
Learning to Fly Simple and Robust

Dorian Šuc1, Ivan Bratko1, and Claude Sammut2

1 Faculty of Computer and Information Science, University of Ljubljana,
Tržaška 25, 1000 Ljubljana, Slovenia

{dorian.suc,ivan.bratko}@fri.uni-lj.si
2 School of Computer Science and Engineering, University of New South Wales,

Sydney, Australia
claude@cse.unsw.edu.au

Abstract. We report on new experiments with machine learning in the
reconstruction of human sub-cognitive skill. The particular problem con-
sidered is to generate a clone of a human pilot performing a flying task on
a simulated aircraft. The work presented here uses the human behaviour
to create constraints for a search process that results in a controller – pi-
lot’s clone. Experiments in this paper indicate that this approach, called
“indirect controllers”, results in pilot clones that are, in comparison with
those obtained with traditional “direct controllers”, simpler, more robust
and easier to understand. An important feature of indirect controllers in
this paper is the use of qualitative constraints.

1 Introduction

Reconstructing sub-cognitive human skills from human experts’ behavioural
traces is one of the most fascinating applications of machine learning, also known
as behavioural cloning. Learning to fly a fixed-wing aircraft in a flight simulator
has become a benchmark for behavioural cloning [1, 2]. As well as providing com-
plex control problems, flying also requires learning different kinds of manoeuvres
for different flight stages and combining these manoeuvres to create a complete
flight plan.

Early experiments in behavioural cloning adopted a “situation-action” ap-
proach in which control rules map the current state of the world directly into
control actions [1, 2]. While these experiments were successful in constructing
auto-pilots that could complete a flight, the situation-action approach had sev-
eral problems. The control rules were not understandable nor were they very
robust to noise and variations in the flight plan.

Subsequently, more “goal-directed” approaches have been employed [3, 4],
giving greater readability and robustness. These methods first learn goal set-
tings for different stages in a flight and then learn control rules to achieve those
settings. The controllers are still directly derived from the human behaviour. In
contrast, the work presented here uses the human behaviour to create constraints
for a search process that results in the controller. We show in this paper that
applying this approach, called “indirect controllers” [5], results in pilot clones
that are comparatively much simpler, more robust and easier to understand than

J.-F. Boulicaut et al. (Eds.): ECML 2004, LNAI 3201, pp. 407–418, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

408 Dorian Šuc, Ivan Bratko, and Claude Sammut

direct controllers. An important feature of indirect controllers in this paper is
the use of qualitative constraints.

In the sequel we first outline the idea of indirect controllers that employ
qualitative constraints. We then present the details of the flying task and exper-
iments in extracting flying skills, and analyse the resulting clones with respect
to their understandability and performance.

2 Indirect Controllers and Qualitative Strategies

2.1 Learning Direct and Indirect Controllers

The following is the usual procedure of applying Machine Learning to recover a
control strategy from example execution traces. A continuous trace is sampled
so that we have a sequence of pairs (Statei, Actioni) ordered according to time.
Statei is the state of the system at time i, and Actioni is the operator’s action
performed at time i. Then, usually, the sequence of these pairs is viewed as a
set of examples, thereby ignoring the time order. The state is a vector of state
variables: State = (x1, x2, ...). A standard ML method is applied to induce the
mapping from states to actions, whereby the state variables x1, x2, ... correspond
to attributes, and the actions are the class values. In continuous domains, both
the state variables and the class are real-valued, therefore a numerical learning
method, such as regression tree learning is appropriate for this. The result of
learning, using this formulation of the learning problem, is a controller in the
form of a function from system states to actions:

Action = f(State) = f((x1, x2, ...))

This controller maps the system’s current state into an action directly, without
any intermediate, auxiliary result. Therefore such controllers will be called direct
controllers, to be distinguished from “indirect” controllers used in this paper.

We say that a controller is “indirect” if it does not compute the next ac-
tion directly from the current system’s state, but uses in addition to the state
some additional information. Typical such additional information is a sub-goal
to be attained before attaining the final goal. One idea to obtain such additional
information, appropriate for handling dense sub-goals, is to generalise the oper-
ator’s trajectory [5, 6]. Such a generalised trajectory can be viewed as defining
a continuously changing sub-goal.

Subgoals or generalised trajectories are not sufficient to define a controller.
A model of the system’s dynamics is also required. Therefore, in addition to
inducing subgoals or a generalised trajectory, this approach also requires the
learning of approximate system’s dynamics, that is a model of the controlled
system. The next action is then computed “indirectly”, targeting the sub-goals
as follows: (1) compute the desired next state on the generalised trajectory (i.e.
next sub-goal), and (2) determine an action that brings the system closer to
the desired next state. This amounts to trying to follow a generalised trajectory
as follows. The next action is determined indirectly as: using the model of the

Learning to Fly Simple and Robust 409

system’s dynamics, and the generalised trajectory, find the action that will min-
imise the difference between the generalised trajectory and the state resulting
from this action. So an indirect controller computes actions as:

Action = argmin
A

(diff(model(State, A), T rajectory))

The point of indirect controllers is that the problem of behavioural cloning is
decomposed into two learning problems: (1) learning trajectory, and (2) learn-
ing dynamics. It has been shown experimentally that this decomposition may
result in much better performance than the induction of direct controllers [5, 6].
Related ideas of using subgoals in behavioural cloning in aeroplane flying were
also discussed by Bain and Sammut [3].

2.2 Learning Qualitative Strategies

In earlier experiments [7, 6], we found that qualitative descriptions of gener-
alised trajectories are particularly useful. We will refer to them as qualitative
generalised trajectories. They are described in terms of monotonic qualitative
constraints regularly used in the field of qualitative reasoning. For example,
the constraint Y = M+(X) says that Y monotonically increases with X : if X
increases then Y also increases. Analogously, Y = M−(X) says that Y mono-
tonically decreases with X . These constraints can have multiple arguments. For
example, Z = M+,−(X, Y) means that Z is monotonically increasing in X and
decreasing in Y . If both X and Y increase then Z may increase, decrease, or
stay unchanged.

Monotonicity constraints can be combined into if-then rules to express piece-
wise monotonic functional relationships. For example: if X < 0 then Y =
M−(X) else Y = M+(X) Nested if-then expressions can be represented as
trees, called qualitative trees [7, 8]. Qualitative trees are similar to regression
trees [9]. Both regression and qualitative trees describe how a numerical variable
(class variable) depends on other (possibly numerical) variables (attributes). The
difference between the two types of trees only occurs in the leaves. A leaf of a
regression tree tells how the class variable numerically depends on the attributes
within the scope of the leaf. On the other hand, a leaf in a qualitative tree only
specifies the relation between the class and the attributes qualitatively, in terms
of monotonic qualitative constraints.

In this paper we applied the learning of indirect controllers to the problem of
reconstructing pilots’ skills when flying an aircraft. Generalised trajectories were
stated in terms of qualitative trees. To induce qualitative generalised trajectories
from examples of pilots’ flights, we used program QUIN [7, 8]. QUIN (Qualitative
Induction) is a learning program that induces qualitative trees from numerical
data. QUIN detects monotonic qualitative constraints that hold “sufficiently
well” in the data. Roughly, QUIN employs a criterion of “qualitative fit” between
a qualitative tree and the learning examples. In the spirit of the MDL principle,
QUIN searches for “small” qualitative trees that fit the learning data well. These
mechanisms also make QUIN relatively robust with respect to noisy data.

410 Dorian Šuc, Ivan Bratko, and Claude Sammut

3 Learning to Fly

The flight simulator used in the following experiments is of a Pilatus two-seat
turboprop PC-9 aerobatic training aircraft. The dynamic model was provided to
us by the Aeronautical and Maritime Research Laboratory of the Australian De-
fence Science and Technology Organisation. The model was derived from wind-
tunnel testing and data collection from an actual aircraft.

3.1 Flying an Aircraft

The main controls for a fixed-wing aircraft are: the elevator that controls pitching
the nose up or down, the ailerons that control rolling of the aircraft, the rudder
that controls the yawing of the nose left or right, the throttle controlling the
thrust, and the flaps that increase lift when they are extended. Any change in
aircraft attitude can be expressed in terms of the motion about three aircraft
axes:

– pitch is the motion about the lateral axis;
– roll is the motion about the longitudinal axis (bank);
– yaw is the motion about the normal axis.

When the aircraft is in approximately level flight, these correspond respectively
to lift the nose up or down, banking the aircraft and changing compass heading.
Roll is mainly controlled by the ailerons. Pitch is mainly controlled by the
elevator. Y aw is controlled by rudder and is affected by roll.

In our experiments, the control variables were: flaps and landing gear,
throttle controlling the airspeed, stick x and y position (stickx and sticky)
controlling ailerons and elevators. As in previous experiments in learning to fly,
we did not use the rudder.

Controlling the landing gear is very simple: raise the gear after take-off and
lower the gear before landing. This rule is easily learned from any successful
execution trace and will be omitted in the rest of the paper.

3.2 The Learning Task

The learning task is to do a standard left-hand circuit (see Figure 1) as de-
scribed in the flying training manual [10]. The circuit consists of take-off, climb
to a specified height, four left turns, descent to the runway and landing. The re-
quirement to do some of the turns while climbing or descending makes the task
more difficult. The success of the landing is score according to the descent rate,
distance from the centre line of the runway and angle to the centre line. Since
the visual field in the simulator is quite sparse and therefore provides few useful
landmarks, we provided “windows in the sky” to help guide the pilot. These are
squares whose centre marks the desired way point. When executing the task,
pilots were supposed to fly through these windows. The side of each window is
200 feet (61m) in length1. This is intended to indicate a 100 ft tolerance when
1 All units in the simulator are imperial since that is standard in commercial flight

Learning to Fly Simple and Robust 411

Fig. 1. The learning task: pilots were required to do the standard left-hand circuit,
marked with 8 “windows”. dx and dy denote the x and y distance from the runway
and dz denotes the altitude above the runway.

reaching a way point or goal. Each window (and the runway) defines the current
goal for the pilot or the clone.

Pilots were considered to have flown successfully if they flew through all
eight windows and land successfully. Successful landing requires low airspeed,
near zero roll and pitch and landing gear down when the aircraft touches the
runway.

4 Experiments

During a pilot’s flight, the values of variables dx, dy , dz, roll, pitch, yaw,
airspeed, eg, ag, stickx, sticky, throttle, flaps were recorded. Here dx, dy and
dz stand for the distances in the three directions (in feet) from the starting posi-
tion on the runway. The velocities of pitch, roll and yaw were not available. The
attributes goal elevation eg and goal azimuth ag give the relative angles of the
current goal window with respect to the current aircraft position. The goal ele-
vation eg is the difference between the current pitch of the goal window and the
pitch to the aircraft. The goal azimuth ag is the difference between the current
direction of the goal window and the direction of the aircraft.

To make the clones independent of the runway/window positions we avoid
using the variables dx, dy, dz and yaw. However, controlling the airspeed of the
aircraft requires some data about the aircraft position or the distance from the
runway. For this reason, variables dx, dy, dz were used while learning the control
rule for airspeed, as will become clear later. Another representation that could
be used is to convert absolute distances to distances relative to the target. This
alternative is yet to be explored.

Flying an aircraft requires control rules for stick position (stickx and sticky),
throttle and flaps. These rules are learned from successful execution traces.
In our experiments, we used traces from three pilots. We learned the clones as

412 Dorian Šuc, Ivan Bratko, and Claude Sammut

indirect controllers [5, 7]. That is, we separately learned the generalized trajec-
tory and the system dynamics model. We used the qualitative induction system
QUIN to learn qualitative constraints on the generalized trajectory.

When estimating the performance of the clones we consider the clone to
have completed the task completely if it flies through all eight windows and
lands successfully. We consider the clone to perform the task partially, if it flies
through at least five windows, misses the other windows by less than 100 ft. and
lands successfully. Considering the fact that the length of the circuit is 9,000 ft.,
missing a window by less than 100 ft. is still considered acceptable.

To induce an indirect controller, we have to learn from control traces two
things: (a) a generalised trajectory, and (b) a model of the dynamics of the
controlled system (the aircraft). First, we describe in the next section how the
approximate system dynamics model is learned. Then we describe experiments
in learning qualitative constraints on the generalized trajectory, i.e. learning the
qualitative strategy. Finally, we transform the learned qualitative strategies into
quantitative control rules that can be applied to controlling the aircraft.

5 Learning Dynamics

First we used locally weighted regression (LWR) [11] to learn the approximate
system dynamics model. The prediction errors of the induced locally linear mod-
els were sufficiently small, so that these models of system’s dynamics in combina-
tion with the generalized trajectory were easily sufficient to control the aircraft.

We also experimented with much simpler, global linear models of the system’s
dynamics. An example of such a global linear model of the system’s dynamics,
induced from three example flights by linear regression with ∆t = 1s, is:

r(t+∆) = 0.994 r(t) − 0.003 v(t) + 2.773 sx(t) + 0.155

p(t+∆) = 0.958 p(t)− 0.029 v(t) + 0.775 sy(t) − 0.040f(t) + 0.585

v(t+∆) = 0.071 p(t) + 0.964 v(t) + 1.803 t(t)− 0.022f(t) + 2.109

(1)

Here r, p and v denote roll, pitch and airspeed, sx and sy the stick x and y
position, f flaps and t throttle. The mean absolute errors of this linear model on
a different flight trace are respectively (roll, pitch, airspeed) 0.429, 0.376, 0.378.
Note that airspeed typically varies between 0 and 110 and roll and pitch are
measured in degrees.

Although such a simple linear model is not perfect, we found that it is easily
sufficient, in combination with a generalised trajectory, to control the system.
Due to the simplicity and efficiency of the global linear model in comparison
with locally linear models near the current state, we decided to use this linear
model instead of LWR in the rest of our experiments. As found in our earlier
work [5, 6], indirect controllers are in general not significantly affected by errors
in the system’s dynamics model as long as the model is qualitatively correct.

6 Learning Indirect Aircraft Controllers

To control the system with an indirect controller using a generalized trajectory,
the generalized trajectory is combined with the learned dynamics model to con-

Learning to Fly Simple and Robust 413

strain each of the control variables. An important criterion, when inducing the
generalized trajectory, is comprehensibility. For example, if the generalized tra-
jectory is induced through tree learning, the class values should be state variables
that are intuitive to human thinking about controlling the particular dynamic
system.

We decided to learn constraints on the aircraft’s roll, pitch, airspeed and
flaps with respect to the other variables. Constraints on these four variables
will form the generalized trajectory. Such a trajectory, expressed in symbolic
form, is usually easy to understand, as will be illustrated later. The constraints
in the generalised trajectory determine the desired roll, pitch, airspeed and
flaps for each aircraft position. Once the desired values of these four variables
are known, it is possible to determine the control actions by the principle of
indirect controllers using the model of the aircraft’s dynamics.

In the remainder of this section, we describe experiments in learning gen-
eralized trajectories from example flights, and using these strategies in indirect
controllers of the aircraft.

6.1 Learning Generalised Trajectories

In our case, a generalised trajectory consists of constraints on flaps, airspeed,
roll and pitch. Here we describe the induction of these constraints from example
execution traces. Constraints on each of the four “target” variables are expressed
in terms of other state variables of the aircraft. We look at each target variable
in turn, beginning with flaps.
Learning constraints on flaps. The flaps setting is a discrete variable with
only three possible values, so it is appropriate to induce a decision tree that
determines the flaps value from other state variables. An example of such a
decision tree induced from one of the pilots’ traces is:

airspeed ≤ 84.75

| airspeed ≤ 62.35 : flaps = fland {flying slow, nose down}
| airspeed > 62.35 : flaps = fnormal {nose up}
airspeed > 84.75 : flaps = foff {flying fast, nose up}

(2)

This rule can be interpreted as follows. Extending the flaps increases the surface
of the wing and hence provides greater lift. The aircraft used in our experiments
has the following three settings for the flaps: fland=40, fnormal=20 and foff=0.
When flaps are extended (fland), less speed is required to achieve a positive
climb rate. In our control traces, experienced pilots usually used fnormal or
fland during take off, foff when airspeed was high and fland during the landing.
Correspondingly the decision trees for flaps usually had only three leaves. Note
that the induced decision tree above can be used for control directly, without a
model of the system’s dynamics.
Learning constraints on airspeed. In the traces we experimented with, con-
trolling the airspeed is qualitatively quite simple: increase it to take-off, hold

414 Dorian Šuc, Ivan Bratko, and Claude Sammut

it constant during the flight and decrease it when landing. A good pilot uses
the throttle to control the aircraft’s climb and descent rates during a flight.
Our control strategy is relatively naive in its lack of fine control of the throttle.
However, it does closely emulate the actions of our pilots who tended to leave
the throttle setting more or less constant. In the sequel we present performance
results with rules obtained from regression tree learning, applying rather se-
vere pruning of trees that resulted in trees with 6 – 10 leaves. These trees have
small training error, are easy to understand and usually control the airspeed
adequately. However, they have limited generality as they define functions of
the form: airspeed = f(dx, dy, dz). The attributes dx,dy,dz are relative to the
runway position, so the induced trees may not be appropriate for other flight
plans.

Learning qualitative constraints on roll and pitch. We found experimen-
tally, that flaps and airspeed can be handled easily by decision or regression tree
learning. But pitch and roll are not so easily susceptible to regression trees. Some-
times, successful regression trees were more complex (up to 20 nodes), harder to
interpret and not as effective in control. So it is the pitch and roll where learning
qualitative constraints really mattered.

A very elegant qualitative strategy was learned from some of the traces:

roll = M−(ag)

pitch = M−(eg)
(3)

These two rules are quite intuitive and give a simple strategy to control pitch and
roll by adjustment of the stick position. To explain this strategy, we first describe
how roll and pitch affect the motion of the aircraft. Flying straight-and-level
requires maintaining a constant heading and altitude. This can be achieved by
keeping zero roll and near-zero pitch p0. The exact pitch value p0 that maintains
the current aircraft height depends also on the airspeed and flaps. Roll and pitch
angles are measured in the clockwise direction, whereas goal elevation and goal
azimuth are measured in the standard anti-clockwise direction. To reach the goal
with positive goal elevation and positive goal azimuth, the aircraft should climb
and turn to the left. This is achieved by negative roll and negative (< p0) pitch.

Now we explain how the qualitative strategy (rules 3) achieves the current
goal. Consider straight-and-level flight, where the aircraft approaches the goal
with positive goal azimuth and positive goal elevation. Since the aircraft’s dis-
tance to the goal is decreasing, goal azimuth and goal elevation angles are in-
creasing. The induced rules decrease roll and pitch, producing a left-turn and
climb. That is exactly what is needed to achieve the goal. If the turn (climb) was
too strong, goal azimuth (elevation) becomes negative and is decreasing (since
the aircraft is approaching the goal). Now the induced rules increase roll (pitch)
producing a right-turn (descent) to the goal. In this way, the induced rules
tend to achieve zero goal azimuth and goal elevation, causing the aircraft to fly
straight to the goal. The induced rules also command a tighter turn or steeper
climb using a larger absolute roll or pitch, when the absolute goal azimuth or
elevation is larger.

Learning to Fly Simple and Robust 415

The qualitative strategy learned from a more experienced pilot is correspond-
ingly more elaborate. Unlike a beginner, he also used flaps. This is reflected in
the rule induced for pitch:

roll = M−(ag)

pitch = M−,+(eg, f laps)
(4)

When controlling the pitch to obtain the goal elevation, the flaps setting is
also considered. The rule states that if the flaps setting is higher (fland = 40,
flaps extended for the landing), the pitch should be larger (nose further down).
This actually describes the property of the flaps: extended flaps requires the
stick to be further forward to achieve the same goal elevation. If flaps are off
(foff = 0), the wings provide less lift, requiring the stick to be pulled back
further (assuming constant thrust).

6.2 Transforming Qualitative Strategy into Quantitative Strategy

A qualitative control strategy only imposes qualitative constraints on “target”
variables. These are directly useful for explanation, but they cannot be imme-
diately applied for control. First, qualitative constraints have to be transformed
into quantitative functions.

The induced qualitative constraints (rules 4) were transformed into quantita-
tive functions as follows. Let roll denote a function [−amx

g , amx
g] �→[−rollmx, rollmx]

and pitch denote a function [−emx
g , emx

g] × [foff , fland] �→ [−pitchmx, pitchmx]
satisfying the induced qualitative constraints given by rule 4. The superscripts
mx indicate the extreme values of the corresponding variables. In this transfor-
mation, we used simple domain knowledge to define additional constraints on
roll and pitch:

– roll is 0 when goal azimuth is 0 (roll(0) = 0).
– pitch is 0 when goal elevation is 0 and flaps are normal (pitch(0, fnorm) = 0).
– flaps affect pitch for a small value fdif (|pitch(eg, fland) − pitch(eg, foff)| =

fdif , 0 ≤ fdif ≤ 6deg).
– maxima of corresponding variables used for rollmx, pitchmx, amx

g and emx
g .

Note that this domain knowledge is not perfect and is just a naive commonsense
knowledge about flying an aircraft. For example, to maintain zero goal elevation
with normal flaps, a near zero pitch p0 is required. Its exact value depends
also on the airspeed. Since the qualitative strategy is goal-directed, it is able to
reduce the errors resulting from imperfect domain knowledge or imperfect model
of system dynamics.

We used the procedure described in [7] to randomly generate the functions
for roll and pitch so that the resulting randomly obtained functions satisfied
the corresponding qualitative constraints stated above. We used the grid C = 8
and random 0 ≤ fdif ≤ 6. Out of 50 randomly generated functions, 27 (54
%) succeeded to fly completely or partially (the criteria of success as defined
earlier). Figure 2 shows one such clone. As observed in our experiments in other

416 Dorian Šuc, Ivan Bratko, and Claude Sammut

Fig. 2. Trace of the operator and trace of its clone. The upper two graphs show how the
operator is flying. The lower graphs show a trace of a clone that controls roll and pitch
according to the induced qualitative strategy (rule 4), and speed and flaps according to
the induced trees. Eight negative local maxima of roll correspond to the eight windows
where left-turn is required. Negative local maxima of pitch correspond to climbs (the
first and second window) and positive local maxima to descent.

domains ([7, 6], for example) success of the clones could be improved by using
more domain knowledge. In the flight domain, such additional domain knowledge
could be the requirement that roll and pitch are small for small goal azimuth
and goal elevation.

Note that we here used randomly generated functions satisfying induced qual-
itative constraints and simple domain knowledge. An alternative, described in
[12], would be to use control traces to find a quantitative strategy that fits the
control traces numerically and is consistent with the qualitative constraints.

6.3 Robustness of the Qualitative Strategy

To evaluate the robustness of the clones we performed two sets of experiments
in which we tested:

– the clone’s robustness against the turbulence: clones were tested in the sim-
ulator with turbulence added.

– the clone’s ability to complete different missions: clones were tested with a
modified flight plan that includes a right climbing turn, which is a maneuver
not seen in the execution traces. The task also requires a sharper left-turn
than any in the original flight plan.

We tested ten different clones that scored complete success on the original
task. They control roll and pitch according to the induced qualitative strategy
(rule 4) and speed and flaps according to the induced trees. Note that in this ex-
periment, clones learned from traces of the original flight plan with no turbulence
were required to deal with turbulence and a modified flight plan.

Learning to Fly Simple and Robust 417

Fig. 3. Trace of a clone that does the modified flight task with strong turbulence.
Positive maxima of roll corresponds to right-turn after third window. Oscillations in
roll and pitch correspond to clone’s adjustments to the turbulence. Note that this is
the same clone as clone in Figure 2.

The results indicate good robustness of our clones in both respects. With
turbulence, all the clones completed the task entirely or partially. Eight of ten
clones also completed the modified plan entirely or partially. We obtained similar
results, when the clones were tested with both modified flight plan and turbu-
lence. Figure 3 shows a flight by a clone that carries out the modified task under
turbulence.

6.4 Flying Simply

Here we give an example of a very simple controller that is consistent with the
induced qualitative rules roll = M−,+(ag, f laps) and pitch = M−(eg). It uses
linear quantitative rules:

roll = −1.8 ag

pitch = −1.0 eg + 0.02 (flaps − fnormal)
(5)

To compute the actions sx and sy aiming to achieve the desired roll and pitch
linear dynamics (Eq. 1) is used. Flaps are controlled by the rule 2 and the air-
speed by the induced regression tree with six leaves. Such a controller completes
the original task, can perform the modified plan (and also other tasks) and is
robust to turbulence. Note that the controller is also robust with respect to (rea-
sonable) changes in coefficients in equations 5. For example, rules roll = −3 ag

and pitch = −3.0 eg + 0.03 (flaps − fnormal) also do well.

418 Dorian Šuc, Ivan Bratko, and Claude Sammut

7 Conclusions

In this paper we experimented in the well-known domain of cloning air pilots’
skills. We applied the approach of inducing from pilots’ performance data indirect
controllers using qualitative representations of the generalised trajectories. In
comparison with the more traditional learning of direct controllers in this domain
on similar flying tasks, our results show that the indirect controller approach
leads to simpler and more robust clones.

Two limitations of the work described in this paper that belong to future
work are: (1) Human expert intervention was required in determining “target”
variables featuring in constraints defining the generalised trajectory; it is a chal-
lenging problem to determine these variables automatically; (2) our induced
controllers are rather task-dependent, in particular the rule for airspeed corre-
sponds closely to the flight plan of the example flying task; in future experiments
this should be generalised to an arbitrary specification of a flight plan.

Acknowledgements

The work reported in this paper was partially supported by the Slovenian Min-
istry of Education, Science and Sport. We thank the Aeronautical and Maritime
Research Laboratory for providing the PC-9 model.

References

1. Sammut, C., Hurst, S., Kedzier, D., Michie, D.: Learning to fly. In: Proc. 9th
International Workshop on Machine Learning, Morgan Kaufmann (1992) 385–393

2. Camacho, R.: Using machine learning to extract models of human control skill.
In: Proceedings of AIT’95. (1995) Brno, Czech Republic

3. Bain, M., Sammut, C.: A framework for behavioural cloning. In: Machine Intelli-
gence 15, Oxford University Press (1999) 103–129

4. Isaac, A., Sammut, C.: Goal-directed learning to fly. In: Machine Learning, Proc.
20th International Conference (ICML 2003), AAAI Press (2003) 258–265

5. Šuc, D., Bratko, I.: Problem decomposition for behavioural cloning. In: Proc. of
the 11th European Conference on Machine Learning, Springer (2000) 382–391

6. Šuc, D., Bratko, I.: Symbolic and qualitative reconstruction of control skill. Elec-
tronic Transactions on Artificial Intelligence, Section B 3 (1999) 1–22

7. Šuc, D.: Machine Reconstruction of Human Control Strategies. Frontiers in Artifi-
cial Intelligence and Applications, volume 99. IOS Press, Amsterdam, (2003)

8. Šuc, D., Bratko, I.: Induction of qualitative trees. In: Proc. of the 12th European
Conference on Machine Learning, Springer (2001) 442–453

9. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth, Belmont, California (1984)

10. Thom, T.: The Air Pilot’s Manual. 7 edn. Air Pilot Publishing Ltd (2003)
11. Atkeson, C., Moore, A., Schaal, S.: Locally weighted learning. Artificial Intelligence

Review 11 (1997) 11–73
12. Šuc, D., Vladušič, D., Bratko, I.: Qualitatively faithful quantitative prediction.

Artificial Intelligence (2004), Accepted for publication.

	1 Introduction
	2 Indirect Controllers and Qualitative Strategies
	2.1 Learning Direct and Indirect Controllers
	2.2 Learning Qualitative Strategies

	3 Learning to Fly
	3.1 Flying an Aircraft
	3.2 The Learning Task

	4 Experiments
	5 Learning Dynamics
	6 Learning Indirect Aircraft Controllers
	6.1 Learning Generalised Trajectories
	6.2 Transforming Qualitative Strategy into Quantitative Strategy
	6.3 Robustness of the Qualitative Strategy
	6.4 Flying Simply

	7 Conclusions
	References

