
A Framework
for Data Mining Pattern Management

Barbara Catania1, Anna Maddalena1, Maurizio Mazza1,
Elisa Bertino2, and Stefano Rizzi3

1 University of Genova (Italy)
{catania,maddalena,mazza}@disi.unige.it

2 Purdue University (IL)
bertino@cerias.purdue.edu

3 University of Bologna (Italy)
srizzi@deis.unibo.it

Abstract. To represent and manage data mining patterns, several as-
pects have to be taken into account: (i) patterns are heterogeneous in
nature; (ii) patterns can be extracted from raw data by using data mining
tools (a-posteriori patterns) but also defined by the users and used for ex-
ample to check how well they represent some input data source (a-priori
patterns); (iii) since source data change frequently, issues concerning pat-
tern validity and synchronization are very important; (iv) patterns have
to be manipulated and queried according to specific languages. Several
approaches have been proposed so far to deal with patterns, however all
of them lack some of the previous characteristics. The aim of this paper
is to present an overall framework to cope with all these features.

1 Introduction

In many different modern contexts, a huge quantity of raw data is collected. An
usual approach to analyze such data is to generate some compact knowledge
artifacts (i.e., clusters, association rules, frequent itemsets, etc.) through data
processing methods, to make them manageable from humans while preserving as
much as possible their hidden information or discovering new interesting correla-
tions. Those knowledge artifacts, which can be very heterogeneous and complex,
are also called patterns. Although a large variety of techniques for pattern min-
ing exist, we still miss comprehensive environments supporting the development
of knowledge intensive applications. Such an environment goes much beyond the
use of pattern mining techniques; it has to provide support for combining hetero-
geneous patterns, for characterizing their temporal behavior, and for querying
and manipulating them. In what follows we elaborate on these requirements.
Heterogeneity. There are many different application contexts from which var-
ious types of patterns can be generated and need to be managed. For example,
in the market-basket analysis, common patterns are association rules, which
identify sets of items usually sold together, or clusters, used to realize a market
segmentation analysis. Moreover, we may be interested not only in patterns gen-
erated from raw data by using some data mining tools (a-posteriori patterns)

J.-F. Boulicaut et al. (Eds.): PKDD 2004, LNAI 3202, pp. 87–98, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

88 Barbara Catania et al.

but also in patterns known by the users and used for example to check how well
some data source is represented by them (a-priori patterns).

Temporal information. Since source data change with high frequency, an im-
portant issue consists in determining whether existing patterns, after a certain
time, still represent the data source from which they have been generated, possi-
bly being able to change pattern information when the quality of the representa-
tion changes. Two different time information can be considered: (i) transaction
time, i.e. the time the pattern “starts to live” in the system. For a-priori patterns,
it is the instant when the user inserts the pattern in the system; for a-posteriori
patterns, it is the instant when the pattern is extracted from raw data and
inserted in the system; (ii) validity period, i.e., the time interval in which the
pattern is assumed to be reliable with respect to its data source. The validity
period can be either assigned by the user or by the system, depending on the
quality of raw data representation (semantic validity) achieved by the pattern.

Pattern languages. Patterns should be manipulated (e.g. extracted, synchro-
nized, deleted) and queried through a Pattern Manipulation Language (PML)
and a Pattern Query Language (PQL). PML must support the management of
a-posteriori and a-priori patterns. PQL must support both operations against
patterns and operations combining patterns with raw data (cross-over queries).

Several approaches have been proposed so far to deal with patterns, however
all of them lack some of the previous characteristics. Most of them deal with
specific types of a-posteriori patterns, often stored together with raw data, and
do not consider temporal information [6, 8, 12–15]. However, as it has been rec-
ognized [5], due to the quite different characteristics of raw data and patterns,
to ensure an efficient handling of both, it could be better to use two dedicated
systems: a traditional Data Base Management System (DBMS) for raw data and
a specific Pattern Based Management System (PBMS) for patterns.

In this paper we propose a comprehensive framework to deal with patterns
within a PBMS, addressing the above requirements, and we develop in details
some key notions of the framework, such as: (i) a temporal pattern representation
model, allowing one to associate time and validity with patterns; (ii) a temporal
pattern manipulation language (TPML) and a temporal pattern query language
(TPQL), supporting specialized predicates and operators to deal with temporal
information. To the best of our knowledge this is the first proposal dealing with
temporal aspects of pattern representation and management.

The remainder of the paper is organized as follows. In Section 2, the basic
architecture and the pattern model are introduced. In Sections 3 and 4, the
TPML and TPQL are discussed, respectively. Related work is then discussed in
Section 5. Finally, Section 6 presents some conclusions and outlines future work.

2 The Pattern Model

Pattern-Base Management System. A Pattern-Base Management System
(PBMS), first introduced in the context of the PANDA project [5], is a system
for handling patterns defined over raw data.

A Framework for Data Mining Pattern Management 89

����������	�

����

���

����

�������

����

Data Management System Pattern Management System

related-to

instance -of member-of
Mining

Pattern
Manipulation
Language

...
Data
Manipulation
Languages

����������	�

����

���

����

�������

����

Data Management System Pattern Management System

related-to

instance -of member-of
Mining

Pattern
Manipulation
Language

Pattern
Manipulation
Language

...
Data
Manipulation
Languages

Fig. 1. PBMS Architecture

The overall architecture of the system is shown in Fig. 1. The Data Man-
agement System on the left-hand side of the figure deals with data collections,
whereas the Pattern Management System, on the right-hand side, deals with
patterns. The user may interact with both systems by mean of dedicated manip-
ulation languages. Within the PBMS, we distinguish three different layers: (i)
the pattern layer, which is populated with patterns (pattern-base); (ii) the pat-
tern type layer, which holds built-in and user-defined types for patterns; (iii) the
class layer, which holds definitions of pattern classes, i.e., collections of patterns.
End-users may directly interact with the PBMS: to this end, the PBMS adopts
ad-hoc techniques not only for representing and storing patterns, but also for
querying patterns or recalculating them from raw data.

Basic Model Concepts. Based on the proposed architecture, the concepts
at the basis of the pattern model are: pattern types, patterns, and classes (for
additional details, see [15]). A pattern type is the intensional form of patterns,
giving a formal description of their structure and relationship with source data.
It is a record with five elements: (i) the pattern name n; (ii) the structure schema
s, which defines the pattern space by describing the structure of the patterns
instances of the pattern type; (iii) the source schema d, which defines the related
source space by describing the dataset from which patterns are constructed;
(iv) the measure schema m, which is a tuple describing the measures which
quantify the quality of the source data representation achieved by the pattern;
(v) the formula f , which describes the relationship between the source space
and the pattern space, thus representing the semantics of the pattern. Inside f ,
attributes are interpreted as free variables ranging over the components of either
the source or the pattern space. Note that, though in some particular domains
f may exactly express the inter-space relationship, in most cases it will describe
it only approximatively.

Given a pattern type pt, a mining function µ for pt takes as input a data
source, applies a certain computation to it, and returns a set of patterns, in-
stances of pt. We then call measure function the function computing the measures

90 Barbara Catania et al.

n: AssociationRule
s: TUPLE(head:SET(STRING),

body:SET(STRING))
d: BAG(transaction:SET(STRING))
m: TUPLE(confidence:REAL, support:REAL)
f: ∀x(x ∈ head∨ x ∈ body ⇒ x ∈ transaction)

n: ItemCluster
s: TUPLE(representative:TUPLE(id:STRING,

price:REAL,qty:REAL), max dist:REAL)
d: SET(product:TUPLE(id:STRING,price:REAL,

qty:REAL))
m: TUPLE(AvgIntraClusterDist:REAL)
f: ∀x ∈ ps (dist(representative, x) ≤ max dist)

pid: 512
s: (head={’Boots’},body={’Socks’,’Hat’})
d: ’SELECT SETOF(article) AS transaction

FROM sales GROUP BY transId’
m: (confidence=0.75,support=0.55)
f: ∀x(x ∈ {′Boots′} ∨ x ∈ {′Socks′, ′Hat′}

⇒ x ∈ transaction)

n: FrequentItemset
s: SET(item: STRING)
d: BAG(transaction: SET(STRING))
m: TUPLE(support: REAL)
f: ∀x(x ∈ freq set ⇒ x ∈ transaction)

Fig. 2. Examples of pattern types and patterns

of patterns over a certain dataset. We store such information in some catalog of
the pattern layer.

Patterns are instances of a specific pattern type containing: (i) a pattern
identifier pid; (ii) a structure that positions the pattern within the pattern space;
(iii) a source that identifies the specific dataset the pattern relates to1; (iv) a
measure that estimates the quality of the raw data representation achieved by the
pattern; (v) an instantiated formula, obtained from the one in the pattern type
by instantiating each attribute appearing in s with the corresponding value, and
letting the attributes appearing in d range over the source space. Dot notation
and path expressions can be used to denote pattern components.

A class is a set of semantically related patterns of a certain pattern type and
constitutes the key concept in defining a pattern query language.

Example 1. Consider the following scenario. A commercial vendor traces shop
transactions and he applies data mining techniques to determine how he can
further increase his sales. To this purpose, the vendor deals with several kinds of
patterns: (i) association rules, representing correlations between items sold; (ii)
clusters of products, grouping sold products with respect to their price and sold
quantity; (iii) frequent itemsets, recording items most frequently sold together.

As an example, consider the pattern type for association rules in Fig. 2. The
structure schema is a tuple modeling the head and the body as sets of strings
representing products. The source schema specifies that association rules are
constructed from a bag of transactions, each defined as a set of products. The
measure schema includes two common measures to assess the rule relevance: its
confidence (what percentage of transactions including the head also include the
body) and its support (what percentage of the whole set of transactions include
both the head and the body). The formula represents (exactly, in this case) the
pattern/source data relationship by associating each rule with the set of trans-
actions which support it. Now suppose that data related to sales transactions
are stored in a relational table sales(transId, article, qty). Using an extended SQL

1 When no otherwise stated, data sources are intensionally described as queries over
the raw data.

A Framework for Data Mining Pattern Management 91

syntax to denote the dataset, an example of an instance of AssociationRule (gen-
erated, for instance, by using the Apriori algorithm [10]) is presented in Fig. 2.

Other examples of pattern types are presented in Fig. 2. For instance, a
cluster of products (represented by some numeric features) can be modeled by
defining its representative element and the allowed maximal distance between
each element in the cluster and its representative, whereas, a frequent itemset is
just characterized by the set of items it represents. �

Pattern Validity. We extend the model proposed in [15] to deal with semantic
and temporal validity issues. To this end, we assume that no temporal informa-
tion is available from raw data and we associate each pattern with a transaction
time and a validity period. Transaction time is automatically computed by the
PBMS and points out when a pattern has been inserted in the system. This infor-
mation cannot be changed by the user, thus it is just recorded in system catalogs.
On the other hand, the validity period is the interval [StartT ime, EndT ime) in
which the pattern can be considered reliable with respect to raw data, and
therefore usable. The validity period can be queried by the user, thus it must
be inserted in the model. Moreover, we suppose that the validity period can be
either assigned and managed by the user or by the system, depending on the
operations performed over patterns (see Section 3). For the sake of simplicity, we
deal with a fixed time granularity tg, chosen by the PBMS administrator. Thus,
the validity period schema is always of type [StartT ime: tg, EndT ime: tg) where
tg is fixed. Each pattern is then extended with a new component vt, representing
the actual pattern validity period according to the chosen granularity.

Temporal validity specifies that the pattern is assumed to be valid in that
period. However, since raw data change with a high frequency, the pattern, in
its validity period, may not correctly represent raw data it is associated with.
To this end, we also introduce the concept of semantic validity with respect to a
data source and the notion of safety, for patterns that are both temporally and
semantically valid in a certain instant of time. Note that semantic validity (and
thus safety) can only be checked at an instant-by-instant base, since we do not
know how the data source will change in the future and how it was in the past.

Definition 1. Let p be a pattern, with p.m =< m1 : v1, ..., mn : vn >, and t an
instant of time. Suppose each measure mi is associated with a boolean operator
θi such that v1θiv2 means that v1 is “better than” v2. p is temporally valid at
t if t ∈ p.vt. p is semantically valid at t with respect to a data source D with
thresholds v1, ..., vn if and only if, D |=t p and p.m.mi θi vi, i = 1, ..., n. D |=t p
means that p can be extracted from D at time t. p is safe at t with respect to a
data source D with thresholds v1, ..., vn if it is both temporally and semantically
valid at t with respect to D and v1, ..., vn. �

Semantic validity can be seen as a function of time. By checking semantic
validity periodically, we may plot how measures change in the time.

Example 2. Consider the pattern in Fig. 2 (say p). Suppose p.vt = [1-APR-
04,31-MAR-05), thus p is valid from 1-APR-04 to 31-MAR-05. For instance, p is

92 Barbara Catania et al.

temporally valid on 22-MAY-04. However, since raw data is continuously chang-
ing, it may be possible that, on 22-MAY-04, no transaction in the p data source
(say D) contains both ’Hat’ and ’Boots’. Thus, the support and the confidence
of p in D on 22-MAY-04 are 0. Thus, on 22-MAY-04, p is not semantically valid
with respect to D, for any threshold values, and it is not safe. �

3 Temporal Pattern Manipulation Language (TPML)

TPML must support primitives to generate patterns from raw data, to insert
them in the PBMS, to delete, and to update patterns. These operations are
defined by taking into account validity issues and differences between a-posteriori
and a-priori patterns.

Insertion Operations. To cope with both a-posteriori and a-priori patterns,
three different types of insertions are supported: extraction, direct insertion, and
recomputation. Insertion operators must set the validity period of the interested
patterns, which is an additional parameter of the operator. If the user does not
specify any validity period, it is set by default to [Current time, +∞).
Extraction E(pt, d, cond, µ, pr) extracts patterns of pattern type pt from a raw
dataset d by applying mining function µ. To these (a-posteriori) patterns the
validity period pr is assigned and they are inserted in the PBMS if they satisfy
condition cond, defined by using predicates that will be presented in Section 4.1.
Direct Insertion I(pt, d, s, m, pr) allows the user to insert in the PBMS patterns
from scratch (a-priori patterns) by taking as input a pattern type pt, a source
d, a structure s, a tuple of measure values m, and a validity period pr.
Recomputation R(pt, cond, d, µm, pr) generates new patterns from old ones, by
recomputing their measures over a given raw dataset. More precisely, given the
instances of a pattern type pt satisfying a given condition cond, the measures of
those patterns over a raw dataset D are computed, accordingly to some input
measure function µm. New patterns are created and inserted into the system.

Example 3. Consider Example 1. At the end of every month, the vendor mines
his transaction data to extract association rules and frequent sold item sets. A va-
lidity period is assigned to each extracted pattern, from the first day till the last
day of the month. In order to generate such patterns, the extraction operator can
be used (Fig. 3 lines 2-3 and 5) against the relational view JuneSales, storing in-
formation concerning sales in June, with mining functions µaPriori and µFreqSeq .
The extracted patterns are then inserted in classes MinedAssociationRules and
UsedFrequentItemsets, respectively (Fig. 3 lines 4 and 6) (see below for class-
based operators). Furthermore, to specialize his advertising campaign, he mines
clusters of products, based on numerical information concerning price and sold
quantity of each product. Since the vendor does not know the expiration time of
those clusters, he assumes they are always valid. To implement this behavior, the
extraction operator is used against the relational view Products, storing infor-
mation concerning sold products (Fig. 3 line 7), by using mining function µSLink.
Such patterns are then inserted in class SoldItemClusters (Fig. 3 lines 8). �

A Framework for Data Mining Pattern Management 93

1: /* Pattern generation */
2: AR = E(AssociationRules, JuneSales, 〈confidence ≥ 0.30, support ≥ 0.25〉,
3: µaP riori, [1-JUN-04, 30-JUN-04))
4: FORALL i ∈ AR DO IC(i, MinedAssociationRules)
5: FS = E(FrequentItemset, JuneSales, support ≥ 0.30, µF reqSeq ,[1-JUN-04, 30-JUN-04))
6: FORALL j ∈ FS DO IC(j, UsedFrequentItemsets)
7: CS = E(ItemCluster, Products, AvgIntraClusterDist ≤ 0.20, µSLink)
8: FORALL k ∈ CS DO IC(k, SoldItemClusters)
9:/* Pattern deletion */
10: δ(AssociationRule, support ≤ 0.50)
11:/* A-priori pattern management */
12: v = I (FrequentItemset, DS, {A, B}, < 0 >)
13: IC(v, UsedFrequentItemset)
14: S(v, true, µF reqSeq)
15: /* Restoring temporal validity */
16: DC(Current time after vt, c)
17: /* Promotion of a new product */
18: W = π(<representative>,<>) (σf(P) (SoldItemClusters))
19: W �s.representative∈s.head,cf (MinedAssociationRules)
20: S(AssociationRule, true, µaP riori)
21: S(FrequentItemset, true, µF reqSeq)
22: S(ItemCluster, true, µSLink)

Fig. 3. Pattern manipulation session

Deletion Operator. δ(pt, cond) removes the instances of pattern type pt sat-
isfying condition cond from the pattern layer if they belong to no class.

Example 4. Consider Example 1. Suppose the vendor is no more interested in
association rules with support lower than 0.50. Thus he performs a deletion
(Fig. 3 line 10). Note that association rules extracted at lines 2-3 are not deleted
since they have already been inserted in a class. �

Update Operators. We assume that only measures and the validity period
can be changed, by using the following operators.
New Period NP (pt, cond, pr) updates a set of patterns, instances of a pattern
type pt and satisfying a condition cond, by setting the validity period to pr.
Note that this operator does not recompute the measure values of the patterns.
Synchronize S(pt, cond, µm) makes patterns safe without changing the validity
period. More precisely, it re-computes the measure values associated with tem-
porally valid patterns, instances of a pattern type pt and satisfying a condition
cond, to reflect data source modifications, by using the input measure function
µm. Only temporally valid patterns are synchronized since all the others, by
definition of safety, cannot become safe.
Validate V(pt, cond, µm) makes patterns safe by changing their validity period.
More precisely, it first recomputes the measure values associated with temporally
valid patterns, instances of a pattern type pt and satisfying a condition cond.
If such measure values are better than the ones associated with patterns before
validation, patterns are semantically valid. Thus, similarly to synchronization,
measures are modified, and the validity period is left unchanged. On the other
hand, if measures are worst than before, the validity period of the pattern is
changed, setting the end time to Current time and a new pattern is created, with
the same structure and dataset than the previous one, but with the new measures

94 Barbara Catania et al.

and validity period [Current time, +∞). Since, after validation, patterns are
semantically valid at the starting and ending points of their validity period, it is
possible to use the validity period as an approximation of the periods in which
a pattern is semantically valid.

Example 5. Consider Example 1. After a certain period of time, the vendor
receives information about sale transactions of a new shop (suppose those data
are stored in a dataset DS). Suppose he wants to trace information concerning
how often a product A (e.g. milk) and another product B (e.g. cookies) are sold
together in this shop. To this purpose, he first inserts the pattern representing
such itemset in the system with measure value equal to 0. To this purpose, he
uses a direct insertion operation (Fig. 3 lines 12-13) and then he synchronizes
the pattern with raw data to get the right frequency (Fig. 3 line 14). �

Operators for Classes. According to our model, a pattern must be inserted
in at least one class in order to be queried. Thus, two TPML operations are
provided: insertion, IC(p, c), of a pattern p into class c, and deletion, DC(cond, c),
of all the patterns in class c satisfying condition cond. Note that the deletion
operator just removes patterns from a class but leaves them in the system.

Example 6. Consider Example 1. In general, the user may be interested in restor-
ing the temporal validity of a certain class c, i.e. he may want to delete from
c all patterns that are not temporally valid at the current time. Such behavior
can be achieved by using the DC operator, by using a temporal predicate in its
condition (Fig. 3 line 16). �

4 Temporal Pattern Query Language (TPQL)

TPQL supports the retrieval of patterns from the PBMS, taking temporal issues
into account. Each operator of TPQL takes classes as input and returns a set of
patterns as output. Moreover, cross-over operators, binding patterns with raw
data, are provided. In the following, before presenting the TPQL operators, some
useful predicates are identified.

4.1 Pattern Predicates

Predicates over Pattern Components. Let p1 and p2 be two patterns. The
general forms of a predicate over pattern components are t1θt2 and t1θo, where
t1 and t2 are path expressions that denote components of patterns p1 and p2, of
compatible type, o is a constant suitable for the type of t1, and θ is an operator,
suitable for the type of t1, t2, and o. We consider the following special cases:

– If t1 and t2 are data sources, then θ ∈ {=i,⊆i, =e,⊆e}. Constants o in this
case are queries characterizing a dataset. =i stands for equivalence and ⊆i

for containment between intensional data source descriptions (i.e., between
queries). These predicates do not require accessing raw data and can be

A Framework for Data Mining Pattern Management 95

checked by using results obtained in the literature for queries. On the other
hand, =e and ⊆e are checked by accessing raw data (thus, they are cross-over
predicates). More precisely, t1 =e t2 if and only if ∀x (x ∈ t1 ⇔ x ∈ t2) and
t1 ⊆e t2 if and only if ∀x (x ∈ t1 ⇒ x ∈ t2).

– If t1 and t2 are pattern formulas, then θ ∈ {≡,�}. t1 ≡ t2 is true if and only
if t1 and t2 are equivalent formulas; t1 � t2 is true if and only if t1 logically
implies t2. Given a tuple o, containing one value for each free variable in t1,
t1(o) is true if and only if t1 instantiated with the values in o is true.

– If t1 and t2 are validity periods, then θ ∈ {equals, before, meets, overlaps,
during, starts, finishes}. The meaning of such predicates is defined in [16].
o in this case is a temporal value, according to the chosen granularity.

Predicates over Patterns. In the following, p1 and p2 are patterns.

– Identity (=). p1 = p2 if p1.pid = p2.pid.
– Shallow equality (=s). p1 =s p2 if their corresponding components, except

for pid and the validity period v, are equal. For the data source, we consider
intensional equality.

– Intensional subsumption (�i). p1 �i p2 if they have the same structure but
p1 represents a smaller set of raw data, i.e. p1.s = p2.s, p1.d ⊆i p2.d and
p1.f � p2.f .

– Extensional subsumption (�e). p1 �e p2 if they have the same structure but
p1 represents a smaller set of raw data through the considered formula, i.e.
p1.s = p2.s and p1.d
p1.f ⊆ p2.d
p2.f , where d
f represents the set of source
data items satisfying the formula.

– Goodness (↗). p1 ↗ p2 if they have the same pattern type, p1 �e p2,
and p1 measures are better than p2 measures, i.e., assuming that pt.m =
〈m1, ..., mn〉, p1.miθip2.mi, i = 1, ..., n 2.

– Temporal validity (ωT). Given a pattern p1 and a temporal value t, ωT (p1, t)
is true if and only if p1 is temporally valid at time t.

– Semantic validity (ωS). Given a pattern p of type pt, a data source D, a
measure function µm for pt, and some thresholds v1, ..., vn, ωS(p, D, µm, <
v1, ..., vn >) is true if and only if p is semantically valid with respect to D
and v1, ..., vn, assuming to compute measure values by using µm.

Note that �e, ↗, and ωS are cross-over predicates.

4.2 Query Operators

Basic Operators. In the PBMS framework, queries are executed against
classes. Besides typical relational operators (such as renaming, set-based op-
erators), several other query operators are proposed (see Table 1). For exam-
ple, projection is revisited to project out structure and measure components.
The selection operator allows one to select patterns belonging to a certain class
2 According to Def. 1, θi is a predicate expressing that p1.mi is “better than” p2.mi.

96 Barbara Catania et al.

Table 1. TPQL basic operators

Name Operator Description

Projection

π(l s,l m)(c) where:
c is a pattern class, l s is a non empty list
of attributes appearing the pattern structure,
and l m a list of attributes appearing in the
pattern measure

it reduces the structure and the measures
of the patterns in c by projecting out
components not appearing in l s and l m

Selection
σF (c) where:
c is a class and F is a selection predicate

it selects the patterns in c satisfying F

Join

c1 �F,cf c2 where:
c1 and c2 are two classes,
F : join predicate , and cf : composition func-
tion

it combines patterns belonging to c1 and
c2, if they satisfy the join predicate F ;
each new pattern is generated by using
the composition function cf

satisfying a certain condition, using any predicate introduced in Section 4.1.
When using cross-over predicates, it becomes a cross-over operator. Finally, the
join operator combines patterns belonging to two different classes, with possibly
different pattern types. It requires the specification of a join predicate and a
composition function, which defines the pattern type of the result.

Temporal Operators. Since we deal with temporal information associated
with patterns, the need arises of querying such information. By using the pro-
posed query operators (especially selection and join) and the predicates defined
over validity periods (see Section 4), several interesting temporal queries can be
specified. For instance, the user may be interested in retrieving from a certain
class c, at a fixed instant of time (e.g. ‘now’), all safe patterns. To this pur-
pose, selection can be used as follows: σωS(p,p.d,µm,v)∧ωT (p,′now′)(c) 3. As another
example, retrieval of the patterns belonging to a certain class c, which are tem-
porally valid in a given interval of time (e.g. a certain year), can be specified as
follows: σvt during [01−JAN−03,31−DEC−03)(c).

Cross-over Operators. They correlate patterns with raw data, providing a
way for navigating from the pattern layer to the raw data layer and vice versa.
Drill-Through γ. It allows one to retrieve the subset of source data associated
with at least one pattern in a class c, satisfying condition cond:

γ(c, cond) = {x|∃p ∈ c, cond(c) = true, x ∈ p.d}.
Data Covering θd. Let p be a pattern of type pt, D a data source, µ a min-
ing function for patterns of type pt, and v =< v1, ..., vn > some user-specified
thresholds. Data covering allows us to determine the subset of source data repre-
sented by at least one pattern in the class. To this purpose, the formula is used:

θd(c, D, µ) = {x|x ∈ D, ∃p ∈ c, p.f(x) = true}.
Cross-over selection. When using a cross-over predicate within a selection, we
need to access raw data to execute the query. For example, suppose that c is a
class of association rules and D a dataset suitable for patterns in c. The query
σD⊆ed∧support>0.6(c) returns all rules in c representing a superset of D, with a
support greater than 0.6.

3 p denotes a generic pattern in c.

A Framework for Data Mining Pattern Management 97

Example 7. Consider Example 1. Suppose that from April 2005, the vendor will
start to sell a certain product P and he wants to know how P can be promoted.
To do that, he looks for a correlation between P and some other items sold.
With such information, he may activate an advertising campaign to promote
some other product he already sells in order to stimulate the demand for P .
In this way, when he starts to sell P , probably customers will start to buy it
without the need for a dedicated advertising campaign. A possible approach
could be the following. First of all it determines in which cluster of products
P belongs and gets the representative R, by using a selection and a projection
operator (Fig. 3 line 18). Then, he determines which products stimulate the sale
of R by considering bodies of association rules having R in their head. This result
can be achieved by performing a join operation (Fig. 3 line 19) between patterns
just retrieved and association rules already mined. We assume that the used
composition function returns patterns representing the bodies of the selected
association rules. Products in association rule bodies are such that whenever a
customer buys one of them, with a high probability he buys also R. Since P is
in the cluster represented by R, P and R are similar with respect to customer
preferences, thus it is most likely that when the vendor starts to sell P , customers
will behave as for R. When, on April 1 2005, the vendor starts to sell P , new data
are collected and patterns previously extracted may become unreliable. Thus, a
synchronization is required between data and patterns (Fig. 3 lines 20-22). �

5 Related Work

Several approaches have been proposed to model patterns. Among standard-
ization efforts for modeling patterns, we recall the Predictive Model Markup
Language (PMML) [4], the ISO SQL/MM standard [3], and the Common Ware-
house Model (CWM) framework [2]. Although these approaches represent a wide
range of data mining results, they do not provide a generic model to handle ar-
bitrary pattern types. Furthermore, their main purpose is to enable an easy
interchange of metadata not their effective manipulation.

In inductive databases, data and patterns are stored and queried together [1,
7, 8, 12]. They rely on specific (but extensible) types of patterns and are primarily
focused on a-posteriori patterns. Moreover, validity is not considered. Within
this framework, the entire knowledge discovering process is a querying process
[12–14]. However, new SQL-based operators do not allow the user to specify
specific mining functions [9]. Moreover, none of the proposed languages deals
with pattern validity and synchronization aspects.

In [11], the authors propose a unified algebraic framework for multi-step
knowledge discovery. Similarly to our approach, they model different types of
patterns and maintain data and patterns separated. However, temporal infor-
mation is not considered.

Previous work strictly related to the work presented here has been reported
in two previous papers by us and other authors [6, 15], where a model for patterns
and a pattern query language have been proposed. The major differences between
that work and the one presented here is the extension with temporal features. We

98 Barbara Catania et al.

believe that this is relevant extension from both a theoretical and architectural
point of view.

6 Concluding Remarks

In this paper, we presented a general framework for patterns representation and
management, taking into account validity information, a-priori and a-posteriori
patterns. The resulting framework seems general enough to cope with real data
mining applications. We are currently working on the development of a prototype
of the proposed framework. Future work includes the definition of a pattern
calculus, equivalent to the proposed algebra, the analysis of their expressive
power and complexity, and the comparison of the expressive power of existing
approaches to deal with patterns. We also plan to further investigate semantic
validity to extend temporal analysis capabilities for patterns.

References

1. The CINQ project. http://www.cinq-project.org, 1998-2002
2. Common Warehouse Metamodel (CWM). http://www.omg.org/cwm, 2001.
3. ISO SQL/MM Part 6.

http://www.sql-99.org/SC32/WG4/Progression Documents/

FCD/fcd-datamining-2001-05.pdf, 2001.
4. Predictive Model Markup Language (PMML). http://www.dmg.org/

pmmlspecs v2/pmml v2 0.html, 2003.
5. The PANDA Project. http://dke.cti.gr/panda/, 2002.
6. E. Bertino, B. Catania, and A. Maddalena. Towards a Language for Pattern Manip-

ulation and Querying. In Proc. of the 1st Int. Workshop on Pattern Representation
and Management (PaRMa’04), 2004.

7. J. F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD Processes within
the Inductive Database Framework. In Proc. of the Data Warehousing and Knowl-
edge Discovery, pages 293–302, 1999.

8. L. De Raedt. A Perspective on Inductive Databases. ACM SIGKDD Explorations
Newsletter, 4(2):69–77, 2002.

9. B. Goethals and J. Van den Bussche. A Priori versus a Posteriori Filtering of
Association Rules. In Proc. of the ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, 1999.

10. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Academic Press,
2001.

11. T. Johnson, L.V.S Lakshmanan, and R.T. Ng. The 3W Model and Algebra for
Unified Data Mining. In Proc. of the 26th Int. Conf. on Very Large Data Bases,
2000.

12. T. Imielinski and H. Mannila. A Database Perspective on Knowledge Discovery.
Communications of the ACM, 39(11):58–64, 1996.

13. T. Imielinski and A. Virmani. MSQL: A Query Language for Database Mining.
Data Mining and Knowledge Discovery, 2(4):373–408, 1999.

14. R. Meo, G. Psaila, and S. Ceri. An Extension to SQL for Mining Association
Rules. Data Mining and Knowledge Discovery, 2(2):195–224, 1999.

15. S. Rizzi et Al. Towards a Logical Model for Patterns. In Proc. of the 22nd Int.
Conf. on Conceptual Modeling (ER 2003), 2003.

16. R. T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer, 1995.

	1 Introduction
	2 The Pattern Model
	3 Temporal Pattern Manipulation Language (TPML)
	4 Temporal Pattern Query Language (TPQL)
	4.1 Pattern Predicates
	4.2 Query Operators

	5 Related Work
	6 Concluding Remarks
	References

