
A Tree-Based Approach
to Clustering XML Documents by Structure

Gianni Costa1, Giuseppe Manco1, Riccardo Ortale2, and Andrea Tagarelli2

1 ICAR-CNR – Institute of Italian National Research Council
Via Pietro Bucci 41c, 87036 Rende (CS), Italy

{costa,manco}@icar.cnr.it
2 DEIS, University of Calabria

Via Pietro Bucci 41c, 87036 Rende (CS), Italy
{ortale,tagarelli}@si.deis.unical.it

Abstract. We propose a novel methodology for clustering XML docu-
ments on the basis of their structural similarities. The idea is to equip
each cluster with an XML cluster representative, i.e. an XML document
subsuming the most typical structural specifics of a set of XML docu-
ments. Clustering is essentially accomplished by comparing cluster repre-
sentatives, and updating the representatives as soon as new clusters are
detected. We present an algorithm for the computation of an XML rep-
resentative based on suitable techniques for identifying significant node
matchings and for reliably merging and pruning XML trees. Experimen-
tal evaluation performed on both synthetic and real data shows the ef-
fectiveness of our approach.

1 Introduction

As the heterogeneity of XML sources increases, the need for organizing XML
documents according to their structural features has become challenging. In such
a context, we address the problem of inferring structural similarities among XML
documents, with the adoption of clustering techniques. This problem has several
interesting applications related to the management of Web data. For example,
structural analysis of Web sites can benefit from the identification of similar
documents, conforming to a particular schema, which can serve as the input for
wrappers working on structurally similar Web pages. Also, query processing in
semistructured data can take advantage from the re-organization of documents
on the basis of their structure. Grouping semistructured documents according to
their structural homogeneity can help in devising indexing techniques for such
documents, thus improving the construction of query plans.

The problem of comparing semistructured documents has been recently inves-
tigated from different perspectives [5, 14, 4, 3, 8]. Recent studies have also pro-
posed techniques for clustering XML documents. [7] describes a partitioning
method that clusters documents, represented in a vector-space model, accord-
ing to both textual contents and structural relations among tags. The approach
in [13] proposes to measure structural similarity by means of an XML-aware

J.-F. Boulicaut et al. (Eds.): PKDD 2004, LNAI 3202, pp. 137–148, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

138 Gianni Costa et al.

edit distance, and applies a standard hierarchical clustering algorithm to evalu-
ate how closely cluster documents correspond to their respective DTDs.

In our opinion, the main drawback of the above approaches is the lack of
a notion of cluster prototype, i.e. a summarization of the relevant features of
the documents belonging to a cluster. The notion of cluster prototype is crucial
in most significant application domains, such as wrapper induction, similarity
search, and query optimization. Indeed, in the context of wrapper induction, the
efficiency and effectiveness of the extraction techniques strongly rely on the ca-
pability of rapidly detecting homogeneous subparts of the documents under con-
sideration. Similarity search can substantially benefit from narrowing the search
space. In particular, this can be achieved by discarding clusters whose proto-
types exhibit features which do not comply with the target properties specified
by a user-supplied query.

To the best of our knowledge, the only approach devising a notion of cluster
prototype is [11]. Indeed, the authors propose to compare documents accord-
ing to a structure graph, s-graph, summarizing the relations between elements
within documents. Since the notion of s-graph can be easily generalized to sets
of documents, the comparison of a document with respect to a cluster can be
easily accomplished by means of their corresponding s-graphs. However, a main
problem with the above approach relies on the loose-grained similarity which
occurs. Indeed, two documents can share the same prototype s-graph, and still
have significant structural differences, such as in the hierarchical relationship
between elements. It is clear that the approach fails in dealing with application
domains, such as wrapper generation, requiring finer structural dissimilarities.

In this paper we propose a novel methodology for clustering XML documents
by structure, which is based on the notion of XML cluster representative. A clus-
ter representative is a prototype XML document subsuming the most relevant
structural features of the documents within a cluster. The intuition at the core
of our approach is that a suitable cluster prototype can be obtained as the out-
come of a proper overlapping among all the documents within a given cluster.
Actually, the resulting tree has the main advantage of retaining the specifics
of the enclosed documents, while guaranteeing a compact representation. This
eventually makes the proposed notion of cluster representative extremely prof-
itable in the envisaged applications: in particular, as a summary for the cluster,
a representative highlights common subparts in the enclosed documents, and can
avoid expensive comparisons with the individual documents in the cluster.

The proposed notion of cluster representative relies on the notions of XML
tree matching and merging. Specifically, given a set of XML documents, our
approach initially builds an optimal matching tree, i.e. an XML tree that is
built from the structural resemblances that characterize the original documents.
Then, in order to capture all such peculiarities within a cluster, a further tree,
called a merge tree, is built to include those document substructures that are not
recurring across the cluster documents. Both trees are exploited for suitably com-
puting a cluster representative as will be later detailed. Finally, a hierarchical
clustering algorithm exploits the devised notion of representative to partition
XML documents into structurally homogeneous groups. Experimental evalua-

A Tree-Based Approach to Clustering XML Documents by Structure 139

Input: A set S = {t1, . . . , tn} of XML document trees;
Output: A cluster partition P = {C1, . . . , Ck} of S.
Method:

let P := {C1, . . . , Cn}, where initially Ci = {ti};
set ri := ti as the representative for Ci;
compute a tree-distance matrix Md, where Md(i, j) = d(ti, tj);
repeat

choose clusters Ci and Cj such that d(rep(Ci), rep(Cj)) is minimized;
compute the representative r = rep(ri, rj) for cluster C = Ci ∪ Cj ;
set P := P − {Ci, Cj} ∪ {C}, and update Md;

until P has maximal quality;

Fig. 1. The XRep algorithm for clustering XML documents.

tion performed on both synthetic and real data states the effectiveness of our
approach in identifying document partitions characterized by a high degree of
homogeneity.

2 Problem Statement

Clustering is the task of organizing a collection of objects (whose classification is
unknown) into meaningful or useful groups, namely clusters, based on the inter-
esting relationships discovered in the data. The goal is grouping highly-similar
objects into individual partitions, with the requirement that objects within dis-
tinct clusters are dissimilar from one another.

Several clustering algorithms [10] can be suitably adapted for clustering
semistructured data. We concentrate on hierarchical approaches, which are
widely known as providing clusters with a better quality, and can be exploited to
generate cluster hierarchies. Fig.1 shows XRep, an adaptation of the agglomer-
ative hierarchical algorithm to our problem. Each XML tree (derived by parsing
the corresponding XML document) is initially placed in its own cluster, and a
pair-wise tree distance matrix is computed. The algorithm then walks into an
iterative step in which the least dissimilar clusters are merged. As a consequence,
the distance matrix is updated to reflect this merge operation. The overall pro-
cess is stopped when an optimal partition (i.e. a partition whose intra-distance
within clusters is minimized and inter-distance between clusters is maximized)
is reached. In this paper, we follow the approach devised in [9], and address the
problem of clustering XML documents in a parametric way. More precisely, the
general scheme of the XRep algorithm is parametric to the notions of distance
measure and cluster representative.

Concerning the distance measure, we choose to adapt the Jaccard coeffi-
cient [10] to the context of XML trees. A first measure can be straightforwardly
defined by considering the feature space representing the set of labels (i.e. tag
names) associated with the nodes in a tree: if we denote with tag(t) the set of
tag names for a tree t, then we define as d

(1)
J (t1, t2) = 1 − |tag(t1)∩tag (t2)|

|tag(t1)∪tag (t2)| the
Jaccard distance between two trees t1 and t2. An alternative (and more refined)
definition is given by taking into account the paths in the trees rather than only
the node labels. More precisely, d

(2)
J (t1, t2) = 1 − |path(t1)∩path(t2)|

max{|path(t1)|,|path(t2)|} , where

140 Gianni Costa et al.

path(ti) denotes the set of paths in ti, and path(t1)∩path(t2) is the set of common
paths between t1 and t2.

Intuitively, the representative of a cluster of XML documents is a document
which effectively synthesizes the most relevant structural features of the docu-
ments in the cluster. The notion of representative can be formalized as follows.

Definition 1. Given a set U , equipped with a distance function d : U ×U �→ IR,
and a set S = {t1, . . . , tn} ⊆ U of XML document trees, the representative of S
(denoted by rep(S)) is the tree t∗ that minimizes the sum of the distances:

t∗ = rep(S) ∈ U ⇐⇒ t∗ = argmint∈Uf(t)

where f(t) =
∑n

i=1 d(ti, t). �	
The computation of the representative of a set turns out to be a hard prob-

lem if the above distance measures are adopted. Therefore we exploit a suitable
heuristic for addressing the above minimization problem. Viewed in this respect,
our goal is to find a lower-bound-tree and an upper-bound-tree for the optimal
representative. The lower-bound-tree (resp. upper-bound-tree) is a tree on which
any node deletion (resp. node insertion) leads to a worsening in function f . Thus,
a representative can be heuristically computed by traversing the search space
delimited by the above trees. Two alternative greedy strategies can be devised:
either a growing approach, which iteratively adds nodes to the lower-bound, or
a pruning approach, which iteratively removes nodes from the upper-bound. In
the following, we will denote the lower-bound-tree and the upper-bound-tree
as optimal matching tree and merge tree, respectively. Notice that the optimal
matching tree represents a stopping condition for the pruning approach, whereas
the merge tree is always a sub-optimal solution since it contains the optimal rep-
resentative. Dually, the merge tree defines a stopping condition for the growing
approach, whereas the optimal matching tree is a sub-optimal solution since it
is contained in the optimal representative.

We develop a pruning approach in which the computation of an XML cluster
representative consists of the following three main stages: the construction of an
optimal matching tree, the computation of a merge tree, and the pruning of the
merge tree. Fig.3 sketches an algorithm which has been developed according to
the above three stages.

3 Mining Representatives from XML Trees

We give now some definitions which are at the basis of our approach. A tree t is
a tuple t = (rt, Vt, Et, λt) where Vt ⊆ IN is the set of nodes, Et ⊆ Vt × Vt is the
set of edges, rt is the root node of t, and λt : Vt �→ Σ is a node labelling function
where Σ is an alphabet of node labels. In particular, we say that an XML tree
is a tree where Σ is an alphabet of element tags. Moreover, let deptht(v) denote
the depth level of node v in t, with deptht(rt) = 0, and let patht(v) = 〈vi1 =
rt, vi2 , . . . , vip = v〉 denote the list of p nodes that lead up to the node v from
the root rt.

A Tree-Based Approach to Clustering XML Documents by Structure 141

Fig. 2. (a) Strong and (b) multiple matching nodes, and (c) their trees.

Definition 2 (strong matching). Given two trees t1 and t2, and two nodes
v ∈ Vt1 , w ∈ Vt2 , a strong matching match(v, w) between v and w exists if
λt1(vi) = λt2(wi) and depth t1(vi) = deptht2(wi), for each pair of nodes (vi, wi)
such that vi ∈ patht1(v) and wi ∈ patht2(w). �	
The above definition states that two nodes, v and w, have a strong matching
if v and w together with their respective ancestors share both the same label
(i.e. tag name) and depth level. Fig.2(a) displays an example of strong matching
among the colored nodes.

The detection of matching nodes between two trees allows the construction
of a new tree, called a matching tree, which resembles the intersection of the
original trees.

Definition 3 (matching tree). Given two trees t1 and t2, a tree t = (rm, Vm,
Em, λm) is a matching tree, denoted by t = match(t1, t2), if the following con-
ditions hold:

1. there exist two mappings f1 : t �→ t1 and f2 : t �→ t2 associating nodes and
edges in t with a subtree in t1 and t2;

2. for each u ∈ Vm, there exists a strong matching between v = f1(u) and
w = f2(u) (i.e. match(v, w) holds); moreover, λm(u) = λt1(v) = λt2(w);

3. f1(rm) = rt1 , and f2(rm) = rt2 ; moreover, for each e = (u, v) ∈ Em, f1(e) =
(f1(u), f1(v)) and f2(e) = (f2(u), f2(v)). �	
Notice that, in general, multiple matchings may occur when a node in a tree

has a matching with more than one node in a different tree. More formally, given
two trees t1 and t2, a node v ∈ Vt1 has a multiple matching if ∃w′, w′′ ∈ Vt2

such that both match(v, w′) and match(v, w′′) hold. An example of multiple
matching between nodes in two trees is shown in Fig.2(b). Multiple matchings
trigger ambiguities in defining matching trees: Fig.2(c) represents two alternative
matching trees for the documents in Fig.2(b).

3.1 XML Tree Matching

In order to capture as many structural affinities as possible, we are interested
in finding matching trees with maximal size. Formally, a matching tree tm =
match(t1, t2) is an optimal matching tree for two trees t1 and t2 if there not

142 Gianni Costa et al.

Input:

An XML tree r1 = 〈rr1 , Vr1 , Er1 , λr1〉 as representative of cluster C1, and

an XML tree r2 = 〈rr2 , Vr2 , Er2 , λr2〉 as representative of cluster C2.
Output:

An XML tree rep as representative of cluster C = C1 ∪ C2.

Method:
compute the matching matrix Mm, with size (|Vr1 | × |Vr2 |);
compute the marking vectors Vm1 , Vm2 , where Vm1 .size = |Vr1 | and Vm2 .size = |Vr2 |;
set m1 := |{vi ∈ Vr1 |Vm1 [i] 	= −1}|, and m2 := |{vi ∈ Vr2 |Vm2 [i] 	= −1}|;
if (m1 > m2)

match := buildMatch(r1, r2, Vm1 , Vm2); merge := buildMerge(r1, r2, Vm1 , Vm2);

else

match := buildMatch(r2, r1, Vm2 , Vm1); merge := buildMerge(r2, r1, Vm2 , Vm1);

rep := prune(C1 ∪ C2, merge, match);

return rep;

Function buildMatch(t1, t2, Vm1 , Vm2) : t;

t := t1;

for each vi ∈ Vt1 , Vm1 [i] = −1 do

remove(t, vi); /* removes the subtree rooted at vi from t */

let Ij = {vi1 , . . . , vih
∈ Vt1 | Vm1 [ip] = j, p ∈ [1..h]};

for each Ij do

removeDuplicates(t, Ij); /* removes duplicated paths from t */

return t;

Function buildMerge(t1, t2, Vm1 , Vm2) : t;

t := t1;

for each vi ∈ Vt1 do

let J = {wj1 , . . . , wjh
∈ Vt2 | Vm2 [jp] = i, p ∈ [1..h]};

let v ∈ Vt1 such that (v, vi) ∈ Et1 ;

insert(t, v, vi, |J| − 1); /* inserts node vi as a child of v into t, |J| − 1 times */

for each wi ∈ Vt2 , Vm2 [i] = −1 do

let wj ∈ Vt2 such that (wj , wi) ∈ Et2 , and vh ∈ Vt1 such that Vm2 [j] = h;

insert(t, vh, wi); /* inserts node wi as a child of vh into t */

return t;

Function prune(C, t, t′) : r;

set r := t;

do

let L ⊆ Vr be the set of leaf nodes in r;

compute d0 :=
∑

t∈C d(t, r);

for each vl ∈ L do

compute r(l) := removeLeaf(r, vl);

l∗ = arg minvl
[
∑

t∈C d(t, r(l))];

set d∗ :=
∑

t∈C d(t, r(l∗));

if (d∗ < d0)

r := r(l∗);

while d∗ < d0 and Vr ⊆ Vt′ ;
return r;

Fig. 3. The algorithm for the computation of an XML cluster representative.

exists another matching tree t′m = match(t1, t2)
= tm such that |Vtm | ≥ |Vt′m |.
We describe a dynamic-programming technique for building an optimal matching
tree from two XML trees. The technique consists of three steps: i) detection of
matching nodes, ii) selection of best matchings, and iii) optimal matching tree
construction.
Matching detection. Given two trees t1 and t2, the detection of matching nodes
is performed building a (|Vt1 | × |Vt2 |) matching matrix Mm. In this matrix,
the generic (i, j)-th element corresponds to nodes vi ∈ Vt1 and wj ∈ Vt2 , and
contains a weight ωm(vi, wj) to be associated with the matching between vi and
wj . Initially, the weight is 1 if match(vi, wj) holds, and 0 otherwise. In order to
ease the construction of the matching matrix, nodes are enumerated by level,
thus guaranteeing a particular block structure for Mm. Indeed, for each level

A Tree-Based Approach to Clustering XML Documents by Structure 143

cb

b

a
0

5

1 2

dc
43

bc
6 8

b
97

c b

dcbb

e

a

c

c b e

0

1 2 3

4 5 6 7

8 9 10 11
f

10

g 11

b

(a) Examples XML trees t1 and t2

0 1 2 3 4 5 6 7 8 9 10 11

0 1

1 0 1

2 0 1

3 1 0

4 0 0 1

5 0 0 1

6 1 0 0

7 0 1 0

8 0 0 0 0 0

9 1 0 0 0 0

10 0 1 1 0 0

11 0 0 0 0 0

(b) Matching matrix (c) Matching selection

Fig. 4. Data structures for the construction of an optimal matching tree.

k, a sub-matrix Mm(k) collects the matchings among the nodes in t1 and t2
with depth equal to k. Fig.4(a) displays two example XML trees with numbered
nodes. The corresponding matching matrix is shown in Fig.4(b).
Selection of best matchings. The problem of multiple matchings can be addressed
by discarding those matchings which are less relevant according to the weighting
function ωm. The weight ωm(v, w), associated to two matching nodes v ∈ Vt1 and
w ∈ Vt2 , is computed by taking into account the matches between the children
nodes of both v and w. Formally, ωm(v, w) = 1 +

∑
i,j ωm(vi, wj), where nodes

vi, wj are such that (v, vi) ∈ Et1 and (w, wj) ∈ Et2 . Fig.4(c) shows the weights
associated with each possible node pair.

Multiple matchings relative to any node of t1 (resp. t2) can be detected
by checking multiple entries with non-zero values within the corresponding row
(resp. column) of Mm. We now describe the process for detecting multiple match-
ings. In the following we focus on the identification of nodes within t1 that have
multiple matchings with those in t2: the dual situation (i.e. identification of
nodes in t2 having multiple matching with nodes in t1) has a similar treatment.

Let vi ∈ Vt1 denote the node corresponding to the i-th row in Mm, and
let Jvi = {j1, . . . , jh} be the set of column indexes, corresponding to the nodes
wj1 , . . . , wjh

of t2, such that Mm(i, jk) > 0 (i.e. such that ωm(vi, wjk
) > 0), k =

[1..h]. Thus, vi exhibits multiple matchings if |Jvi | > 1. For each node vi ∈ Vt1 ,

144 Gianni Costa et al.

b

dcb

a

c

c b

0

1 2

3 4 5

6 7

(a)

c b

dcbb

a

c

c b b

0

1 2 3

4 5 6 7

9 10 11
e b

12
f

13

g 15

e
8 14

(b)

c b

dcbb

a

c

c b be f

g

(c)

Fig. 5. (a) Lower-bound (optimal matching tree), (b) upper-bound (merge tree), and
(c) optimal representative tree relative to the trees of Fig.4(a).

the best matching node corresponds to the column index j∗vi
= arg maxj1,...,jh

{Mm(i, j1), . . . , Mm(i, jh)}. If the maximum in {Mm(i, j1), . . . , Mm(i, jh)} is not
unique we choose j∗vi

to be the minimum index. The overall best matchings for
nodes of t1 can be easily tracked by using a marking vector Vm1 = {j∗v1

, . . . , j∗vn
},

whose generic i-th entry indicates the node of t2 with which vi ∈ Vt1 has the best
matching. We set Vm1 [i] = −1 if the node vi ∈ Vt1 has no matching. Fig.4(c)
shows the marking vectors Vm1 and Vm2 associated with t1 and t2, respectively.
Optimal matching tree construction. An optimal matching tree is effectively
built by exploiting the above marking vectors: it suffices that all nodes with no
matching are discarded. Fig.5(a) shows the optimal matching tree computed for
t1 and t2 of Fig.4(a). As we can see in the figure, the optimal matching tree is
obtained from t1 by removing nodes 2, 5, 8, 11.

3.2 Building a Merge Tree

The optimal matching tree of two documents represents an optimal intersection
between the documents. The notion of merge tree resembles an optimized union
of the original trees. Notice that, firstly an optimal matching tree has to be de-
tected, in order to avoid redundant nodes to be added. Indeed, a trivial merge
tree could be simply built as the union of the trees under investigation. Func-
tion buildMerge in Fig.3 details the construction of a merge tree, which takes
into account nodes discarded while building the optimal matching tree. To this
purpose, given two trees t1 and t2, we first consider nodes in t1 having duplicate
nodes, and insert such duplicates into the merge tree. Next, nodes in t2 which
do not match with any node in t1 are added.

Fig.5(b) shows the merge tree associated to the trees of Fig.4(a). Nodes 8, 11
from t1 and 9, 10, 11 from t2 have no matching, whereas nodes 2, 5 from t1 and
8 from t2 exhibit multiple matchings.

A Tree-Based Approach to Clustering XML Documents by Structure 145

3.3 Turning a Merge Tree into a Cluster Representative

An effective cluster representative can be obtained by removing nodes from a
merge tree in such a way to minimize the distance between the refined merge tree
and the original trees in the cluster. Procedure prune, shown in Fig.3, iteratively
tries to remove leaf nodes until the distance between the refined merge tree and
the original trees cannot be further decreased. It is worth noticing that, on the
basis of the definition of procedure prune, the representative of a cluster is always
bounded by the optimal matching tree built from the documents in that cluster.
The correctness of the pruning procedure is established by the following result.

Theorem 1. Let t1, t2 be two XML trees. Moreover, let tM = merge(t1, t2),
tm = match(t1, t2) and t∗ = rep({t1, t2}). Then, tm ⊆ t∗ ⊆ tM . �	

Let us consider again the trees t1 and t2 of Fig.4(a) and their associated merge
tree merge(t1, t2) of Fig.5(b). Suppose that t1 and t2 belong to the same cluster
C. In order to compute the representative tree for C, the pruning procedure
is initially applied to the set of leaves L = {5, 8, ..., 12, 14, 15}. If we choose to
adopt the d

(2)
J distance, the procedure computes an initial intra-cluster distance

dC
0 = 5/8. This distance is reduced to 4/7 as leaf node 14 is removed. Yet,

dC
0 can be decreased by removing node 12. Since at this point no further node

contributes to the minimization of dC
0 , the pruning process ends. Fig.5(c) shows

the cluster representative resulting from pruning the merge tree in Fig.5(b), with
the adoption of the d

(2)
J distance.

4 Evaluation

We evaluated the effectiveness of XRep by performing experiments on both syn-
thetic and real data. In the former case, we mainly aimed at assessing the effec-
tiveness of our clustering scheme with respect to some prior knowledge about the
structural similarities among the XML documents taken into account. Specifi-
cally, we exploited a synthetic data set that comprises seven distinct classes of
XML documents, where each such class is a structurally homogeneous group
of documents randomly generated from a previously chosen DTD. Tests were
performed in order to investigate the ability of XRep in catching such groups.

To the purpose of assembling a valuable data set, we developed an automatic
generator of synthetic XML documents, that allows the control of the degree
of structural resemblance among the document classes under investigation. The
generation process works as follows. Given a seed DTD DTD0, a similarity thresh-
old τ , and a number k of classes, the generator randomly yields a set Sk

τ of k
different DTDs, hereinafter called class DTDs, that individually retain at most τ
percent of the element definitions within DTD0. The k class DTDs are eventually
leveraged to generate as many collections of conforming XML documents, on
the basis of suitable statistical models ruling the occurrences of the document
elements [8].

146 Gianni Costa et al.

The seed DTD was manually developed and exhibits a quite complex struc-
ture. For the sake of brevity, we only focus on its major features. DTD0 contains
30 distinct element declarations that adopt neither attributes nor recursion. Non
empty elements contain at most 4 children. Yet, the occurrences of such elements
are suitably defined by exploiting all kinds of operators, namely +,∗,?, and |.
Finally, the tree-based representation of any XML document conforming to DTD0

has a depth that is equal to 6.
Each test on synthetic data was performed on a distinct set of seven class

DTDs, sampled from DTD0, at increasing values of the similarity threshold τ : we
chose τ to be respectively equal to 0.3, 0.5, and 0.8.

Real XML documents were extracted from six different collections available
on Internet:

– Astronomy, 217 documents extracted from an XML-based metadata repos-
itory, that describes an archive of publications owned by the Astronomical
Data Center at NASA/GSFC.

– Forum, 264 documents concerning messages sent by users of a Web forum.
– News, 64 documents concerning press news from all over the world, daily

collected by PR Web, a company that provides free online press release
distribution.

– Sigmod, 51 documents concerning issues of SIGMOD Record. Such docu-
ments were obtained from the XML version of the ACM SIGMOD Web site
produced within the Araneus project [6].

– Wrapper, 53 documents representing wrapper programs for Web sites, ob-
tained by means of the Lixto system [2].

– Xyleme Sample, a collection of 1000 documents chosen from the Xyleme’s
repository, which is populated by a Web crawler using an efficient native
XML storage system [12].

The distribution of tags within these documents is quite heterogeneous, due to
the complexity of the DTDs associated with the classes, and to the semantic
differences among the documents. In particular, wrapper programs may have
substantially different forms, as a natural consequence of the structural differ-
ences existing among the various Web sites they have been built on: thus, the
skewed nature of the documents in Wrapper should be taken into account. Also,
documents sampled from Xyleme exhibit a more evident heterogeneity, since
they have been crawled from very different Web sources.

Clustering results were evaluated by exploiting the standard precision and
recall measures [1]. However, in the case of Xyleme Sample, we had no knowl-
edge of an a-priori classification. As a consequence, we resorted to an inter-
nal quality criterium that takes into account the compactness of the discov-
ered clusters. More precisely, given a cluster partition P = {C1, . . . , Cn}, where
Ci = {xi

1, . . . , x
i
ni
}, we defined an intra-cluster distance measure as IC(P) =

1
n

∑
Ci∈P

1
ni

∑
x∈Ci

d(x, rep(Ci)).
Table 1 summarizes the quality values obtained testing XRep on both syn-

thetic and real data. All the experiments have been carried out by adopting the
Jaccard distance d

(2)
J introduced in Section 2. Tests on synthetic data evaluated

A Tree-Based Approach to Clustering XML Documents by Structure 147

Table 1. Quality results.

type docs avg size classes clusters τ precision recall F-measure IC
synth 1400 0.13KB 7 7 0.3 0.979 0.978 0.978 0.219

synth 1400 0.81KB 7 7 0.5 0.802 0.909 0.852 0.304

synth 1400 3.19KB 7 7 0.8 0.689 0.773 0.728 0.369

real 649 5.74KB 5 5 - 1 1 1 0.208

real 500 8.56KB - 7 - - - - 0.376

real 1000 9.42KB - 9 - - - - 0.43

the performance of XRep on three collections of 1400 documents (200 documents
for each class DTD). Experimental evidence highlights the overall accuracy of
XRep in distinguishing among classes of XML documents characterized by dif-
ferent average sizes due to different choices for the threshold τ . As we can see,
XRep exhibits an excellent behavior for τ = {0.3, 0.5}, while the acceptable
performance reported on row 3 (i.e. τ = 0.8) is due to the intrinsic difficulty in
catching minimal differences in the structure of the involved XML documents.
Indeed, two clearly distinct class DTDs, say DTDi and DTDj, may share a num-
ber of element definitions inducing similar paths within the conforming XML
documents. If such definitions assign multiple occurrences to the elements of
the common paths, the initial class separation between DTDi and DTDj may be
potentially vanished by a strong degree of document similarity due to a large
number of common paths in the corresponding XML trees.

Tests on real data considered separately the first five collections (649 XML
documents with an average size that is equal to 5.74KB), and the Xyleme Sample
collection. In the first case, XRep showed amazingly optimal accuracy in iden-
tifying even latent differences among the involved real documents. As far as
Xyleme Sample is concerned, we conducted two experiments (rows 5 and 6 in
Table 1), where in the first one we considered only one and a half of the dataset.
However, as we expected, in both cases intra-cluster distance provides fairly
good values: this is mainly due to the high heterogeneity which characterizes
documents in Xyleme Sample.

5 Conclusions and Further Work

We presented a novel methodology for clustering XML documents, focusing on
the notion of XML cluster representative which is capable of capturing the signifi-
cant structural specifics within a collection of XML documents. By exploiting the
tree nature of XML documents, we provided suitable strategies for tree matching,
merging, and pruning. Tree matching allows the identification of structural simi-
larities to build an initial substructure that is common to all the XML document
trees in a cluster, whereas the phase of tree merging leads to an XML tree that
even contains uncommon substructures. Moreover, we devised a suitable prun-
ing strategy for minimizing the distance between the documents in a cluster and
the document built as the cluster representative. The clustering framework was
validated both on synthetic and real data, revealing high effectiveness.

148 Gianni Costa et al.

We conclude by mentioning some directions for future research. The approach
described in the paper has to be considered an initial approach to clustering
tree-structured XML data. Further notions of cluster representative can be in-
vestigated, e.g. by relaxing the requirement that a prototype corresponds to a
single XML document. Indeed, there are many cases in which a collection of
XML documents is better summarized by a forest of subtrees, where each sub-
tree represents a given peculiarity shared by some documents in the collection.
A typical case raises, for instance, when the collection has an empty matching
tree, and still exhibits significant homogeneities.

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press
Books. Addison Wesley, 1999.

2. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction
with Lixto. In Proc. VLDB’01 Conf., pages 119–128, 2001.

3. E. Bertino, G. Guerrini, and M. Mesiti. A matching algorithm for measuring the
structural similarity between an XML document and a DTD and its applications.
Information Systems, 29(1), 2004.

4. S. Chawathe et al. Change detection in hierarchically structured information. In
Proc. SIGMOD’96 Conf, pages 493–504, 1996.

5. G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in XML documents.
In Proc. ICDE’02 Conf., pages 41–52, 2002.

6. V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards automatic data
extraction from large web sites. In Proc. VLDB’01 Conf., pages 109–118, 2001.

7. A. Doucet and H. A. Myka. Naive clustering of a large XML document collection.
In Proc. INEX’02 Workshop, 2002.

8. S. Flesca et al. Detecting structural similarities between XML documents. In Proc.
WebDB’02 Workshop, 2002.

9. F. Giannotti, C. Gozzi, and G. Manco. Clustering transactional data. In Proc.
ECML-PKDD’02 Conf., pages 175–187, 2002.

10. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, 1988.
11. W. Lian et al. An efficient and scalable algorithm for clustering XML documents

by structure. IEEE TKDE, 16(1):82–96, 2004.
12. L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In Proc.

WWW’03 Conf., pages 500–510, 2003.
13. A. Nierman and H. V. Jagadish. Evaluating structural similarity in XML docu-

ments. In Proc. WebDB’02 Workshop, 2002.
14. Y. Wang, D.J. DeWitt, and J. Cai. X-Diff: A fast change detection algorithm for

XML documents. In Proc. ICDE’03 Conf., pages 519–530, 2003.

	1 Introduction
	2 Problem Statement
	3 Mining Representatives from XML Trees
	3.1 XML Tree Matching
	3.2 Building a Merge Tree
	3.3 Turning a Merge Tree into a Cluster Representative

	4 Evaluation
	5 Conclusions and Further Work
	References

