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Abstract. The problem of cluster-grouping is defined. It integrates
subgroup discovery, mining correlated patterns and aspects from clus-
tering. The algorithm CG for solving cluster-grouping problems is pre-
sented and experimentally evaluated on a number of real-life data sets.
The results indicate that the algorithm improves upon the subgroup dis-
covery algorithm CN2-WRACC and is competitive with the clustering
algorithm CobWeb.
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1 Problem Specification and Context

The problem of cluster-grouping integrates subgroup discovery, mining corre-
lated patterns and aspects from clustering. Subgroup discovery [1] aims at finding
groups in the data that are over- or under-represented w.r.t. a specific target at-
tribute; correlated pattern mining [2] is a form of association rule mining, which
aims at finding rules whose condition part correlates strongly with its conclusion
part w.r.t. a statistical evaluation criterion (e.g. χ2 or entropy); and clustering
[3] aims at identifying groups that are homogeneous w.r.t. an evaluation criterion
such as category utility.

Although these three techniques are perceived as being quite different in the
literature, it turns out that they are an instance of the more general problem
of cluster-grouping that we introduce below. The cluster-grouping problem is
concerned with finding rules b1 ∧ ... ∧ bc � h1 ∨ ... ∨ hd (over boolean variables)
that score best w.r.t. an interestingness function σ and set E of instances. We
call d the dimension of the rule.
More formally, the cluster grouping problem can be defined as follows:

– Given
• a set of rules L (the hypothesis space)
• a set of instances E (i.e. boolean variable assignments)
• an convex interestingness measure σ : E × L �→ R

• a positive integer k

– Find the k rules in L that have the highest score w.r.t. σ and E .
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Subgroup discovery (as studied by [1]) is the special case of cluster-grouping
where the conclusion part of the rules in L is a fixed boolean attribute and σ is
weighted relative accuracy (WRAcc); correlated pattern mining (as studied by
[2]) allows for rules of dimension 1 and employs convex interestingness measures
(such as χ2 and entropy); and conceptual clustering can be regarded as the
problem of finding k rules (whose condition part defines the clusters and whose
conclusion part defines the d boolean variables of interest) w.r.t. a measure such
as category utility.

2 The CG-Algorithm

The CG-algorithm for cluster grouping is an extension of Morishita and Sese’s
algorithm [2] for correlated pattern mining. Whereas Morishita and Sese coon-
sidered only rules of dimension 1, CG allows for rules of arbitrary dimension d.
CG is similar to the correlated pattern mining algorithm of [2] in that it employs
a branch-and-bound algorithm to search for the k best patterns w.r.t. the inter-
estingness measure σ. The key idea underlying the algorithm is that for convex
functions it is possible to compute an upper bound u(r) on the quality of a rule
r and all its specializations.

The CG algorithm works as follows. It initializes the queue of candidate
solutions Q with the most general rule. It then repeatedly deletes the best can-
didate c from Q and evaluates its refinements w.r.t. u and σ. If a refinement is
among the k best patterns already encountered, it is added to the current list of
solutions. If a refinement’s upper bound u scores worse than that of the worst
element on the current list of solutions, it is discarded. All other refinements are
added to the current list of candidates. The search continues until the list of
candidates becomes empty.

To compute the upper bound, Morisha and Sese introduce the concept of
a stamp point 〈x, y〉 with x denoting the coverage of a rule and y denoting
the number of true positives. Correlation measures are then treated as functions
defined on stamp points. While the actual future stamp points for specializations
of the rule cannot be known in advance, the current stamp point constrains the
set of possible future stamp points Sposs. The upper bound mentioned above
is calculated by evaluating the correlation measure on the points lying on the
convex hull of Sposs. We have extended this technique to arbitrary dimension d,
allowing it to be used in clustering (in which the behavior of a rule with regard
to all attributes is used as guidance in the search). For rules of dimension 1,
the convex hull is a parallelogram, for dimension d one has to consider a hyper-
body. In determining the vertices of that body, additional restrictions have to
be observed preventing a simple recursion of the two-dimensional technique.

3 Experiments

We performed experiments on a variety of UCI data sets. We compared our
approach to CobWeb [3] for clustering and to CN2-WRAcc [1] for subgroup
discovery.
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For clustering we applied CG to the initial data set, mining the rule with
the highest category utility and used the condition part of the resulting rule as
a splitting criterion. CG was then applied on the resulting subsets. In this way
we construct a hierachical clustering. For comparison we computed the category
utility of Cobweb’s solutions (averaged over 10 randomized orderings) and CG’s
solutions and also the agreement between the respective solutions using the Rand
Index. The resulting category utilities are shown in the left-hand table below.

Dataset CU CG CU CobWeb
Breast-w 0.62 0.6496 ± 0.0001
Breast-w-equal 1.088 1.147 ± 1.95 ∗ 10−5

Credit-a 0.379 0.374 ± 0.0178
Credit-a-equal 0.6241 0.6243 ± 0.00067
Glass 0.301 0.291 ± 0.0125
Hepatitis 0.446 0.459 ± 0.0142
Iris 0.5369 0.5321 ± 0.0083
Sick 0.2132 .2077 ± 0.0171
Voting 1.362 1.468 ± 0.0001
Zoo (6 clusters) 0.6398 0.6349 ± 0.005
Zoo (5 clusters) 0.7187 0.7196 ± 0.004

Data set CG CN2-WRAcc
Car 44.5 ± 38.8 84.75 ± 9.2
Zoo 1531 ± 1980.1 2133.6 ± 27.7
Nursery 82.6 ± 108.1 141.4 ± 13.1
Breast-W 95.5 ± 6.4 529
Voting 36 ± 4.2 301
Mushroom 196.5 ± 34.7 1806 ± 4.2

Some of CobWeb’s solutions had lower category utility than the CG solution.
While CobWeb also found solutions having higher category utility, those could
not easily be described by conjunctive rules. In general the agreement between
the CobWeb and CG solutions is very high (93.2%± 5.3%).

For subgroup discovery we used CG to compute all rules achieving optimal
value. We compared those rules to CN2-WRAcc’s solutions w.r.t whether the
rules with highest WRAcc value were found and whether all such rules had
been found. In the right-hand table above the average number of candidate rules
considered during the search process are shown for CN2-WRAcc with beam size
1 and for CG.

CN2-WRAcc fails to always find the highest-scoring rules as CG does. This
is the case even for beam sizes in excess of 10 and up to 50. Additionally CN2-
WRAcc considered more candidate rules during the search even for small beam
sizes.

The results presented above show that CG is a valid alternative to CN2-
WRAcc and CobWeb.
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