
Simultaneous Concept Learning of Fuzzy Rules

Jacobus van Zyl and Ian Cloete

School of Information Technology, International University in Germany,
76646 Bruchsal, Germany

Abstract. FuzzyBexa was the first algorithm to use a set covering
approach for induction of fuzzy classification rules. It followed an iterated
concept learning strategy, where rules are induced for each concept in
turn. We present a new algorithm to allow also simultaneous concept
learning and the induction of ordered fuzzy rule sets. When a proper rule
evaluation function is used, simultaneous concept learning performs far
better than iterated concept learning with respect to rule set size, rule
complexity, search complexity, and classification accuracy. We provide
empirical results of five experiments on nine data sets and also show that
the algorithm compares favourably to other well known concept learners.

1 Introduction

We recently extended the set covering framework to the fuzzy domain, and
presented a new algorithm, FuzzyBexa, that induces fuzzy classification rules
[1]. This method compares well with state of the art concept learners. There
exists very few fuzzy rule learners that, unlike fuzzy decision trees and fuzzy
neural networks, directly induce fuzzy classification rules, and to the best of our
knowledge, none that use a fuzzy set covering approach to learning.

The set covering approach to concept learning has also been called sequential
learning [2], because in this approach one rule is learned, the data covered by
the rule are removed, and the process iterated, until a disjunctive set of rules
for all concepts have been found. Learning multiple concepts generally follow
two strategies: (1) For a concept (or class) in the data set, a set of disjunctive
rules are induced by repeating the learning procedure for each concept in turn.
(2) Multiple concepts are learned by finding a good classification rule for any
one of the concepts, and assigning this class as consequent of the rule. The
literature, e.g. [2], offers no preference for one strategy over the other. We call the
two strategies for this process iterated concept learning (learning one class at a
time, iterated over all classes) and simultaneous concept learning (simultaneously
considering all classes by learning one rule at a time for any class, repeated
until all data are covered), and abbreviate them as ICL and SCL, respectively.
Examples of algorithms following the ICL strategy are FuzzyBexa, Bexa, and
Webb’s rule learner, whereas C4.5, CN2, and Neural Networks all follow the
SCL strategy [1, 3–5]. Fuzzy classification rules can be extracted from fuzzy
decision trees and fuzzy neural networks, and although learning is done using
SCL, unordered rule sets are obtained [6, 7].

J.-F. Boulicaut et al. (Eds.): ECML 2004, LNAI 3201, pp. 548–559, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Simultaneous Concept Learning of Fuzzy Rules 549

In this paper we introduce FuzzyBexaII, that uses SCL to induce classifica-
tion rules from fuzzy data. The induction process produces an ordered rule set,
and we show that in many cases this methodology produces superior results to
FuzzyBexa, i.e. on average better classification performance, radically smaller
rule sets, and also less search complexity. We also introduce the fuzzy accuracy
function for rule evaluation in SCL, and demonstrate that this function is much
better behaved for SCL learning than, for example, the fuzzy entropy function.
In the next section we review fuzzy set covering and FuzzyBexa. In Section 3
we show how to extend FuzzyBexa to use the SCL strategy, and in the fol-
lowing section we show that the rule evaluation function plays a pivotal role in
finding good classification rules. In Section 5 we provide the results of five dif-
ferent experiments on nine data sets for FuzzyBexa with ICL and SCL using
several different evaluation functions, as well as an empirical comparison be-
tween FuzzyBexaII and other concept learners. The following section contains
a discussion of the experimental data, and Section 6 concludes our paper.

2 FuzzyBexa: A Fuzzy Set Covering Framework

Fuzzy instances differ from crisp instances in two fundamental ways. Firstly,
fuzzy instances belong to all attributes and attribute values, whereas crisp in-
stances belong to only one attribute value per attribute. Secondly, fuzzy in-
stances belong to attribute values to a certain degree, measured on the scale
[0, 1], whereas crisp instances either match an attribute value or not, i.e. their
memberships are measured in the set {0, 1}. The fuzzy instance space is described
by a vector of linguistic variables (fuzzy attributes) Ai, I = 〈A1, A2, ..., An〉,
where each variable is a family of fuzzy sets, Ai = 〈L1, L2, ..., Lm〉. Each Lj is
a fuzzy set, i.e. a linguistic term (fuzzy attribute value). Together, all the lin-
guistic terms belonging to the same linguistic variable form the term set of that
linguistic variable. Linguistic terms and variables are referred to simply as terms
and variables. A fuzzy instance belongs to each term to a certain degree, its
membership degree. The membership of fuzzy instance i to the term L is given
by its membership function to the term, µL(i), and thus a fuzzy instance is of the
form, i = 〈〈µ11(i), ...µ1p(i)〉...〈µn1(i), ...µnq(i)〉〉, where the first subscript is the
variable index and the second the term index of the respective variable. Propo-
sitional rules are of the form “IF X THEN Y ,” where X is called the antecedent
and Y the consequent. Contrary to the crisp case, fuzzy instances match an-
tecedents only to a certain degree. Let µA(i) and µB(i) be the membership of a
fuzzy instance i, i ∈ I, to the two terms A and B respectively, then the degree
to which an instance matches an antecedent is computed using the standard
fuzzy operators, µA∧B(i) = µA∩B(i), µA∨B(i) = µA∪B(i), and µ¬A(i) = µĀ(i).
Instances may belong to antecedents to a very small degree. This may be un-
desirable, and to avoid such cases we apply an α-cut to the antecedent. The
membership of an instance that belongs to an antecedent below the threshold
αa, called the antecedent threshold, is defined to be zero. Only instances that
belong to an antecedent with membership αa or above match the antecedent,

550 Jacobus van Zyl and Ian Cloete

and the antecedent is said to cover the instances. The set of all instances within a
set S that is covered by an antecedent c is called the extension of the antecedent
in S, and is denoted as XS(c),

XS(c) = {i ∈ S|µc(i) ≥ αa}. (1)

As stated above, fuzzy instances belong to terms only with certain membership,
and this is also true for the concept. To prevent instances from belonging to a
concept to only a small degree, we define instances to belong to a concept only
when their membership to the concept is above ac, the concept threshold.

FuzzyBexa’s description language is a fuzzy version of VL1, called Fuzzy
VL1 [1]. Antecedents in Fuzzy VL1 are conjunctions of internally disjunctive
expressions, also called conjuncts. Each conjunct may contain terms from only
one term set. Consider for example the variables outlook and wind with term
sets {sunny, cloudy, rainy} and {windy, calm}, respectively. An example of a
Fuzzy VL1 antecedent is, [outlook = sunny∨cloudy]∧ [wind = calm], where the
conjuncts are delimited with square brackets. We can also write this expression
in short form as [sunny, cloudy][calm], where the conjunction symbol is dropped
and the disjunction is replaced by a list of its elements.

FuzzyBexa performs a top-down general-to-specific search of the hypoth-
esis space starting with the most general conjunction (mgc). The most gen-
eral conjunction must have the property that it covers all instances. Consider
the conjunction [sunny, cloudy, rainy][windy, calm]. This conjunction cannot in
general cover all instances, since there may exist a subset B, B ⊂ I, such that
B = {i ∈ I|µsunny∨cloudy∨rainy(i) < αa}, and B is therefore not covered. To
form the mgc we add to each term set a new term, called its alpha comple-
ment. The membership of an instance to this term is defined to be zero when
the instance belongs to any other term in the term set with membership αa or
greater, and one when the instance does not belong to any other term in the
term set with membership αa or above. Thus, the mgc for the example above
is [sunny, cloudy, rainy, ᾱoutlook][windy, cloudy, ᾱwind]. This conjunction covers
all instances in the instance space, and thus is most general.

FuzzyBexa consists of three layers. The top layer implements the fuzzy set
covering approach to rule induction and is called CoverConcepts. It receives a
training set T of instances and a list of concepts for which to induce classification
rules. For each concept coni the training set is split into a set of positive instances
P and a set of negative instances N . To obtain P , we use Eq (1), P = XT (coni),
and for N use N = T −P . Next, FuzzyBexa invokes its middle layer to obtain
the conjunction that best describes the current concept. It then adds the rule
with this conjunction as antecedent and the current concept as consequent to its
rule set. Then all the positive instances covered by this rule are removed from
the set of positive instances, while the set N remains unchanged. FuzzyBexa
iteratively induces more rules until either all the positive instances are covered, or
no “useful” conjunction could be found. It then continues with the next concept
until all the concepts are covered.

FuzzyBexa’s middle layer, FindBestConjunction, implements a set of search
heuristics to guide the search. It first forms the mgc as described above, and

Simultaneous Concept Learning of Fuzzy Rules 551

then invokes the bottom layer routine to obtain a set of specializations of this
conjunction. Each of the conjunctions are evaluated according to an evaluation
function. FuzzyBexa can use any evaluation function that assigns better scores
to conjunctions that cover the positive set better than the negative set, where
the exact definition of better is defined by the evaluation function itself. Let
M(S, c) =

∑
i∈XS(c) µc(i), where S is a set of instances and c a conjunction.

In this paper we investigate two functions, a fuzzy evaluation function related
to the Laplace estimate, L(c) = M(P,c)+.5

M(T,c) , and the fuzzy accuracy function,
A(c) = M(P, c) − M(N, c). FuzzyBexa can perform a beam search of the
hypothesis space by choosing the beamwidth best conjunctions to specialize
further. Conjunctions that are consistent, i.e. that cover no negative instances,
are removed from the search process. FuzzyBexa keeps the best conjunction
found thus far in a variable bestconj. If the best conjunction found during the
search performs no better than the mgc, the result “no useful conjunction found”
is returned, otherwise, bestconj is returned. The middle layer also employs other
search restrictions for efficiency and performance measures not discussed here.
For more details about FuzzyBexa, see [1].

FuzzyBexa’s bottom layer, called GenerateSpecializations, receives a set of
conjunctions and returns the set of refinements of these conjunctions. Fuzzy-
Bexa can use different specialization models, but for the purposes of this paper
we will only consider the exclusion specialization model. The set of terms used to
describe conjunction c is called its description set, denoted by D(c). In this set,
all the terms are uniquely labeled, e.g. the term high of the variable humidity
and the term high of the variable cost are different. If necessary, we can rename
the terms to humidity.high and cost.high. Thus, there exists a one-to-one map-
ping between c and D(c). In the exclusion specialization model, a conjunction
is specialized by excluding (removing) one of the terms from its description set,
i.e. c2 is specialized to form c1 by removing a term from D(c2), e.g. [a, b][z]
specialized forms [a][z] or [b][z]. Let c1 and c2 be two conjunctions from the set
of Fuzzy VL1 conjunctions for a particular problem. Then c1 � c2, c1 is more
specific or equal to c2 if D(c1) ⊆ D(c2), and c1 = c2 if D(c1) = D(c2). We say
c1 ≺ c2, c1 is more specific than c2 if c1 � c2 and c1 �= c2. Thus, the set C, is par-
tially ordered under the relation �, and forms a lattice. Furthermore, if c1 ≺ c2,
D(c1) is formed by excluding one or more terms from D(c2), and c1 is therefore
a more restrictive description, able to match fewer instances than c2. In fact, c1

can cover only a subset of the instances covered by c2, and XI(c1) ⊂ XI(c2).
Thus, the extension operator is an order-preserving map from conjunctions to
instance sets. FuzzyBexa’s exclusion specialization model therefore results in
a general-to-specific, top-down search of the lattice of Fuzzy VL1 descriptions.

3 FuzzyBexaII: Induction of Ordered Fuzzy Rules

In this section we introduce FuzzyBexaII, a novel SCL approach that induces
ordered fuzzy rules from a fuzzy data set. Table 1 shows FuzzyBexaII’s Cover-
Concepts routine. Compared to that of FuzzyBexa, the SCL top layer routine

552 Jacobus van Zyl and Ian Cloete

Table 1. FuzzyBexaII’s CoverConcepts procedure

CoverConcepts
Input: Set of training instances T , Set of concepts to learn C
Output: A rule set describing the concepts
Set the current rule set to empty
While T contains instances

best = FindBestRule(T , C)
Add best to the rule set
Remove the instances covered by best

Return the rule set

of FuzzyBexaII is less complex. It starts by initialising the rule set to empty.
Then, it iteratively finds the best rule for the current set of training examples
using the middle layer routine FindBestRule–in ICL the middle layer returned
the antecedent that best covered the concept it was forced to use. For SCL the
training set is not split into positive and negative parts, but passed as a whole
to the middle layer. The rule found by the middle layer is then added to the rule
set, and all instances covered by the rule are removed from the training set. This
also differs from ICL, where only the positive instances covered by the rule are
removed. We will discuss the implications of this decision later.

FuzzyBexaII’s middle layer, see Table 2, implements several heuristics for
guiding the search in the hypothesis space. It uses the set spec to maintain the
set of current conjunctions to consider as rule antecedents. This set is initial-
ized with the mgc. The routine functions as follows. A set of specializations of
the conjunctions in spec is obtained by invoking FuzzyBexaII’s bottom layer
routine. Then, for each specialization ant in spec, the concept best described by
the conjunction is selected. This is done by dividing the instances covered by
the conjunction into groups according to their class,

Gi(ant) = {d ∈ XT (ant)| µconcepti(d) ≥ αc}. (2)

The sigma count or scalar cardinality of each group is then computed,

M(Gi(ant)) =
∑

d∈Gi(ant)

µant(d) (3)

and the concept of the group with the highest cardinality is chosen as the best
rule consequent. The potential rule is then evaluated according to an evalua-
tion function. This function is fundamental in guiding the search through the
hypothesis space, and we will investigate its influence on the search process and
overall performance in more detail later. If the potential rule outperforms the
current best rule, it replaces the current best rule.

The next step implements an efficiency stop growth measure. This measure
is very important to prevent unnecessary exploration of parts of the hypothesis
space that cannot yield rules better than the current best rule. Let j be the
index of the concept chosen as rule consequent. Assume that in the idealistic

Simultaneous Concept Learning of Fuzzy Rules 553

Table 2. FuzzyBexaII’s FindBestRule procedure

FindBestRule
Input: Set of instances, Set of concepts C
Output: The best rule found during this search
Set the current best rule to empty
Add the mgc to the set of current conjunctions, spec
While spec contains conjunctions

spec = GenerateSpecializations(T , spec)
For each conjunction ant in spec

Let consequent be the concept from C best covered by the conjunction ant
If eval(ant, consequent) is better than that of the best rule,

Replace the current best rule with “IF ant THEN consequent”
If ant can never be better than the best rule, remove it from spec

Retain only the beamwidth best conjunctions in spec
Return the best rule found

Table 3. FuzzyBexaII’s specialization model

GenerateSpecializations
Input: Set of instances T , set of conjunctions C
Output: Set of specializations of the conjunctions in C
Initialise the set of spec to be empty
For each conjunction c and associated usable term L,

If XT (L) and XT (c) have no instances in common,
Mark this term as unusable in this conjunction

For each conjunction c and associated usable term L,
Create a specialization by excluding L from c
Add the specialization to spec

Remove all duplicate conjunctions from spec
Return spec

case all groups Gi, i �= j, are empty. If even in this case the performance of the
potential rule is worse than the best rule, it is futile to continue further explo-
ration of this part of the hypothesis space. This is true since we are specializing
antecedents, moving from top to bottom in the lattice of antecedents, and thus
subsequent rules can never cover more instances, and therefore cannot increase
their cardinality and performance above that of the best rule. Note, this test
includes the consistency test as a special case – when an antecedent is consistent
no subsequent antecedent can perform better that it. This test is an adaptation
of an approach by Quinlan and Cameron-Jones for the crisp iterated concept rule
learner by Webb [8, 3]. After all conjunctions were considered, a beam search is
implemented by retaining only the beamwidth best conjunctions in the set spec.
The process is iterated until spec becomes empty and the best rule is returned.

FuzzyBexaII’s bottom layer routine GenerateSpecializations, shown in Ta-
ble 3, implements the specialization model. The function of this routine is similar
to that of FuzzyBexa, i.e. to obtain a set of refinements of the input set of con-
junctions. The routine starts by initialising the set of specializations spec to be

554 Jacobus van Zyl and Ian Cloete

empty. Then follows two loops. The first implements an efficiency measure, and
the second performs the specialization. With each conjunction we associate a
set of “usable” terms that may be used to specialize the conjunction, and we
initialise the mgc to contain all terms in its usable set. The first loop compares
the extension of the conjunction and the extension of terms from its usable set.
Any term where the two extensions have no members in common, i.e. any term
L and conjunction c where

XT (L) ∩ XT (c) = ∅ (4)

is removed from the set of usable terms for this conjunction. Excluding such
a term will not change the extension of the conjunction, and therefore make
it overly specific. The next loop generates specializations by excluding from
each conjunction the terms from its associated usable set in turn. Duplicates
may occur if two conjunctions were specialized by excluding the same terms in
different order, and are removed. The resulting specializations are returned.

4 The Rule Evaluation Function

The entropy evaluation function is often used for SCL learning, including decision
tree and fuzzy decision tree learning [9, 10]. Let r be a rule with a as antecedent
and {c1, ..., cN} the possible consequents of r, then the normalized fuzzy entropy
is given by

E(r) =
1

log N

N∑

i=1

M(a ∧ ci)
M(a)

log
M(a ∧ ci)

M(a)
, (5)

where M(x) is the sigma count. Since we want an evaluation function that assigns
higher scores to better conjunctions, we use the evaluation function 1 − E(r).
This function has a maximum value of one for rules that cover only one class, and
a minimum value of zero for rules that cover each class in the same proportion.
However, the entropy function does not favour high coverage, e.g. a rule that
covers five instances of one class and none of other classes and a second rule that
covers a thousand instances from one class and none of other classes will both
have a score of one. The Laplace estimate was suggested as an improvement of
the CN2 algorithm that also used the entropy function [5]. In [11] we suggested
the fuzzy accuracy function for ICL,

A(r) =
∑

i∈XP (a)

µa(i) −
∑

i∈XN (a)

µa(i), (6)

where P is a subset of T containing all instances that belongs to the concept, and
N = T −P . We adapt the accuracy function for use in SCL by considering each
concept in turn, and regard instances belonging to other concepts as members
of N . We assign the rule consequent as the concept that results in the highest
evaluation, and also assign this evaluation value to the rule. This evaluation
function will prefer rules that cover a large number of instances from one concept
and few of the other.

Simultaneous Concept Learning of Fuzzy Rules 555

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

Rule

In
st

an
ce

s

SCL−Acc
SCL−Ent
ICL−Acc

(a) Uncovered instances remaining to be
used during rule induction

0 2 4 6 8 10 12 14
0

50

100

150

200

250

Rule

H
yp

ot
he

se
s

G
en

er
at

ed

SCL−Acc
SCL−Ent
ICL−Acc

(b) The number of candidate rules gen-
erated during rule induction

Fig. 1. Results for ICL and SCL with different evaluation functions on the Zoo data

5 Experiments

In this section we show experimental results on six real world domains ob-
tained from the UCI machine learning repository. We fuzzified data by assigning
membership values from {0, 1} to nominal attributes, and by using a clustering
method to place bell shaped membership functions on the continuous domains
of linearly ordered attributes. We will discuss results obtained for FuzzyBexa
(ICL) with the accuracy and Laplace evaluation functions, and also for Fuzzy-
BexaII (SCL) with the entropy and accuracy evaluation functions. We denote
FuzzyBexaII with the entropy and accuracy evaluation functions as SCL-Ent
and SCL-Acc respectively, and FuzzyBexa with the accuracy and Laplace eval-
uation functions as ICL-Acc and ICL-Lap, respectively.

Figure 1 shows results obtained by SCL and ICL on the training set of the
Zoo data, where we ignored the variable “animal,” and learned the concept
“type of animal,” e.g. mammal, bird, fish, etc. The different methodologies of
SCL and ICL are clearly discernable from Figure 1(a). For most of the rules,
ICL considered all the instances during the induction process. This happens
since ICL removes only the positive instances covered from the training set
for each class, and reinsert these into the training set when the next concept
is considered. SCL, however, never reinserts covered instances, and its graphs
are monotonously decreasing. From Figure 1(a) one can also see the number of
instances covered by each consecutive rule. This is indicated by the difference
on the y-axis of two consecutive points. When there is no difference for ICL,
it implies that the rule covered all the positive instances. The last seven rules
induced by SCL-Ent covered very few instances each. Figure 1(b) shows the
number of candidate hypotheses generated for each rule during the search. SCL-
Ent started out with a very high number, and then as there were successively
fewer instances available, generated successively fewer candidates rules. For the
first six rules SCL-Acc and ICL-Acc had similar behaviour. However, for the

556 Jacobus van Zyl and Ian Cloete

last two rules of SCL-Acc there were less than 10 instances, and consequently it
needed only a few hypotheses to cover them. The use of the accuracy function
also resulted in a much smaller rule set for SCL. SCL-Acc had 9 rules and SCL-
Ent 14 rules.

Table 4 shows results for five experiments. All results quoted are on test set
results from a 10-fold cross validation. For each data set the mean and standard
deviation are computed, and the average of the means of all data sets are shown
in the last column. The best performance on each data set is set in bold face. The
first experiment investigates the accuracy of the induced rule sets. SCL-Ent had
the worst overall performance, and did significantly worse on the Colic, Hepatitis
and Lymph data sets. It had the best performance on the Zoo data set. SCL-
Acc, in contrast, performs very well, and obtained better overall results than
any of the other methods. ICL-Acc and ICL-Lap had very similar results, and
was overall about 2% worse than SCL-Acc, but 3.5% better than SCL-Ent. The
second experiment compares the size of the rule set induced by each method.
Here, SCL-Acc is the clear winner. On average its rule sets contained about
three times fewer rules than ICL-Acc and ICL-Ent. It also becomes clear that
SCL-Ent is not a good method to use, as it induced 12 times more rules than
SCL-Acc, and also had worse classification accuracy performance. This result is
most likely due to the entropy evaluation function not favouring conjunctions
with higher coverage. Thus, a large number of consistent conjunctions covering
only small sets of instances are induced.

One obvious observation is that SCL-Acc is able to induce extremely compact
rule sets. This behaviour cannot be attributed only to the accuracy function, as
ICL-Acc did not perform as well. One big difference between SCL and ICL is
that the rules induced by SCL are ordered and that by ICL unordered. Table 5
shows the rule set induced by SCL for the Zoo data. The first rule correctly
classifies all mammals. Thus, after the first iteration, all mammals are removed
from the data set. Similarly, the second rule removes all birds from the data set.
Now consider the third rule, it states that animals with fins are fish. On its own,
this rule would incorrectly classify whales and dolphins as fish. However, since
the rules are evaluated in order, the first rule would fire for a whale, correctly
classifying it as a mammal, and further rules would not be considered.

We believe the aforementioned characteristic is present in many data sets,
and is the reason why SCL outperforms ICL on many data sets. After the first
few rules took care of macro features that are easily identified, rules found later
need not concern themselves with these features, and can distinguish between the
special cases. An ordered rule set is a representation of a more complex unordered
rule set, and also does not require the arbitration process of unordered rule sets
when multiple rules fire. When ICL has to induce a rule for fish, it will have
to find a more complex antecedent, e.g. [milk = false][fins = true], i.e. the rule
must not fire on any of the macro features, but still differentiate the special
cases. Consequently, ordered rule sets can be much smaller than unordered rule
sets, while still obtaining high accuracy. ICL often induces many more rules to
prevent the covering of macro features while still covering some of the micro

Simultaneous Concept Learning of Fuzzy Rules 557

Table 4. Various test results for SCL with the Entropy and Accuracy evaluation
functions and ICL with the Accuracy and Laplace Evaluation functions

Ave
Mean

SCL, Ent 78.0 6.0 68.2 2.7 76.8 11.2 93.6 6.3 73.6 12.1 96.0 8.2 81.0
SCL, Acc 84.5 3.3 74.0 4.8 86.5 6.9 96.4 5.1 81.1 12.3 96.0 10.5 86.4
ICL, Acc 85.3 4.7 71.2 4.1 83.9 10.1 95.7 6.0 81.1 11.5 91.1 11.2 84.7
ICL, Lap 83.4 5.7 71.1 2.8 80.6 7.6 96.4 5.1 81.8 14.4 93.1 13.4 84.4

SCL, Ent 88.0 7.8 183.2 16.5 34.0 2.1 9.9 0.3 41.8 3.5 12.7 0.7 61.6
SCL, Acc 5.1 0.3 4.4 1.7 3.1 0.3 3.9 0.3 6.5 0.7 7.9 0.3 5.2
ICL, Acc 34.4 2.7 2.4 0.5 19.3 1.2 4.0 0.0 19.6 1.5 12.3 1.1 15.3
ICL, Lap 34.5 1.6 8.6 1.1 19.0 1.1 4.3 0.5 21.8 1.3 10.6 0.7 16.5

SCL, Ent 184.4 20.8 759.2 79.1 56.0 4.3 13.5 1.0 70.0 8.6 12.5 1.1 182.6
SCL, Acc 14.2 2.8 5.6 2.9 4.5 1.4 3.5 0.5 12.7 1.7 10.3 1.3 8.5
ICL, Acc 128.0 9.6 6.2 1.9 62.9 5.0 6.0 0.0 67.9 7.2 35.4 3.9 51.1
ICL, Lap 166.7 12.1 36.6 6.0 68.3 5.9 7.0 1.6 76.5 5.3 27.9 2.2 63.8

SCL, Ent 53800 5632 24420 2349 11300 744 334 24 8008 722 955 134 16470
SCL, Acc 2409 192 355 110 632 74 123 15 907 55 315 23 790
ICL, Acc 10137 637 6780 436 2360 122 196 13 2243 222 601 61 3719
ICL, Lap 12373 1068 5851 306 2592 251 263 27 2719 168 493 38 4048

SCL, Ent 610.9 32.4 132.6 2.5 332.0 13.9 33.4 3.1 191.3 15.0 74.5 7.4 229.1
SCL, Acc 472.1 28.1 83.4 11.1 203.7 12.0 31.3 4.0 139.9 11.4 39.5 3.0 161.7
ICL, Acc 294.6 11.4 2924.8 579.9 121.8 4.5 48.6 3.4 113.8 5.2 48.3 2.1 592.0
ICL, Lap 357.6 19.5 689.8 101.5 135.9 10.5 61.1 7.4 124.7 8.8 46.0 0.9 235.9

Complexity of the Rule Set Measured in Terms

Average Number of Hypotheses Generated per Rule

Number of Conjunctions Generated During Rule Set Induction

Lymph

Accuracy of the Rule Set

ZooColic Diabetes Hepatitis Iris
 Mean StdDev Mean StdDev Mean StdDev

Number of Rules in the Rule Set

 Mean StdDev Mean StdDev Mean StdDev

features. The small number of instances available for induction of the last rules
in SCL implies that less search is necessary for these rules. This is different for
ICL and clearly visible in Figure 1(b), and the overall result is that SCL-Acc
requires less search for rule set induction. The rule sets induced by SCL are also
not unnatural, as humans also represent concepts such as animal type using an
ordered rule set, i.e. reasoning by working with exceptions. The last rule induced
by SCL often has the antecedent TRUE. This happens when after the exclusion of
instances covered by previous rules, only instances of one class remain. This must
not be confused with the default rule used in unordered rule sets. In unordered
sets, the default rule fires when no other rule fires, and usually has the majority
class as consequent. SCL could also employ such a default rule when the last
rule does not have TRUE as antecedent.

SCL in combination with the entropy function did not perform well. This is
because entropy does not guide the search in the direction of high coverage. The
first rule induced by SCL-Ent, for example, had ”bird” as consequent. However,
there are 20 bird and 41 mammal instances. Thus, SCL-Acc induced a rule for
the class with the most instances since this rule has the highest coverage. On the
Colic data SCL-Acc alternated between the classes such that the most instances
are covered by each consecutive rule. Subsequent rules should in general cover

558 Jacobus van Zyl and Ian Cloete

Table 5. SCL-Acc induced rule set for the Zoo data

[milk = true] → type=mammal [eggs = true][backbone = false][legs = ¬ᾱ]
[feathers = true] → type=bird → type=insect
[fins = true] → type=fish [backbone = true][tail = true] → type=reptile
[eggs = true][breathes = false] [aquatic = false] → type=invertebrate
→ type=invertebrate TRUE → type=amphibia

Table 6. Results of FuzzyBexaII, C4.5, Layered Search and Exhaustive Search on
three data sets. Theory size for C4.5 is measured in tree nodes, in number of test
conditions for layered and exhaustive search, and in number of terms for FuzzyBexaII

Diabetes Hepatitis Lymph Diabetes Hepatitis Lymph
C4.5 25.4 20.4 21.7 44.0 17.8 N/A
Layered Search 26.9 19.1 18.9 207.4 27.0 30.1
Exhaustive Search 27.2 20.0 19.0 208.7 27.9 30.1
FuzzyBexaII 23.0 13.6 18.9 5.6 4.5 12.7

Error Theory Size

fewer instances than previous rules, thus rules with stronger support are placed
higher up in the rule hierarchy. This can be clearly seen in the shape of the
graph for SCL-ACC in Figure 1(a). SCL-Ent in the same figure, however, had
subsequent slopes higher than previous slopes, demonstrating its unbiasedness
towards high coverage.

The third experiment in Table 4 measured the complexity of rules as the
number of terms in the rule set. Here, the good performance of the accuracy
function for both SCL and ICL is evident. Again SCL-Acc had the best perfor-
mance, requiring six times fewer terms than ICL-Acc and seven times fewer than
ICL-Lap. The rule sets found by ICL-Acc were about 15% less complex than that
found by ICL-Lap. The rule set complexity found by SCL-Acc was on average
about 5% of that of SCL-Ent. The fourth experiment shows that, interestingly,
SCL-Acc needed to investigate only a very small part of the search space to
obtain its results. ICL-Acc was second, but generated 4.6 times more candidate
rules, whereas ICL-Lap generated 5.2 times more candidates. SCL-Ent’s strug-
gle to obtain good rule sets becomes clear; it generated 16470 hypotheses versus
ICL-Acc’s 790. The last experiment compares the number of hypotheses gener-
ated per induced rule. SCL-Acc again needed the least number of hypotheses.
Interestingly though, SCL-Ent generated the second least. However, since the
induced rules cover so few instances, many rules were needed making the total
search very large. ICL-Acc generated the most hypotheses. However, if we re-
move the outlier of the Diabetes data, the ICL-Acc would have 125.4, ICL-Lap
145.1, and SCL-Acc 177.3, resulting in ICL-Acc with the smallest search per
rule. ICL-Acc induced the smallest and second most accurate rule set for the
diabetes data. However, it required 20 times more search than SCL-Acc, and
therefore a very large number of hypotheses were generated per induced rule.

We also compared our FuzzyBexaII algorithm (using the accuracy function)
with three other concept learners. The results quoted for C4.5, Layered Search

Simultaneous Concept Learning of Fuzzy Rules 559

and Exhaustive Search were obtained from the literature [8, 12, 4]. The first
column shows the average error on the test sets. FuzzyBexaII had similar
classification results as the other methods for the Lymph data, better results
on the Diabetes data, and significantly better results on the Hepatitis data. It’s
theory size (complexity) is also significantly smaller in all cases.

6 Conclusion

This paper presented FuzzyBexaII, an algorithm for learning ordered fuzzy
rule sets for classification. We also enhanced the method with early stopping
efficiency measures, without which the search would be prohibitively big. We
further presented five empirical experiments on six data sets, and demonstrated
that if the correct kind of evaluation function used, i.e. functions that give pref-
erence to rules with high coverage, ordered rule sets are much less complex than
unordered rule sets, while at the same time being very accurate. As an example
of an appropriate evaluation function we showed how to adapt the fuzzy accuracy
function for SCL. We discussed the various reasons for SCL’s good performance,
and also showed with further experiments that FuzzyBexaII can outperform
other learning systems with respect to rule set size and accuracy.

References

1. Cloete, I., van Zyl, J.: Fuzzy rule induction in a set covering framework. (2004)
(Submitted).

2. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)
3. Webb, G.: Systematic search for categorical attribute-value data-driven machine

learning. In: Proceedings Sixth Australian Joint conference of Artificial Intelli-
gence, Melbourne, Singapore: World Scientific (1993) 342–347

4. Quinlan, J.R.: Improved use of continuous attributes in C4.5. Journal of Artificial
Intelligence Research 4 (1996) 77–90

5. Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In:
Proceedings of the Sixth European Working Session on Learning. (1991) 151–163

6. Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets and Systems
69 (1995) 125–139

7. Kasabov, N.K.: On-line learning, reasoning, rule extraction and aggregation in
locally optimized evolving fuzzy neural networks. Neurocomputing (2001) 25–45

8. Quinlan, J.R., Cameron-Jones, R.M.: Oversearching and layered search in empir-
ical learning. In: IJCAI. (1995) 1019–1024

9. Cios, K.J., Sztandera, L.M.: Continuous id3 algorithm with fuzzy entropy mea-
sures. In: Proc. IEEE Int. Conf. Fuzzy Syst. (1992) 469–476

10. Dong, M., Kothari, R.: Look-ahead based fuzzy decision tree induction. IEEE-FS
9 (2001) 461–468

11. Cloete, I., van Zyl, J.: Evaluation function guided search for fuzzy set covering.
In: IEEE International Conference on Fuzzy Systems, Budapest, Hungary (2004)

12. Quinlan, J.R.: Bagging, boosting and C4.5. In: Thirteenth National Conference
on Artificial Intelligence, AAAI/MIT Press (1996)

	1 Introduction
	2 $\{FuzzyBexa}$: A Fuzzy Set Covering Framework
	3 $\{FuzzyBexaII}$: Induction of Ordered Fuzzy Rules
	4 The Rule Evaluation Function
	5 Experiments
	6 Conclusion
	References

