
AutoPart: Parameter-Free Graph Partitioning
and Outlier Detection�

Deepayan Chakrabarti

Carnegie Mellon University
deepay@cs.cmu.edu

Abstract. Graphs arise in numerous applications, such as the analysis
of the Web, router networks, social networks, co-citation graphs, etc. Vir-
tually all the popular methods for analyzing such graphs, for example,
k-means clustering, METIS graph partitioning and SVD/PCA, require
the user to specify various parameters such as the number of clusters,
number of partitions and number of principal components. We propose
a novel way to group nodes, using information-theoretic principles to
choose both the number of such groups and the mapping from nodes
to groups. Our algorithm is completely parameter-free, and also scales
practically linearly with the problem size. Further, we propose novel al-
gorithms which use this node group structure to get further insights into
the data, by finding outliers and computing distances between groups. Fi-
nally, we present experiments on multiple synthetic and real-life datasets,
where our methods give excellent, intuitive results.

1 Introduction – Motivation

Large, sparse graphs arise in many applications, under several guises. Conse-
quently, because of their importance and prevalence, the problem of discovering
structure in them has been widely studied in several domains, such as social
networks, co-citation networks, ecological food webs, protein interaction graphs
and many others. Such structure can be used for getting insights into the graph,
for example, for detecting “communities”.

Problem Description: A graph G(V, E) has a set E of edges connecting any
pair of nodes from a set V . Our definition includes both directed and undirected
� This material is based upon work supported by the National Science Foundation

under Grants No. IIS-9817496, IIS-9988876, IIS-0083148, IIS-0113089, IIS-0209107
IIS-0205224 INT-0318547 SENSOR-0329549 EF-0331657 IIS-0326322 by the Penn-
sylvania Infrastructure Technology Alliance (PITA) Grant No. 22-901-0001, and by
the Defense Advanced Research Projects Agency under Contract No. N66001-00-
1-8936. Additional funding was provided by donations from Intel, and by a gift
from Northrop-Grumman Corporation. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation, or other funding
parties.

J.-F. Boulicaut et al. (Eds.): PKDD 2004, LNAI 3202, pp. 112–124, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



AutoPart: Parameter-Free Graph Partitioning and Outlier Detection 113

graphs. We want algorithms that discover structure in such datasets, and provide
insights into them. Specifically, our goals are:

(G1) Clusters: “Similar” nodes should be grouped into “natural” clusters.
(G2) Outliers: Edges deviating from the overall structure should be tagged
as outliers.
(G3) Inter-cluster Distances: For any pair of clusters, a measure of the
“distance” between them should be defined.

In addition, the algorithms should have the following main properties:

(P1) Automatic: We want a principled and intuitive problem formulation,
such that the user does not need to set any parameters.
(P2) Scalable: They should scale up for large, possibly disk resident graphs.
(P3) Incremental: They should allow online recomputation of results when
new nodes and edges are added; this will allow the method to adapt to new
incoming data from, say, web crawls.

In this paper, we propose algorithms to accomplish these objectives. Intu-
itively, we seek to group nodes so that the adjacency matrix is divided into
rectangular/square regions as “similar” or “homogeneous” as possible. These
regions of varying density would succinctly summarize the underlying structure
of associations between nodes. In short, our method will take as input a matrix
like in Figure 3(a) and produce Figure 3(g) as the output, without any human
intervention.

The layout of the paper is as follows. In Section 2, we survey the related
work. Subsequently, in Section 3, we formulate our data description model start-
ing from first principles. Based on this, in Section 3.3 we outline a two-level
framework to find homogeneous blocks in the adjacency matrices of graphs and
develop an efficient, parameter-free algorithm to discover them. In Section 3.5,
we use this structure to find outlier edges in the graph, and to calculate distances
between node groups. In Section 4, we evaluate our algorithms, demonstrating
good results on several real and synthetic datasets. Finally, we conclude in Sec-
tion 5.

2 Survey

There has been quite a bit of work on graph partitioning. The prevailing methods
are METIS [1] and spectral partitioning [2]. Both approaches have attracted a
lot of interest and attention; however, both need the user to specify k, that is, the
number of pieces the graph should be broken into. Moreover, they typically also
require a measure of imbalance between the two pieces of each split. The Markov
Clustering [3] method uses random walks, but is slow. Girvan and Newman [4]
iteratively remove edges with the highest “stress” to eventually find disjoint
communities, but the algorithm is again slow. Flake et al. [5] use the max-
flow min-cut formulation to find communities around a seed node; however, the
selection of seed nodes is not fully automatic.



114 Deepayan Chakrabarti

Table 1. Table of symbols.

Symbol Definition

D Square binary adjacency matrix of a given graph
di,j Entry in cell (i, j) of D; di,j := 0 or 1
n Length of each side of D

k Number of node groups
k∗ Optimal number of groups
G Node → group map
Gx Group corresponding to node x

Di,j Submatrix of links from group i to j
ai Number of nodes in group i
ai, aj Dimensions of Di,j

n(Di,j) Number of elements in Di,j ; n(Di,j) := aiaj

w(Di,j) Weight of Di,j = number of “1”s in Di,j

Pi,j Density of “1”s in Di,j ; Pi,j := w(Di,j)/n(Di,j)

H(p) Binary Shannon entropy function
C(Di,j) Code cost for Di,j

T (D; k,G) Total cost for D

Remotely related are clustering techniques. Every row in the adjacency ma-
trix can be envisioned as a multi-dimensional point. Several methods have been
developed to cluster a cloud of n points in m dimensions, for example, k-means,
k-harmonic means, CURE, BIRCH, Chameleon, LSI and others [6–8]. However,
most current techniques require a user-given parameter, such as k for k-means.
One solution called X-means [9] uses BIC to determine k. However, several of
the clustering methods suffer from the dimensionality curse (like the ones that
require a covariance matrix); others may not scale up for large datasets. Also,
in our case, the points and their corresponding vectors are semantically related
(each node occurs as a point and as a component of each vector); most clustering
methods do not consider this. Other related work includes information-theoretic
co-clustering (ITCC) [10]. However, the focus there is on lossy compression,
whereas we employ a lossless MDL-based compression scheme. No MDL-like
principle is yet known for lossy encoding, and hence, the number of clusters in
ITCC cannot (yet) be automatically determined. Besides these, there has been
work on conjunctive clustering [11] and community detection [12].

In conclusion, the above methods miss one or more of our prerequisite prop-
erties, typically not being automatic (P1). Next, we present our solution.

3 Proposed Method

Our goal is to find patterns in a large graph, with no user intervention, as shown
in Figure 3. How should we decide the number of node groups k along with the
assignments of nodes to their “proper” groups?

Compression as a Guide: We introduce a novel approach and propose a general,
intuitive model founded on compression, and more specifically, on the MDL



AutoPart: Parameter-Free Graph Partitioning and Outlier Detection 115

(Minimum Description Language) principle [13]. The idea is the following: the
binary n × n matrix represents associations between the n nodes of the graph
(corresponding to rows and columns in the adjacency matrix). If we mine this
information properly, we could reorder the adjacency matrix so that “similar”
nodes are grouped with each other. Then, the adjacency matrix would consist
of homogeneous rectangular/square blocks of high(low) density, representing the
fact that certain node groups have more(less) connections with other groups. To
compress the matrix, we would prefer to have only a few blocks, each of them
being very homogeneous. However, having more groups lets us create more homo-
geneous blocks (at the extreme, having n groups gives n2 perfectly homogeneous
blocks of size 1× 1). Thus, the best compression scheme must achieve a tradeoff
between these two factors, and this tradeoff point indicates the best number of
node groups k. We accomplish this by a novel application of the overall MDL
philosophy, where the compression costs are based on the number of bits required
to transmit both the “summary” of the node groups, as well as each block given
the groups. Thus, the user does not need to set any parameters; our algorithm
chooses them so as to minimize these costs.

3.1 Compression Scheme for a Binary Matrix

Let D = [di,j ] denote an n × n adjacency matrix. Each graph node corresponds
to one row and column in this matrix. We assume that n ≥ 1. Let us index the
rows and columns as 1, 2, . . . , n.

Let k denote the number of disjoint node groups. Let us index the groups as
1, 2, . . . , k. Let

G : {1, 2, . . . , n} → {1, 2, . . . , k}
denote the assignments of nodes to groups. We can rearrange the underlying data
matrix D so that all nodes corresponding to group 1 are listed first, followed by
nodes in group 2, and so on. Such a rearrangement, implicitly, sub-divides the
matrix D into k2 smaller two-dimensional rectangular/square blocks, denoted by
Di,j , i, j = 1, . . . , k. The more homogeneous these blocks, the better compression
we can get, and so, the better the choice of G. Table 1 lists the symbols used
later.

We now describe a two-part code for the matrix D. The first part will be
a description complexity involved in describing the blocks formed by G and the
second part will be the actual code for the matrix given information about the
blocks. A good choice of G will compress the matrix well, which will lead to low
total encoding cost.

Description Cost: The description complexity (ie., information about the rect-
angular/square blocks) consists of the following terms:

1. Send the number of nodes n using log�(n) bits, where log�(x) = log2(x) +
log2 log2(x)+ . . . with only the positive terms being retained [14]. This term
is independent of G and k, and, hence, while useful for actual transmission
of the data, will not figure in our framework.



116 Deepayan Chakrabarti

2. Send the node permutations using n�log n� bits, respectively. Again, this
term is also independent of G and k.

3. Send the number of groups k in log� k bits.
4. Send the number of nodes in each node group. Let us suppose that a1 ≥

a2 ≥ . . . ≥ ak ≥ 1. Compute āi =
(∑k

t=i at

)
− k + i for all i = 1, . . . , k − 1.

Now, the desired quantities can be sent using
∑k−1

i=1 �log āi� bits
5. For each block Di,j (i, j = 1, . . . , k), send w(Di,j), namely, the number of

“1”s in Di,j using �log(aiaj + 1)� bits.

Code Cost: Suppose that the entire preamble specified above (containing infor-
mation about the square and rectangular blocks) has been sent. We now transmit
the actual matrix given this information. We can calculate the density Pi,j of
“1”s in Di,j using the description code above. The number of bits required to
transmit Di,j is

C(Di,j) = n(Di,j)H
(
Pi,j

)
(1)

= −w(Di,j) log (Pi,j) − [n(Di,j) − w(Di,j)] log(1 − Pi,j)

where H is the binary Shannon entropy function, n(Di,j) = aiaj , and all loga-
rithms are base 2. Summing over all the Di,j submatrices:

Code cost =
k∑

i=1

k∑
j=1

C(Di,j) (2)

Total Encoding Cost: We can now write the total cost for the matrix D, with
respect to a given k and G as:

T (D; k,G) := log� k +

k−1∑
i=1

�log āi� +

k∑
i=1

k∑
j=1

�log(aiaj + 1)� +

k∑
i=1

k∑
j=1

C(Di,j) (3)

ignoring the costs log�(n) and n�log n� since they are independent of G and k.

3.2 Problem Formulation

We want an algorithm that can optimally choose k∗ and G∗ so as to minimize
T (D; k�,G�). Typically, such problems are computationally hard, and hence, in
this paper, we shall pursue feasible practical strategies. We solve the problem
by a two-step iterative process: First, find a good node grouping G for a given
number of node groups k; and second, search for the number of node groups k.
For the former, we describe an iterative minimization algorithm to find a G that
effectively finds a minimum, given a fixed number of node groups k. Then, we
outline an effective heuristic strategy that searches over k to minimize the total
cost T (D; k,G).



AutoPart: Parameter-Free Graph Partitioning and Outlier Detection 117

3.3 Algorithms

In the previous section we established our goal: Among all possible values for
k, and all possible node groups G, pick an arrangement which reduces the to-
tal compression cost as much as possible, as MDL suggests (model plus data).
Although theoretically pleasing, Equation 3 does not tell us how to go about
finding the best arrangement - it can only pinpoint the best one, among several
candidates! The question is: how can we generate good candidates?

We answer this question in two steps:

1. [InnerLoop] For a given k, find a good arrangement G.
2. [OuterLoop] Efficiently search for the best k (k = 1, 2, . . .).

Algorithm InnerLoop (Finding G given k):

1. Let t denote the iteration index. Initially, set t = 0. If no G(0) is provided,
start with an arbitrary G(0) mapping nodes into k node groups. For this initial
partition, compute the submatrices Di,j(t), and the corresponding distributions
Pi,j(t).

2. For every node x, splice the corresponding row into k parts xrow,1, . . . , xrow,k

according to G(t) (i.e., xrow,1 = {dx,u|Gu(t) = 1} and so on). Similarly, splice
the column into k parts xcol,1, . . . , xcol,k. Compute the number of “1”s w(xrow,j)
and w(xcol,j) (j = 1 . . . k) for all these parts. Now, assign node x to node group
Gx(t + 1) such that

Gx (t + 1) = arg min
1≤i≤k{

k∑
j=1

− [w(xrow,j) log Pi,j(t) + (n(xrow,j) − w(xrow,j)) log(1 − Pi,j(t))

+ w(xcol,j) log Pj,i(t) + (n(xcol,j) − w(xcol,j)) log(1 − Pj,i(t))]

+dx,x

[
log Pi,Gx(t)(t) + log PGx(t),i(t) − log Pi,i(t)

]

+ (1 − dx,x)
[
log(1 − Pi,Gx(t)(t)) + log(1 − PGx(t),i(t)) − log(1 − Pi,i(t))

] }
(4)

where the first two lines denote the cost of shifting the row and column cor-
responding to node x to a new group, while the last two lines account for the
“double-counting” of the cell dx,x in the adjacency matrix.

3. With respect to G(t+ 1), recompute the matrices Dt+1
i,j , and the corresponding

distributions P t+1
i,j .

4. If there is no decrease in total cost, stop; otherwise, set t = t + 1, go to step 2,
and iterate.

Fig. 1. Algorithm InnerLoop.

The InnerLoop algorithm iterates over several possible settings of G for the
same number of node groups k. Each iteration improves (or maintains) the code
cost, as stated in the theorem below.



118 Deepayan Chakrabarti

Theorem 1. After ach iteration of InnerLoop, the code cost decreases or re-
mains the same. The proof is omitted for lack of space.

The loop finishes when the total cost stops improving. Note that it is possible
for some groups to be empty, but this is not a problem. The complexity of
InnerLoop is O(w(D) · k · I) where I is the number of iterations.

Algorithm OuterLoop (Finding k):

1. Let T denote the search iteration index. Start with T = 0 and k(0) = 1.
2. At iteration T , try to increase k: k(T + 1) = k(T ) + 1. Split the node group r

with maximum entropy per node, i.e.,

r := arg max
1≤i≤k

∑
1≤j≤k

n(Di,j)H
(
Pi,j

)
+ n(Dj,i)H

(
Pj,i

)
ai

Construct an initial label map G(T +1) as follows: For every node x that belongs
to group r (i.e., for every 1 ≤ x ≤ n such that Gx(T ) = r), place it into the
new group k(T + 1) (i.e., set Gx(T + 1) = k(T + 1)) if and only if it decreases
the per-node entropy of the group r, i.e., if and only if

∑
1≤j≤k

n(D′
r,j)H

(
P ′

r,j

)
+ n(D′

j,r)H
(
P ′

j,r

)
ar − 1

<
∑

1≤j≤k

n(Dr,j)H
(
Pr,j

)
+ n(Dj,r)H

(
Pj,r

)
ar

where D′
r,j is Dr,j without node x. Otherwise let Gx(T + 1) = r = Gx(T ). If we

move node x to the new group, we also update Dr,j and Dj,r (for all 1 ≤ j ≤ k)
accordingly.

3. Run the InnerLoop algorithm with initial G = G(T + 1) and k = k(T + 1) to
find a new node mapping G(T + 1) and the corresponding total cost.

4. If there is no decrease in total cost, stop and return k∗ = k(T ) and G∗ = G(T ).
Otherwise, set T = T + 1 and continue.

Fig. 2. Algorithm OuterLoop.

The OuterLoop algorithm tries to look for good values of k. It chooses the
node group with the maximum entropy per node, and splits it into two groups.
The nodes put into the new group are exactly the ones whose removal reduces
the entropy per node in the original group. As shown below in Theorem 2, this
split never decreases the code cost.

Theorem 2. On splitting any node group, the code cost either decreases or re-
mains the same. The proof is omitted due to lack of space.

By Theorem 1, the same holds for InnerLoop. Therefore, the entire algo-
rithm also decreases the code cost (Eq. 2). However, the description complexity
evidently increases with k. We have found that, in practice, this search strat-
egy performs very well. The OuterLoop algorithm is run k∗ times, so the overall
complexity of the search is O(w(D)(k∗)2I). In practice, I ≤ 20 is always enough.



AutoPart: Parameter-Free Graph Partitioning and Outlier Detection 119

Fig. 3. Algorithm execution snapshots: Starting with a randomly permuted “caveman”
matrix (a), the algorithm applies OuterLoop and InnerLoop till the final structure
(g) is revealed. We omit the InnerLoop results when they produce no improvement.
Iterations of OuterLoop are separated by vertical lines for clarity.

Figure 3 shows an execution snapshot of the full algorithm on a randomly
permuted “caveman” matrix (ie., a block diagonal matrix [15]) with Zipfian
cave-sizes. OuterLoop increases the number of node groups while InnerLoop
rearranges nodes between groups. No plots are shown when the InnerLoop does
not decrease the total cost. The correct final result is shown in plot (g).

3.4 Online Recomputations

When new nodes are obtained (such as from new crawls for a Web graph), we can
put them into the node groups which minimize the increase in total encoding cost
due to their addition. Based on the same principle, when new edges are found,
the corresponding nodes can be reassigned to new node groups. The algorithm
can then be run again with this initialization till it converges. Similar methods
apply for node/edge deletions. Thus, new additions or deletions can be handled
without full recomputations.

3.5 Using the Block Structure

Having found the underlying structure of a graph in the form of node groups,
we can utilise this information to further mine the data. Again, we use our
information-theoretic approach to answer several tough problems efficiently, us-
ing the node groupings found by the previous algorithms.

Outlier Edges: Which edges between nodes are abnormal/suspicious? Intuitively,
an outlier shows some deviation from normality, and so it should hurt attempts
to compress data. Thus, an edge whose removal significantly reduces the total
encoding cost is an outlier. Our algorithm is: Find the block where removal of an
edge leads to the maximum immediate reduction in cost (that is, no iterations of
the InnerLoop and OuterLoop algorithms are performed). All edges within that
block contribute equally to the cost, and so all of them are considered outliers.

“Outlierness” of edge (u, v) := T (D′; k,G) − T (D; k,G) (5)

where D′ = D except that d′u,v = 0. This can be used to rank the edges in terms
of their “outlierness”.



120 Deepayan Chakrabarti

Table 2. Dataset characteristics.

Dataset Num nodes Num edges Remarks

CAVE 900 170, 800 Five “caves” with zipfian sizes

CAVE-Noisy 900 190, 117 10% noise added to the above

NOISE 100 1, 831 Pure white noise

EPINIONS 75, 888 508, 960 “Who-trusts-whom” data

DBLP 6, 090 175, 494 Coauthorship and cocitation data

“Distance” Between Node Groups: How “close” are two node groups to each
other? Following our information theory footing, we propose the following crite-
rion: If two groups are “close”, then combining the two into one group should
not lead to a big increase in encoding cost. Based on this, we define “distance”
between two groups as the relative increase in encoding cost if the two were
merged into one:

Dist(i, j) :=
Cost(merged) − Cost(i) − Cost(j)

Cost(i) + Cost(j)
(6)

where only the nodes in groups i and j are used in computing costs. We exper-
imented with other measures (such as the absolute increase in cost) but Eq 6
gave the best results. The cost of computing both outliers and distances be-
tween groups is independent of the number of non-zeros w(D), and so both can
be performed for large graphs.

4 Experiments

We did experiments to answer the following questions: (i) how good is the quality
of the node groups found, (ii) how well do our algorithms find outlier edges, (iii)
do our measures of “distances” between node groups make sense, and (iv) how
well does our method scale up. All our experiments require no input parameters,
which rules out other methods like METIS or spectral partitioning.

We used several datasets (see Table 2), both real and synthetic. The synthetic
ones were: (1) CAVE, representing a social network of “cavemen” [15], that is, a
block-diagonal matrix of variable-size blocks (or “caves”; members of a cave form
a clique, and know only those from their own cave), (2) CAVE-Noisy, created
by adding noise (10% of the number of non-zeros) , and (3) NOISE, with pure
white noise. The real-world datasets are: (4) EPINIONS, a “who-trusts-whom”
social graph of www.epinions.com users [16], and (5) DBLP, a graph obtained
from www.informatik.uni-trier.de/∼ley/db, with the nodes being authors
in SIGMOD, ICDE, VLDB, PODS or ICDT (database conferences); two nodes are
linked by an edge if the two authors have co-authored a paper or one has cited a
paper by the other (thus, this graph is undirected). We performed experiments
on other datasets too; the results were similar, and are not reported to save space.
Our implementation was done in MATLAB (version 6.5 on Linux) using sparse
matrices. The experiments were performed on an Intel Xeon 2.8GHz machine
with 1GB RAM.



AutoPart: Parameter-Free Graph Partitioning and Outlier Detection 121

Fig. 4. Synthetic datasets: (a) Our method gives the intuitively correct groups for
CAVE (Figure 3(a) shows the original graph). (b,c) The results remain the same in
spite of noise in CAVE-Noisy, showing the robustness of the algorithm. (d) The NOISE
dataset shows 4 groups, which are explained by the patterns emerging due to random-
ness, such as the “almost-empty” and “more-dense” blocks.

Fig. 5. Real datasets: Shaded blocks are shown instead of the actual points; darker
shades correspond denser blocks. The plots show how the algorithm has separated the
graph into large but extremely sparse, and small but very dense groups. Most well-
known database researchers show up in the dense regions of plot (a), as expected.

4.1 Quality

Results – Synthetic Data: Figure 4 shows the groupings found by our method
on several synthetic datasets. For the noise-free CAVE matrix, we get exactly the
intuitively correct groups (plot a). When noise is present (plot b), we still get
the correct groups (plot c), demonstrating the robustness of our algorithm. Plot
(d) shows 4 groups for the NOISE graph. This is expected; it is well known that
spurious patterns emerge even when we have pure noise, and our algorithm finds
blocks of clearly lower or higher density.

Results – Real Data: Figure 5 shows the groupings found on several real-world
datasets. For the DBLP dataset, eight groups were found. Group 8 is comprised
of only Michael Stonebraker, David DeWitt and Michael Carey; these are well-
known people who have a lot of papers and citations. The other groups show
decreasing number of connections but increasing sizes, with group 1 being the
largest but having the lowest connectivity. Similarly, for the EPINIONS graph,
we find a small dense “core” group which has very high connectivity, and then



122 Deepayan Chakrabarti

Fig. 6. Outliers and group distances: Plot (b) shows the node groups found for graph
(a). Edges in the top-right block are correctly tagged as outliers. Plot (d) shows the
node groups and group distances for graph (c). Groups 2 and 3 (having the most
“bridges”) are tagged as the closest groups. Similarly, groups 1 and 2 are the farthest.

larger and less heavily-connected groupings. Thus, our method gives intuitive
results for real-world graphs too.

4.2 Outlier Edges

To test our algorithm for picking outliers, we use a synthetic dataset as in Fig-
ure 6(a). The node groups found are shown in 6(b). Our algorithm tags all
edges whose removal would best compress the graph as outliers. Thus, all edges
“across” the two groups are chosen as outliers under this principle (since all edges
in a block contribute equally to the encoding cost), as shown in Figure 6(b).
Thus, the intuitively correct outliers are found.

4.3 Distances Between Node Groups

To test for node-group distances, we use the graph in 6(c) with 6(d) showing the
structure found. The three caves have equal sizes but the number of “bridge”
edges between groups varies. This is correctly picked up by our algorithm, which
ranks groups with more “bridges” as being closer to each other. Thus, groups 2
and 3 are tagged as the “closest” groups, while groups 1 and 2 are “farthest”.

4.4 Scalability

Figure 7 shows wall-clock times (in seconds) of our MATLAB implementation.
The dataset is a “caveman” graph with 3 caves; the size of the graph and the
number of edges in it are varied for the experiment, with the relative propor-
tions of cave sizes being kept fixed. The execution time increases linearly with
respect to the number of non-zeros, as expected from our order-of-complexity
computation. Thus, our proposed method can scale to large graphs.

5 Conclusions

We considered the problem of finding the underlying structure in a graph. We
introduced a novel approach and proposed a general, intuitive model founded on



AutoPart: Parameter-Free Graph Partitioning and Outlier Detection 123

0

5

10

15

20

25

30

0 1e+06 2e+06 3e+06 4e+06
T

im
e 

(s
ec

on
ds

)
Number of nonzeros

Time versus number of edges (nonzeros)

Fig. 7. Scalability: On a 3-cave graph, wall-clock execution time grows linearly with
the number of edges. Thus, our method can scale to large graphs.

lossless compression and information-theoretic principles. Based on this model,
we provided novel algorithms for finding node groups and outlier edges, as well
as for computing distances between node groups, thus fulfilling all our goals
(G1)-(G3) from Section 1. Our algorithms are fully automatic and parameter-
free, scalable and allow online computations, achieving properties (P1)-(P3).
Finally, we evaluated our method on several real and synthetic datasets, where
it produced excellent and intuitive results.

Acknowledgements

We would like to thank Dr. Faloutsos at CMU and the reviewers for their in-
sightful comments and suggestions.

References

1. Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph parti-
tioning. In: Proc. SC98. (1998) 1–13

2. Andrew Y.Ñg, Michael I.J̃ordan, Y.W.: On spectral clustering: Analysis and an
algorithm. In: Proc. NIPS. (2001) 849–856

3. van Dongen, S.M.: Graph clustering by flow simulation. PhD thesis, Univesity of
Utrecht (2000)

4. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. In: Proc. Natl. Acad. Sci. USA. Volume 99. (2002)

5. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of Web communities.
In: KDD. (2000)

6. Zhang, B., Hsu, M., Dayal, U.: K-harmonic means - a spatial clustering algorithm
with boosting. In: Proc. 1st TSDM. (2000) 31–45

7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(2000)

8. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: In-
dexing by latent semantic analysis. JASI 41 (1990) 391–407

9. Pelleg, D., Moore, A.: X-means: Extending K-means with efficient estimation of
the number of clusters. In: Proc. 17th ICML. (2000) 727–734



124 Deepayan Chakrabarti

10. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In:
Proc. 9th KDD. (2003) 89–98

11. Mishra, N., Ron, D., Swaminathan, R.: On finding large conjunctive clusters. In:
Proc. 16th COLT. (2003) 448–462

12. Reddy, P.K., Kitsuregawa, M.: An approach to relate the web communities through
bipartite graphs. In: Proc. 2nd WISE. (2001) 302–310

13. Rissanen, J.: Modeling by shortest data description. Automatica 14 (1978) 465–
471

14. Rissanen, J.: Universal prior for integers and estimation by minimum description
length. Annals of Statistics 11 (1983) 416–431

15. Watts, D.J.: Small Worlds: The Dynamics of Networks between Order and Ran-
domness. Princeton Univ. Press (1999)

16. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing.
In: KDD, Edmonton, Canada (2002) 61–70


	1 Introduction – Motivation
	2 Survey
	3 ProposedMethod
	3.1 Compression Scheme for a Binary Matrix
	3.2 Problem Formulation
	3.3 Algorithms
	3.4 Online Recomputations
	3.5 Using the Block Structure

	4 Experiments
	4.1 Quality
	4.2 Outlier Edges
	4.3 Distances Between Node Groups
	4.4 Scalability

	5 Conclusions
	References



