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Abstract. Traffic flow forecasting is an important issue in the field of
Intelligent Transportation Systems. Due to practical limitations, traf-
fic flows recorded can be partially missing or unavailable. In this case
few methods can deal with forecasting successfully. In this paper two
methods based on the concept of Bayesian networks are originally pro-
posed to cope with this matter. A Bayesian network model and a two-
step Bayesian network model are constructed respectively to describe
the causal relationship among traffic flows, and then the joint proba-
bility distribution between the cause and effect nodes with its dimen-
sion reduced by Principal Component Analysis is approximated through
a Gaussian Mixture Model. The parameters of the Gaussian Mixture
Model are learned through the Competitive EM algorithm. Experiments
show that the proposed Bayesian network methods are applicable and
effective for traffic flow forecasting with incomplete data.

1 Introduction

In recent years, Intelligent Transportation Systems (ITS) have achieved great
developments. However, many problems, including traffic management and con-
gestion control, still remain unsolved. Precise analysis of historical trends of
traffic flows or transportation forecasting therefore becomes fundamental tasks
in order to progress successfully and smoothly in our daily routines. On the
other hand, many approaches and methods in the machine learning field were
presented recently and got highly developed, which can be instructive to the
traffic flow forecasting problem. In this paper, we concentrate on using machine
learning methods to deal with the application-orientated problem of short-term
traffic flow forecasting in ITS.

Short-term traffic flow forecasting, which is to determine the traffic volume
in the next time interval usually in the range of five minutes to half an hour, is
an important problem in the research area of ITS. In the past few years, many
theories and methods on this theme were proposed including those based on
time series models (including ARIMA, seasonal ARIMA), Kalman filter theory,
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neural network approaches, non-parametric methods, simulation models, local
regression models and layered models [1]~[6]. Although these theories and meth-
ods have alleviated difficulties in traffic flow modelling and forecasting to some
extent, they hardly work when the data used for forecasting is partially miss-
ing or unavailable, while this case of incomplete data often occurs in practice.
Although the historical average (fill up the incomplete data with their histor-
ical average) method is often applied to cope with this issue, the forecasting
performance is quite limited.

The Bayesian network approach, as studied comprehensively in the commu-
nity of machine learning, gives us some inspiration on traffic flow forecasting.
Considering the nature of short-term traffic flows, we can draw the conclusion
that the traffic flow at a given road link is closely related to those of its neighbors,
and thus in order to forecast as accurately as possible, we should also take into
account the information provided by neighbor links. This is consistent with the
ideology of the Bayesian network model. Bayesian network is such a model that
can fully take into account the causal relationship between random variables
statistically and has the capability to encode incomplete data.

Our main contribution of the paper is that we introduce the concept and
approach of Bayesian network in machine learning field to the area of ITS for
the first time and effectively solve the traffic flow forecasting problem with in-
complete data. For a given road net, we focus on constructing rational Bayesian
networks, learn the statistical relations between the cause and effect nodes, and
then based on the statistical relationship carry out forecasting. Experiments
for real-world short-term vehicular flow forecasting in case of incomplete data
are carried out to validate our methods. A comparison with the autoregressive
(AR) model and the historical average method shows that our Bayesian network
methods are appropriate and effective for this kind of traffic flow forecasting
problem.

The remainder of this paper is organized as follows. After introducing Bayesian
networks and our two Bayesian network methods for traffic flow forecasting
briefly in section 2 and 3 respectively, we describe the approaches and techniques
related with our methods in section 4. Section 5 reports the experimental results
on real-world traffic flow data, and gives a performance comparison among sev-
eral methods. Section 6 concludes the paper and discusses some directions of
future research work.

2 Bayesian Networks

A Bayesian network, also known as a casual model, is simply a directed graphi-
cal model for representing conditional independencies between a set of random
variables. In a Bayesian network, an arc from node A to B can be informally
interpreted as indicating that A “causes” B [7]. Suppose we have several random
variables denoted by x1, 22, ..., Tm, Y1, Y2, --., Yn and z respectively. x1,x2, ..., T,
are used to forecast y; and yi,y2,...,y, are used to forecast z in turn. Then
considering the causal relations in variable forecasting, we can construct two
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Fig. 1. (a) Two Bayesian networks. (b) A newly constructed Bayesian network

Bayesian networks as shown in Fig. 1.a where arrows start from the cause nodes
and point to the effect nodes.

3 Two Bayesian Network Methods

Fig. 2.a is a patch of one urban traffic map. Each circle node denotes a road
link. Each arrow shows the direction of the traffic flow on the corresponding
road. We take road link D, as an example to show our approach. From the view
point of Bayesian Network, vehicle flows of C,,Cy and C}, should have causal
relations with vehicle flow of Dg. Similarly, vehicle flows of B, and B, should
have causal relations with vehicle flow of C},. Furthermore, considering the time
factor, to predict the vehicle flow of Dy at time ¢ (denoted by Dgy(t))we should
use values Dy(t — 1), Dg(t — 2),..., D4(t — d) as well. That is, some historical
values of C., Cy, C, and Dy could be regarded as the cause nodes of Dy(t) in a
Bayesian network. We show this causal relation in Fig. 2.b.

However, if traffic flow data Cj,(t —m) is missing, how can we forecast Dg(t)?
We propose two methods to deal with this issue.

Method 1. Construct a new Bayesian network to model the whole causal re-
lationship. We take Fig. 1.a as an example to show the procedure. Suppose
data for random variable y; is missing while data for x1,xs, ..., Tm, Y2, ..., Yn is
complete (intact), we can construct another Bayesian network to describe the
whole causal relation, which is given in Fig. 1.b. The new Bayesian network is
constructed and expanded by absorbing the node ¥, and thus in the graph,
L1y X2y oeey Tiny Y2, -, Yp, S€TVE as the cause nodes of z . Similarly, the newly con-
structed Bayesian network for forecasting Dg4(t) with missing data Cp,(t — m)
can be obtained, as is shown in Fig. 3.

Method 2. Two-step Bayesian network method. That is, forecast Cj (t —m) first
and then using the result to forecast Dg(t). Both steps use Bayesian network
models to describe the causal relations among traffic flows.
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Fig. 2. (a) A patch taken from the whole map of Beijing City where UTC/SCOOT
systems are placed. (b) The Bayesian network between the object road link and its
cause neighbors

Fig. 3. The newly constructed Bayesian network for object road link Dy

4 Related Methods

4.1 PCA for Dimension Reduction

When using Bayesian networks, the joint probability distribution of related vari-
ables should be estimated. Usually the dimension of the joint probability distri-
bution using Bayesian network is high and the data is not enough comparatively.
So there might be a large error coming from the parameter learning stage. How-
ever, if we carry out parameter learning on a lower dimension with the same
data, the estimation will be more accurate and efficient.

Principal Component Analysis (PCA) is such an effective tool for linear di-
mension reduction [8]. When using PCA for dimension reduction, we select some
representative principal components from the input nodes, and then estimate
the joint probability distribution among these components and the output node.
Based on this new and concise relationship, we can carry out traffic flow fore-
casting more efficiently. In the paper, we using PCA to carry out dimension
reduction for both the Bayesian network methods explained in section 3. More
detail on how PCA is used will be given in the experiment section.
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4.2 Representation and Parameter Learning
of Joint Probability Distribution

How to estimate the joint probability density function (PDF) among all nodes
in a constructed Bayesian network should be considered. The Gaussian Mixture
Model (GMM), a combination of several Gaussian functions, is a widely used
model applied to approximate an arbitrary PDF with enough accuracy. In this
article, the joint probability distribution between cause nodes and effect node in
a Bayesian network is approximated through GMM. Let = denote one random
variable or multidimensional random vector, and then the GMM form of its
probability distribution with M mixture components can be represented as:

M
p(x(0) = aiG(x|6) (1)
=1

where the parameters are © = (aq,...,a, 01, ...,03) and M, s.t. Zf\il a = 1.
Each G(.) is a Gaussian PDF parameterized by 6; = (1, 21),l = 1,..., M.

Usually we use Maximum Likelihood Estimation (MLE) to carry out param-
eter learning with given data. Although the EM algorithm is an effective method
to carry out MLE, it usually converges to local maxima [9]. To find a global max-
imum is more significant in most cases. The Competitive EM (CEM) algorithm
presented by Zhang et al. overcomes the drawbacks of the basic EM algorithm
and can be used for parameter learning of GMM [10]. Tt includes stages of EM it-
eration (E-step and M-step), split, merge and annihilation operations. The intial
component number and model parameters can be set arbitrarily, and the split
and merge operation can be selected efficiently by a competitive mechanism the
authors proposed. Using the annihilation operation, CEM algorithm overcomes
the problem of converging to the boundaries of parameter space. In other words,
CEM algorithm can easily escape all kinds of local extrema and automatically
determine the appropriate component number and the model parameters [10].
In this article, the parameters of a GMM which describe the joint PDF of the
cause nodes and effect node in a Bayesian network are estimated through CEM
algorithm.

4.3 Forecasting in Bayesian Networks

Traffic flow forecasting here can be regarded as an inference problem in a
Bayesian network. The main goal of inference in a Bayesian network is to es-
timate the values of hidden nodes, given the values of observed nodes. We use
this mechanism to implement forecasting of traffic flows. Suppose (E, F) be a
partitioning of the node indices of a Bayesian network into disjoint subsets, and
(g, zr) be a partitioning of the corresponding random variables. Under the rule
of Minimum Mean Square Error (M.M.S.E.), the optimal estimation of zz from
xp can be given as [11]:

.CEF = E(.CEF‘IE) . (2)
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To deduce the representation of the optimal forecasting Zr under the GMM
setting, we employ the following lemma.
Lemma [12] Let G(x; u, X) denote a multidimensional normal density function

. . . Xn X
with mean p? = (uF,p?) and covariance matrix X = ) B e
21 X
(¥, 21 is a random vector. Then we have:

p(x) = G215 1, 211) G (025 Py |0y » S zr)

where

Haglay = M2 — 0 X5 — 1)
Ziglar = T2z — X1 X' Do

) T T T 7 Yirr YIFE
If we rewrite o = (v, 25), 1, = (Wps lir), 20 = , by the
CERIINT (ips tig)s 20 Sier SiEE Y

above lemma we can obtain:

M
plar ep) =Y aG(w;m, X))
=1

M
= Z aG(zE; e, Yipp)G(TF; e e, Y E) -
=1

The conditional probability density function can be represented as follows:

M

plrrlep) = ZﬂlG(fﬂF;umE,ZzﬂE) ;
=1

where

aG(rE; e, Yipr)
M b
> =1 4 G(TE; piE, XiEE)

B =

MFIE = WF — EZFEEﬁglE(ME - ZE),

—1
Yipie = 2ipr — XirEX ppliEr -

Thus the optimal forecasting Zp under the criterion of M.M.S.E. has the
following form:

M
tp = E(zrlzp) = ZﬁlumE ) (3)
=1

where 3 and p;p| g have the same meanings as above.
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5 Experiments

The experimental data for analysis is the vehicle flow rates of discrete time series
recorded every 15 minutes on many road links by the UTC/SCOOT system in
Traffic Management Bureau of Beijing, whose unit is vehicles per hour (veh/hr).
The data is from Mar. 1 to Mar. 25, 2002 and 2400 sample points totally. To
evaluate our approach objectively, 2112 points (training set) of them are em-
ployed to learn parameters of GMM and the rest (test set) are employed to test
the forecasting performance. Fig. 2.a shows the analyzed patch.
The flow chart of our forecasting procedure is described in Table 1.

Table 1. The Flow Chart of Our Forecasting Procedure

Step 1:

—Construct the Bayesian network models between input (cause nodes) and
output (effect node) for a given road link using two methods explained in
section 3.

Step 2:

—Approximate the joint probability distribution of all nodes in the network
by PCA and GMM using methods explained in section 4.

Step 3:

—Carry out the optimal estimation of flow rates of the object road in the
form of equation (3).

In the experiment, the forecasting orders from the object road link and from
the neighbor links are respectively taken as 4 and 5 empirically (parameters
d = 4,m = 5). Then for Fig. 3 the joint probability distribution is: p(C.(t —
J),Cq(t—7),Ba(t—j—5),Bc(t—j—5),Crn(.),Da(t —j5+1),7 =1,...,5), where
Cr(l) = (Cr(t=1),Cr(t —1-5),1=1,...,4).

We can see the dimension of the joint probability distribution is very high (di-
mension=33), since the dimension for input nodes is high (input dimension=32).
We should choose the reduced dimension number for input nodes by means of
PCA. Fig. 4 shows the residual variance of PCA with different dimensions for
the last joint probability distribution on the training data [13]. We see that us-
ing dimension 33 for forecasting is quite redundant and doesn’t focus on the few
essential dimensions. To effectively make use of data and gain well forecasting
performance, we should look for the “elbow” where the curve ceases to decrease
significantly with added dimensions. Based on the last curve of residual vari-
ance and the rectangle around the elbow, we apply PCA to the input nodes on
the training data and select a few principal components (i.e. 5, 6, 7, 8 and 9 )
corresponding to the largest eigenvalues to represent the input data. Then, we
respectively reduce the input data to these dimensions, built a GMM, carry out
parameter learning through CEM algorithm and implement forecasting on the
training set. From these several results, we can select the best one, and its cor-
responding reduced dimension of input data can also be identified. Experiments
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show that the best forecasting accuracy is obtained at input dimension 8 (i.e.
the dimension of the joint probability distribution is 9). Thus, we use the param-
eter configuration corresponding to input dimension 8 to implement traffic flow
forecasting on the test set. Fig. 5 gives the final forecasting result of Bayesian
network method on the test set for road Dg.

For other road links, we also carry out dimension selection by PCA before
the parameter estimation of GMM. The final forecasting performances using the
Bayesian network method and the two-step Bayesian network method are listed
in Table 2 evaluated by root Mean Square Error (RMSE). For a given road link
of Table 2, the smaller RMSE corresponds to the better forecasting performance
(accuracy).

For vector X = [x1,29,...,2,] and its estimation Y = [y1,y2,...,yn], the
performance measure RMSE can be given in the following form:

n 2
RMSE(X,Y) = [M]l/%

Since the parameters d and m is just selected empirically, utilizing autore-
gressive (AR) model with the same parameter d for comparison is reasonable
(AR model is comparable which only uses historical flow rates of the object road
link to forecast). The forecasting results through AR model and the historical
average method (using the the average value of the historical flow rates at the
corresponding time to forecast) are also given in Table 2.

Table 2. A Performance comparison of four methods for short-term traffic flow fore-
casting of four different road links

Methods Dy Jf Gq Cf
Historical Average 84.20 140.69 213.39 112.50
AR 66.14 123.65 155.20 90.76
Bayesian network 57.44 110.88 138.39 86.51

Two-step Bayesian network 53.95 113.96 140.40 87.73

From the experimental results we can see the outstanding improvements of
forecasting capability brought by using Bayesian networks. For each of the four
road links analyzed, the performances of the two Bayesian network methods are
quite similar; and they both outperform the other two methods significantly.
The Bayesian network method and the two-step Bayesian network method are
both appropriate and effective for incomplete short-term traffic flow forecasting.

6 Conclusions and Future Work

In this paper, we first successfully introduce the concept and approach of
Bayesian networks in the machine learning field to the community of ITS for
the application problem of incomplete data forecasting. In the short-term traffic
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flow forecasting theme, as vehicles usually keep travelling from one road link
to its neighbor links, the traffic volume of one link at some given time can be
regarded as the result of the historical flows of its neighbors and itself. The
essence of traffic flow is consistent with the ideology of Bayesian networks. Be-
sides, as Bayesian network encodes dependencies among all variables, it readily
handles situations where some data entries are incomplete. Therefore, construct-
ing Bayesian networks for traffic flow forecasting is reasonable. Experiments with
real-world data also show that Bayesian network is applicable and effective for
short-term traffic flow forecasting.
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Though our proposed approach is more complicated than the AR model
and some other models used for traffic flow forecasting, with the ever-increasing
capability of digital computers coupled with a simultaneous decrease in the cost,
the computation cost will not be a burden.

However, there are still some problems to be discussed and improved in the
future, two of which are listed below.

1). How to elaborately select the prediction orders d and m for varying road
conditions of different road links.

2). How to effectively combine Bayesian network with periodical information of
traffic flows, etc.
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