof in [7], in the case of LDA, R(l, u) only depends on π1 and σ2(σ2 =
(µ2−µ1)T Σ−1(µ2−µ1)) instead of the full parameter set. Let ϕ = (σ2, π1), and
let ϕ∗ denotes the true value of ϕ and ϕ̂ denotes the estimation, by Taylor series
expansion of R(ϕ̂) up to second order, we obtain

R(ϕ̂) = R(ϕ∗) +
∂R(ϕ)T

∂ϕ
|ϕ=ϕ∗(ϕ̂ − ϕ∗) +

1

2
tr{∂2R(ϕ)T

∂ϕ2
|ϕ=ϕ∗(ϕ̂ − ϕ∗)(ϕ̂ − ϕ∗)T }

Again, the term∂R(ϕ)
∂ϕ |ϕ=ϕ∗ is zero since ϕ∗ is an extreme point of R(ϕ). If the

bias of ϕ̂ is negligible,i.e., (E{ϕ̂} = ϕ∗), R(l, u) − R∗ can be approximated as,

R(l, u) − R∗ =
1
2
tr{∂2R(ϕ)

∂ϕ2
|ϕ=ϕ∗cov(ϕ̂)}

The approximated covariance matrix of ϕ̂ can be obtained from the inverse of
observed fisher information matrix J(θ̃) = −∂2l(θ̃)

∂θ̃θ̃T
|θ̃=θ̃∗ , where l(θ̃) is the log

likelihood of θ̃ based on the ladled and unlabel samples. θ̃ is reparameterized
from the old parameter θ = (π1, µ12, ...µ1p, µ22, ..., µ2p, aij)T , where aij is the
elements of the matrix Σ−1, i = 1, ..., p,j = 1, ..., p.

We map the elements in the original parameter space of θ to the new pa-
rameter space θ̃ by letting θ̃ = (π1, σ

2, µ12, ...µ1p, µ22, ..., µ2p, aij |i,j �=1)T , i.e.,
removing the term a11 from θ and adding the term σ2. The vector space of ϕ is
a subspace of vector space θ̃. Since θ and θ̃ have the same dimensionality, the
mapping is guaranteed to be one to one transformation, with a11 expressed by
the elements of θ̃ as

a11 =
σ2 − ∑

i,j �=1 aij(µ1i − µ2i)(µ1j − µ2j)
(µ11 − µ21)2



280 Han Liu et al.

Again aij is the element of Σ−1. The new log likelihood l(θ̃) can be easily
obtained from the original l(θ) and can be differentiated with respect to θ̃. The
information J(θ̃) is also the summation of two parts: Jl(θ̃) from the labelled
data and Ju(θ̃) from the unlabelled data. We let n be the total sample size,
Jl(θ̃) and Ju(θ̃) be the observed information of a single observation for labelled
and unlabelled data respectively. Similar to the derivation above, J(θ̃) ≈ lJl(θ̃)+
Ju(θ̃) and thus J−1(θ̃) ≈ (lJl(θ̃) + Ju(θ̃))−1. Let I(l) denotes the matrix made
of the first two columns and first two rows, under our differentiation order of θ̃,
we can prove that I(l) ≈ cov(ϕ̂). The detailed proof is omitted here. After the
vector space transformation, given �err , formula (**) is equivalent to

tr{∂2R(ϕ)
∂ϕ2

|ϕ=ϕ̂(I(l)} < 2 · �err (∗ ∗ ∗)

which is computationally tractable.
From the mathematical derivation above, we can see that the labelled sample

size l is determined by several factors. Because the log likelihood is the likelihood
for both labelled and unlabelled data, the final l is affected by the number of
unlabelled data and also the dimensionality of the sample space. Furthermore,
σ2 and µk determines whether the two classes are easily classifiable, and it is an
important factor in our estimation equation.

4 Relax the Strong Assumptions to Transductive QDA
and Transductive MDA

4.1 From Transductive LDA to Transductive QDA

In this section, we discuss how to relax the strong assumption of identical co-
variance in gaussian mixtures by extending Transductive LDA to Transductive
QDA. The modification of EM algorithm is trivial, requiring changes only in the

M-step, i.e, Σnew
k =

(
∑

u
ruk(xu−µ′

k)(xu−µ′
k)T +

∑
l
(xl

k−x̄l
k
)(xl

k−x̄l
k
)T )∑

u
ruk+lk

. We also need

modifications to the estimation method when relaxing the identical covariance
assumption. For quadratic discriminant analysis, each class conditional density is
modelled as X |G = gk ∼ N(µk, Σk), and the discriminant functions are given as
δk(x) = xT Σ−1

k µk − 1
2µT

k Σ−1
k µk +log πk and G(x) = arg maxk δk(x). In the case

of two classes, the corresponding Bayes risk R∗ is π1P1(XT (Σ−1
2 µ2 −Σ−1

1 µ1) >
1
2µT

2 Σ−1
2 µ2− 1

2µT
1 Σ−1

1 µ1 +log π1
π2

)+π2P2(XT (Σ−1
2 µ2−Σ−1

1 µ1) < 1
2 (µT

2 Σ−1
2 µ2−

µT
1 Σ−1

1 µ1) + log π1
π2

). In class g1, X ∼ N(µ1, Σ1), Z = XT (Σ−1
2 µ2 − Σ−1

1 µ1) is
a univariate gaussian random variable, which is a transformation of X , with
the distribution, Z ∼ N((µT

2 Σ−1
2 − µT

1 Σ−1
1 )µ1, σ1) where σ1 = (µT

2 Σ−1
2 −

µT
1 Σ−1

1 )Σ1(Σ−1
2 µ2 − Σ−1

1 µ1). By defining mean1 = (µT
2 Σ−1

2 − µT
1 Σ−1

1 )µ1 and
mean2 = (µT

2 Σ−1
2 − µT

1 Σ−1
1 )µ2, σ2 = (µT

2 Σ−1
2 − µT

1 Σ−1
1 )Σ2(Σ−1

2 µ2 − Σ−1
1 µ1)

We have Z−mean1
σ1

∼ N(0, 1). In class g2 , Z has similar distribution such that
Z−mean2

σ2
∼ N(0, 1). Thus, the Bayes risk for QDA can be calculated as

R∗ = π1P1(
Z − mean1

σ1
> a1) + π2P2(

Z − mean2

σ2
> a2)
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where a1 =
1
2µT

2 Σ−1
2 µ2− 1

2µT
1 Σ−1

1 µ1+log
π1
π2

−meank

σk
, k = 1, 2. Let Φ denote the cu-

mulative distribution function for a standard Gaussian model. R∗ can then be
calculated by π1(1−Φ(a1))+π2Φ(a2). The above method is a theoretical analy-
sis, in fact, after tuning out the covariance matrix Σ1 and Σ2, we can simply use
a very naive method to merge these two different matrices into one single matrix
Σcommon = (π2

1 · Σ1 + π2
2 · Σ2)/(π2

1 + π2
2), which is still a semi-positive definite

and can be used instead to apply the estimation technique for Semi-supervised
LDA directly. Another important point to note is that without the assumption
of identical covariance matrix, R(l, u) does not depend on (σ2, π1) only. Con-
sequently, our computational tractable approach dose not hold. Yet, one can
still use formula (**) to estimate the appropriate size of labelled samples. For
a domain with a very flexible distribution but relatively small dimensionality,
applying Semi-Supervised QDA would be more suitable.

4.2 From Two-Class Classification to Multi-class Classification

Some limitations exist when applying transductive LDA to multi-class classifi-
cation problems, especially when the size of the labelled set is small. In such
situation, the EM algorithm may fail if the distribution structure of the data
set is unknown. A natural solution in dealing with multi-class classification is
to map the original data samples into a new data space such that they are well
clustered in the new space, in which case the distributions of the dataset can
be captured by simple gaussian mixtures and LDA can be applied in the new
space.

Transductive Multiple Discriminant Analysis(MDA)[8] used this idea and
defined a linear transformation W of the original p1-dimension data space to
a new p2-dimension space such that the ratio of between-class scatter Sb to
within-class scatter Sw is maximized in the new space, mathematically, W =
arg maxW

|W T SbW |
|W T SwW | . suppose x is an p-dimensional random vector drawn from C

classes in the original data space. The kth class has a probability Pk and a mean
vector µk. thus Sw =

∑C
k=1 PiE[(x − µk)(x − µk)T |ci] and Sb =

∑C
k=1 Pi(µk −∑C

i=1 Piµi)(µk−
∑C

i=1 Piµi)T . The main advantage of transductive MDA is that
the data are clustered to some extent in the projected space, which simplifies
the selection of the structure of Gaussian mixture models. The EM algorithm for
semi-supervised MDA can be found in [9]. Because semi-supervised MDA is just
another perspective of semi-supervised LDA, our labelled sample size estimation
method also applies well in this setting. Assuming there are k classes altogether,
the bayes risk is calculated as follows,

R∗ = π1P1(δ1 < max(δ2, ..., δk)) + π2P2(δ1 < max(δ1, δ3, ..., δk)) + · · · · ·+

πiPi(δ1 < max(δ1, ..., δi, δi+1, ..., δk)) + πkPk(δ1 < max(δ2, ..., δk−1))

which can be computed quite efficiently.
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5 Experiments and Results

5.1 Toy Data of Mixture of Gaussian with Six Components

To illustrate the performance of our estimation method, first we show an example
of no obvious practical significance. Consider Gaussian observation (X, Y ) taken
from six classes g1, g2, ..., g6. We know that X and Y are Gaussian variables,
and we know exactly the means of (X, Y is (µix, µiy) and variance-covariance
matrices is |Sigmai given that the class G = gi. We need to estimate the mixing
parameter pi = p(G = gi). The data is sampled from a distribution with mixing
parameter αi. The total number of our data is 900, with dimensionality equals
to two, and are divided into 6 classes: 100 data for class g1, 100 for class g2,150
for class g3,150 for class g4,200 for class g5 and 200 for class g6. The means and
covariance matrices are shown as follows: µ1 = (− 3

2 , 1/2)T , µ2 = (2, 2)T , µ3 =
(− 1

2 , 5
2 )T , µ4 = (1

2 , 0), µ5 = (1
3 ,−2)T and µ6 = (7

2 ,− 1
2 )T . For their covariance

matrices:

Σ1 :
(

3 1
2

1
2 1

)
Σ2 :

(
3 1

2
1
5 1

)
Σ3 :

(
3 1
1
5

1
2

)
Σ4 :

(
5
2

1
3

2 3
2

)
Σ5 :

(
3 1
1
5 1

)
Σ6 :

(
1
3

1
10

1
2

5
2

)

and their mixing parameters π1 = 1
9 ,π2 = 1

9 , π3 = 1
6 , π4 = 1

6 ,π5 = 2
9 ,

π6 = 1
9 . Based on these information, 900 data were randomly generated. For our

experiment, the initial number of the labelled data is 4 for each class. Applying
semi-supervised QDA on the data, we obtained a classification result shown in
the first plot of figure 1. Given the desired �err = 0.05, by our algorithm, the
estimated labelled data number is 90, thus at least 15 labels are needed for each
class.
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Fig. 1. Illustration of the fitting with 4 labels, 7 labels, 15 labels and 22 labels for each
class respectively, in this first 2 cases, the number of labelled data is not large enough,
thus can not give out enough information for fitting, while in the latter 2 cases,the
number of labelled data is enough,the fitting is good, but given more data can not
improve the fitting significantly

From the first plot in figure 1, it is easy to see that the fitting is not quite
good. the shape of the gaussian and the position is quite different from the
original figure. plot 2 was generated from 7 labels per class, the fitting is still not
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good enough. While plot 3 represents the fitting condition with 15 labels for each
class, the fitting result is satisfiable; plot 4 is generated with 22 labels for each
classes, we can see that the fitting performance does not improve much from the
15 labels case. The classification error for each class is shown in table 1 below:
Running for every label size 10 times. The box plot for these 4 conditions are
shown in figure 2, From the box plot above, we can see that with the increase
number of the labelled data, the overall error rate was reduced significantly
at first, but slightly after it exceeds a threshold. Normally, we use 5% as this
threshold.

Table 1. Classification error for each classes of toy data

label number 4/class 7/class 15/class 22/class

error for g1 0.70515 0.47788 0.54221 0.55176
error for g2 0.77217 0.73579 0.65222 0.55411
error for g3 0.18903 0.10350 0.14149 0.04770
error for g4 0.53220 0.60979 0.60518 0.57308
error for g5 0.17077 0.10841 0.10666 0.10176
error for g6 0.16513 0.13630 0.10500 0.12819
overall error 0.35856 0.31040 0.29419 0.28778
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Fig. 2. Illustration of the box plot for 4 labels, 7 labels 15 labels and 22 labels per class
respectively

5.2 Real World Dataset: Wine Recognition Data

In order to test the idea of our estimation method, we applied it to the problem
of wine recognition. These data are the results of a chemical analysis of wines
grown in the same region in Italy but derived from three different cultivars. The
analysis determined the quantities of 13 constituents found in each of the three
types of wines[11]. There are 59 data in the class g1, 71 data in the class g2 and
48 data in the class g3, with 13 predictors, i.e., the dimensionality is 13. After
randomly choosing 16 labelled data for every class, and requiring �err = 0.05,
our estimated number of the labels needed is l = 60, meaning at least 20 labels
are need for each class. the classification errors for each class were shown in table
2 above.

From which, we can see the data is easily to be fitted by QDA− thus it
satisfies the gaussian assumptions well. The computed bayes risk for this data
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set is about 0.06948-0.05=0.01948. From the original data set, compute pairwise
about the bayes risk R∗, it’s 0.01966. the result is very close. The box plot for
the classification of each class is shown below:

Table 2. Classification error for each classes of wine data

label number 16/class 20/class 22/class 24/class

error for g1 0.08093 0.01281 0.00000 0.01143
error for g2 0.13134 0.04256 0.04887 0.01190
error for g3 0.37941 0.20619 0.08066 0.04138
overall error 0.13646 0.06948 0.04191 0.01980
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Fig. 3. Illustration of the box plot for 16 labels, 20 labels, 22 labels and 24 labels per
class respectively

6 Conclusion and Future Extension

We have examined a labelled sample size estimation problem under a specific
model, i.e., semi-supervised LDA. Given an additional probability of error �err

of any Bayesian solution to the classification problem with respect to a smooth
prior, �err = R(l, u)−R∗, under the gaussian-distribution domain assumption,
we presented a practical labelled sample size estimation method and a compu-
tationally tractable approach. Possible extensions and future work are discussed
below. This research result could be applied in different semi-supervised learning
domain with probability model type 1 [10].

Linear discriminant analysis and logistic regression are two main representa-
tives of these two classes. Our labelled sample size estimation method applies on
semi-supervised LDA well, but not on logistic regression. We believe that similar
research on logistic regression model would be very meaningful. Based on the
detailed analysis for these two types of models, a common labelled sample size
estimation framework maybe built and based on this architecture, interesting
research topic can be found.
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