Mining Thick Skylines over Large Databases

Wen Jin!, Jiawei Han?, and Martin Ester!

1 School of Computing Science, Simon Fraser University
{wjin,ester}@cs.sfu.ca
2 Department of Computer Science, Univ. of Illinois at Urbana-Champaign
hanj@cs.uiuc.edu

Abstract. People recently are interested in a new operator, called sky-
line [3], which returns the objects that are not dominated by any other
objects with regard to certain measures in a multi-dimensional space.
Recent work on the skyline operator [3,15,8,13,2] focuses on efficient
computation of skylines in large databases. However, such work gives
users only thin skylines, i.e., single objects, which may not be desirable
in some real applications. In this paper, we propose a novel concept,
called thick skyline, which recommends not only skyline objects but also
their nearby neighbors within e-distance. Efficient computation meth-
ods are developed including (1) two efficient algorithms, Sampling-and-
Pruning and Indezxing-and-Estimating, to find such thick skyline with the
help of statistics or indexes in large databases, and (2) a highly efficient
Microcluster-based algorithm for mining thick skyline. The Microcluster-
based method not only leads to substantial savings in computation but
also provides a concise representation of the thick skyline in the case of
high cardinalities. Our experimental performance study shows that the
proposed methods are both efficient and effective.

1 Introduction

In query-answering, people recently are interested in a new operator, called sky-
line operator[3]. Given a set of n objects, the skyline refers to those that are not
dominated by any other object. An object p dominates another object q, noted
as p = q, if p is as good or better in all dimensions and better in at least one
dimension. A typical example is illustrated in Figure 1, showing the skyline of
hotels with dimensions of the Distance (to the beach) and the Price. The hotels
(a,b,c,d, e, f) are the skylines ranked as the best or most satisfying hotels.

The skyline operator can be represented by an (extended) SQL statement.
An example Skyline Query of New York hotels corresponding to Figure 1 in SQL
would be: SELECT * FROM Hotels WHERE city="New York’ SKYLINE OF Price
min, Distance min, where min indicates that the Price and the Distance attributes
should be minimized. For simplicity, we assume that skylines are computed with
respect to min conditions on all the dimensions, though it can be a combination
with other condition such as max|[3].

Most existing work on skyline queries has been focused on efficient compu-
tation of skyline objects in large databases [3,15,8,13,2]. However, the results

J.-F. Boulicaut et al. (Eds.): PKDD 2004, LNAI 3202, pp. 255-266, 2004.
© Springer-Verlag Berlin Heidelberg 2004

256 Wen Jin, Jiawei Han, and Martin Ester

s |
20 25 e '
2wl o ok
,‘|<11l 3 ' 4
2 1S et
g Rl gt
3] Ly LI
E 1.0 H o 2b<1<]...-. ; eem T el
E £ : &-,. c et s
g 05 % 05 F &Py '.--.. -'
: ik 3 i g
0.0 0.0 L 3
00 150 50 100 150 200 230
Price($) Price(S)
Fig. 1. Thick Skyline of N.Y. hotels. Fig. 2. Sampling objects to pruning.

obtained by the skyline operator may not always contain satisfiable information
for users. Let’s examine an example: Given the hotels in Figure 1, a conference
organizer needs to decide the conference location. He usually will be interested
in the following questions: 1. Can we find a bunch of skyline hotels which are
nearby so as to provide good choices for the attendees? 2. If a skyline hotel is
occupied, is there any nearby hotel which, though not ranked as high as skyline
hotel, can still be a good candidate?

Apparently, the above questions cannot be answered directly by pure skyline
computation as candidates which have similar attribute to skylines are not pro-
vided. Another problem in most of the existing studies is that they are based
on the assumption of small skyline cardinality [13, 3, 8]. However, skyline objects
could be many, making it inconvenient for users to browse and manually choose
interesting ones. To address the problem of either two few or too many skyline
objects, it seems to be natural to consider a compact and meaningful structure
to represent the skyline and its neighborhood.

In this paper, we propose an extended definition of skyline, develop a novel
data mining technique to skyline computation, and study the interesting patterns
related to the skyline. The concept of skyline is extended to generalized skyline
by pushing a user-specific constraint into skyline search space. For simplicity, the
user-specific constraint is defined as the e-neighbor of any skyline object. Thick
skyline composed of the generalized skyline objects is the focus of the paper.

Mining the thick skyline is computationally expensive since it has to han-
dle skyline detection and nearest neighbor search, which both require multiple
database scans and heavy computation. Can we design algorithms that remove
the computational redundancy in skyline detection and nearest neighbor search
as much as possible? Furthermore, even in the same database system, differ-
ent configurations may be required for different applications. For example, some
may only allow the dataset to exist as a single file, others may have additional
support with different types of index, such as B-tree, R-tree or CF-tree. How
can we develop nice approaches to cope with these situations respectively?

Our contributions in this paper are as follows:

— A novel model of thick skyline is proposed that extends the existing skyline
operator based on the distance constraint of skyline objects and their nearest
neighbors.

Mining Thick Skylines over Large Databases 257

— Three efficient algorithms, Sampling-and-Pruning, Indezing-and-Estimating
and Microcluster-based, are developed under three typical scenarios, for min-
ing the thick skyline in large databases. Especially, the Microcluster-based
method not only leads to substantial savings in computation but also pro-
vides a concise representation of thick skyline in the case of high cardinalities.

— Our experimental performance study shows that the proposed methods are
both efficient and effective.

The remaining of the paper is organized as follows. Section 2 overviews re-
lated work on the skyline. Sections 3 gives the definition of thick skyline and
describes our proposed three algorithms. The results of our performance study
are analyzed in Section 4. Section 5 concludes the paper with the discussion of
future research directions.

2 Related Work

The skyline computation originates from the maximal vector problem in com-
putational geometry, proposed by Kung et al. [7]. The algorithms developed |9,
14] usually suits for a small dataset with computation done in main memory.
One variant of maximal vector problem, which is related to but different from
the notion of thick skyline, is the mazimal layers problem|[11,4] which aims at
identifying different layers of maximal objects.

Borzsonyi et al. first introduce the skyline operator over large databases [3]
and also propose a divide-and-conquer method. The method based on [7, 12] par-
titions the database into memory-fit partitions. The partial skyline objects in
each partition is computed using a main-memory-based algorithm [14, 9], and the
final skyline is obtained by merging the partial results. In [15], the authors pro-
posed two progressive skyline computing methods. The first employs a bitmap to
map each object and then identifies skyline through bitmap operations. Though
the bit-wise operation is fast, the huge length of the bitmap is a major perfor-
mance concern. The second method introduces a specialized B-tree which is built
for each combination list of dimensions that a user might be interested in. Data
in each list is divided into batches. The algorithm processes each batch with the
ascending index value to find skylines.

Kossmann et al. present an online algorithm, NN, based on the nearest neigh-
bor search. It gives a big picture of the skyline very quickly in all situations.
However, it has raw performance when large amount of skyline needs to be com-
puted. The current most efficient method is BBS (branch and bound skyline),
proposed by Papadias et al., which is a progressive algorithm to find skyline
with optimal times of node accesses [13]. Balke et al. [2] in their paper show
how to efficiently perform distributed skyline queries and thus essentially extend
the expressiveness of querying current Web information systems. They also pro-
pose a sampling scheme that allows to get an early impression of the skyline for
subsequent query refinement.

258 Wen Jin, Jiawei Han, and Martin Ester

3 The Thick Skyline and Mining Algorithms

Definition 1. (Generalized Skyline) Given a d-dimensional database X and
the skyline objects set {s1,82,...,Sm}, the generalized skyline is the set of all the
following objects:

— the skyline objects, and
— the non-skyline objects which are e-neighbors of a skyline object.

We categorize the generalized skyline object into three classes: (a) a single skyline
object, called outlying skyline object, (b) a dense skyline object, which is in a set of
nearby skyline objects, and (c) a hybrid skyline object, which is in a set consisting
of a mixture of nearby skyline objects and non-skyline objects.

From the data mining point of view, we are particularly interested in iden-
tifying the patterns of skyline information represented by clusters of types (b)
and (c), which leads to the definition of the thick skyline.

Definition 2. (Thick Skyline) Given a d-dimensional database X, the thick
skyline is composed of all dense skyline and hybrid skyline objects.

In this section, we explore different approaches to mining thick skyline in
a d-dimensional database X with size |X| under three typical situations. The
first approach applies sampling and pruning technique to the relational files,
and exploits the statistics of the database. The second approach estimates and
identifies the range of thick skyline based on general index structures in relational
database, which is not only suitable for thick skyline computation, but also
composable with other relational operators. The third approach exploits the
special summarization structure of micro-clusters which is widely used in data
mining applications, and finds the thick skyline using bounding and pruning
technique.

3.1 Sampling-and-Pruning Method

Sampling-and-Pruning method runs with the support of a database system where
statistics, such as order and quantile in each dimension, can be obtained from
the system catalog. The identification of thick skyline relies on the comparisons
between objects. Clearly, the access order of objects crucially determines the
number of comparisons. Hence we wish to pick some objects with high domi-
nating capacity at the beginning to prune many dominated objects. As nearest
neighbor search method [8] is expensive [13], a sampling method is developed.

The basic idea is as follows. We first randomly sample k (k < |X|)objects
S with high dominating capacity as initial “seeds”. Several criteria are required
during the sampling step: (1) It prefers to choose objects with smaller values in
dimensions which appear to be more dominating, and (2) the k objects are not
dominated by each other. Each object of S can be taken temporarily as “skyline”
objects to compare with other objects.

If the values in each dimension are distributed independently, an alternative
but more aggressive sampling method [1] can also be applied to construct each of

Mining Thick Skylines over Large Databases 259

the k sampling objects by choosing d (smaller) values in each dimension (i.e., such
k objects may not necessarily be in the dataset). Figure 2 shows a 2-dimensional
hotel dataset partitioned into regions 1, 2, 3 and 4 by a randomly sampled object
p1. The pruning capacity of this sampling can be analyzed probabilistically.
Assuming there are n objects and the largest values in Price and Distance axis
are s and t respectively. Obviously, if p; is chosen properly, region 1 should
not be empty, which will lead to the pruning of region 4. Otherwise it is a poor
sampling object. Suppose the coordinates of p; is (u, v), the probability of region

1 being empty is (ZE=22)m = (1 — £ . 2)" If y, v are chosen as the {\/nln n] th
smallest value in Price and Distance respectively, i.e. v and v are relatively small
according to criteria 1, then the probability is (1—¥2on. yolnyn — (7 lnnyn <
e ""[10] = L, which is very small.

In the thick skyline computation process, all those non-skyline objects need
to be investigated during the comparison step. In order to avoid unnecessary
comparisons, we introduce a strongly dominating relationship and a lemma is
deduced for pruning many non e-neighbors of any skyline.

Definition 3. (Strongly Dominating Relationship) An object p € X
strongly dominates another object q € X, noted as p> q, if p+ ¢ dominates
q, i.e. Vi, 1 <i<d, p;+e<q, and p; + € < q; in at least one dimension. On
the other hand, q is a strongly dominated object.

Lemma 1. Given a dataset X, objects p and q, if p>q, then q cannot be a thick
skyline object.

The strongly dominating relationship is illustrated by Figure 2, where objects
strongly dominated by p; are in the dashed-lines rectangle.

Due to the space limitation, we briefly describe the algorithm as follows:
First, sampling data S are generated and temporarily added to thick skyline
list. In the pruning process, if an object x is strongly dominated by an object s
in S, it is removed. If it is not only a dominated object but also an e-neighbor
of s, it is added to the neighbor list of s. If x dominates s, remove s and its
strongly dominated neighbors by z and add x into the list. Finally after the
pruning process, the thick skyline of a small amount of remaining object can be
computed using any method such as the Indexing-and-Estimating Method.

3.2 Indexing-and-Estimating Method

Based on database index such as B-tree, by combining range estimate of the
batches in the “minimum dimension” index [15] with an elaborate search tech-
nique, we can find the thick skyline within one scan of the database.

Assume that X is partitioned into d lists such that an object p = (p1, pa, . .., Pd)
is assigned to the i-th list (1 <14 < d) if and only if p; is the minimum among all
dimensions. Table 1 shows an example. Objects in each list are sorted in ascend-
ing order of their minimum coordinate (minC, for short). A batch in the i-th list
consists of objects having the same minC'. In computing of skylines, initially the

260 Wen Jin, Jiawei Han, and Martin Ester

Table 1. The index approach.

List1 List2

a(1,9) minC =1 k(9,1) minC =1
b(2,10) minC = 2 1(3,2),m(6,2) |minC =2
c(4,8) minC =4 h(4,3),n(8,3) |minC =3
9(5,6) minC =5 1(10,4) minC =4
d(6,7) minC = 6 f(7,5) minC =5
e(9,10) minC =9

first batches of all the lists are accessed and the one with the minimum minC
is processed. We assume the current minimum batches in the two lists of Table
1 are minC} and minCy respectively. Since {a} and {k} have identical minC,
the algorithm picks {a} and adds it to the skyline list. As the next batch {b}
has minCy = 2, {k} in list 2 with minCy = 1 is processed and inserted into the
list as it is not dominated by a. Then, the next batch handled is {b} in list 1,
where b is dominated by a in the list. Similarly, batch {i,m} is processed and
1 is added to the skyline. At this step, no further batches need to be processed
as the remaining objects in both lists are dominated by ¢ and the skyline are
{a,i,k}. During the search of a skyline, the range where its e-neighbors exist is
given in the following lemma.

Lemma 2. Given d index lists of X, and a skyline object p = (p1, p2, -- -, Pd)
is in the batch minC' = p; of the ith list, then:
(a) the e-neighbors of p can only possibly exist in the batch range [p; — &, p; + €]

of the i-th list; and the batch range [pj —&,pj + %} of the j-th list (j #1i);
(b) p does not have any e-neighbor in jth list (j #1) if (pj —pi) > V2 - ¢.
Proof. (a) The proof of bounds in the i-th list and the lower bound in the j-th list

are straightforward. Assume a e-neighbor of p in the j-th list is p' = (p}, ph, - ..,
py) and p’ exists in a batch with minC = p’; > p;+ %, then p; > p}; > pj+ % >

Di + %, we have |p; — p;| > \% and |p; —pj} > %, 50 (Zle ! —pi|2)% > e,
contradicting the definition. (b) As shown in Figure 3 (Eps is €), all the objects
in the j-th list can only appear in area I, while i-th in II. dist(p,q) = p; — pi,
and dist(p,0), is the shortest distance from p to any object in I. If dist(p,0) > €,
which means dist(p,q) > V2 - €, then no e-neighbor exist in I.

In the dynamic scanning process of each list, if a skyline object p in the i-th list
is found, how far shall we go back to find some of its e-neighbors in the j-th list if
the lower range bound is smaller than the minC} of the current batch? For those
neighbors residing in batches greater than minC, we can certainly leave them
to the remaining sequential scan. We show that only a € length sliding window
around the current batch minC; (denoted as S Wmmcj) needs to be maintained
for each list, hence avoiding repeated backwards scans of the list and incur more
overhead. The batch number minC within the slide window SWy,inc, satisfies
minC; —e < minC < minC}.

Mining Thick Skylines over Large Databases 261

Lemma 3. Given d index lists of X, a skyline object p = (p1, p2, ---, pd) is
found in the i-th list, while the current batch in the j-th list is minC; (1 <j <d
and i # j), if there are e-neighbors of p existing in the batches with minC <
minC; in the j-th list, then they can only exist in the slide window SWmmcj.

Proof. Since batch minC; in the i-th list is the one the skyline searching algo-
rithm is now handling, minC; > minCj. Also we have p; > p; and p; = minC;.
The lower bound of the batch range p; —e > p; —e = minC; —e > minCj — ¢
which is covered by the slide window S’Wmmcj.

Fig. 3. Evaluate Neighborhood Scope. Fig. 4. Microclusters.

Lemma 3 also ensures an important property: Whenever an object is out of the
slide window, it will never become an e-neighbor for any skyline which enables
us to find thick skyline within one scan. The algorithm pseudocode is as below.

Algorithm 1 An Indexing-and-Estimating Method.
Input: B-tree of d lists index and distance threshold e.
Output: The thick skyline 7T'.

Method:

S=0;T =0

FOR i =1 to d DO;

SW; = 0; upper; = |list;|; minC; = min list;;

WHILE (Thin — Skyline — Search — Un finished) DO;
Choose the batch with min minCh, ..., minCq, say minCl;
Check each object p in this batch;

IF p is a skyline object THEN
S=Su{ph
IF (pj — pi) < V/2-¢ THEN

© 0N O 0N

10. update upper; to p; + %; check SWj for € neighbor ;
11. IF any q is a € neighbor THEN

12. T=TU{q};

13. ELSE IF p is an e-neighbor THEN

14. T =TU{p};

15. Move list, to next batch and update SWy;

16. WHILE listy < uppery V...V listy < upperq DO;

17. scan objects to find € neighbors and add to T

18. T =T U S; Output thick skyline T

262 Wen Jin, Jiawei Han, and Martin Ester

The algorithm initiates skyline list and e-neighbors list (Step 1), current batches,
slide windows and the upper bound batch to scan in each list (Step 2-3). Each
object p in the minimum minC; is compared with the skyline list (Step 6). If
p is a skyline object, the corresponding range is updated, and part of p's e-
neighbors may be found in the slide windows (Step 8-12), while others are left to
the remaining access of the lists(Step 13-14). Step 16-17 calculates the possible
e-neighbors in the range when thin skyline search finishes. Finally, it will output
both skyline objects and e-neighbors (Step 18).

3.3 Microcluster-Based Method

In order to scale-up data mining methods to large databases, a general strategy
is to apply data compression or summarization. For example, we can partition
the database into microclusters based on CF-tree [16, 6].

Definition 4. (Microcluster) A microcluster for a set of d-dimensional ob-
jects X1 ... X, Xi = (2} ... 2%), is defined as a (4-d+1)-tuple (CF1*, CF27,
CF37, CF47, n), where CF17, CF2%, CF3%, and CF4% each represents a vec-
tor of d entries. The definition of each of these entries is as follows:

— The p-th entry of CF1% is equal to Z?:l x?.

— The p-th entry of CF2* is equal to Z?:l(x§)2'

~ The p-th entry of CF3% is equal to minj_, (z%).

— For each dimension, the data with the minimum distance to the origin is
maintained in CF47%.

— The number of data points is maintained in n.

The centroid x, and radius r, of a microcluster mc, can be represented as: x, =

N ") 2 [N
CF1® d _ (ijl(%_%))b = (CEZtnw,—2w,.CF1v
n o ald Tq = n - n

distance mdist, from a microcluster to the origin is determined by C'F4%.

For mining thick skyline, the database is partitioned into a set of micro-
clusters with radius r; (7; can be around) in the leaf nodes of an extended
CF-tree. Each non-leaf node represents a larger microcluster consisting of all
its sub-microclusters as shown in Figure 4. There may exist overlap between
microclusters and some methods [5,6] can be used to remedy this problem.

The dominating relationship can be applied to the microclusters. For any
two microclusters mc, and mcy, if z, = CF3}, then mc, >~ mcyp, that is, the
objects in mc, must be dominated by some objects in mc,. As the number of
microclusters is much less than that of objects, the computation cost is very low.

Let us now examine the neighborhood relationship between microclusters.
Supposed object p is in a microcluster mc,, the distance between mc, and any
microcluster mey, is represented as: dist,,(mcq, mep) = dist(xq, xp) — 1o — 15 If
dist,, (mcq, mey) < €, then mey, and me, are e-neighboring microclusters for p.

The basic idea of mining thick skyline is as follows. Instead of accessing every
object in the dataset, we only need to identify the microclusters that contain
skyline objects (called skylining microclusters), then find which microclusters

L .
)Z. The minimum

Mining Thick Skylines over Large Databases 263

are their e-neighbors. The thick skyline objects can finally be determined from
those microclusters. Skylining microclusters is an appropriate summarization of
thick skyline in the case of large number of skylines or dynamic dataset.

The algorithm starts at the root node of the CF-tree and searches the micro-
cluster in the ascending order of distance mdist,. Initially, the algorithm selects
the minimum one. Since the CF-tree is a hierarchical structure, the correspond-
ing microcluster mc; in the leaf node can be quickly located. mc; is a skylining
microcluster and is added to a heap h; sorted by the distance mdist,. Then
the algorithm selects the microcluster with the next minimum distance to the
origin. If C'F'3% of the selected microcluster is dominated by the centroid of any
microcluster in hq, it cannot contain skyline objects and we simply skip it. If it
is strongly dominated by any microcluster in hj, it can be pruned. Otherwise,
the selected microcluster will be added to hy. The algorithm continues until all
of them are visited. As only the statistics of the microcluster is accessed, the
cost is low.

Afterwards, the algorithm visits heap hq, and extracts the microcluster mc;
at the top of the heap. Within md,, object CF'4% is the skyline object, and the
remaining objects are examined for skylineness in the order of mdist, (property
guaranteed by [8]). Then a group e-neighbors search for all the skyline objects
in mc} is launched by searching e-neighboring microclusters. Using the extended
CF-tree, we simply check whether mc] intersects with larger microclusters in the
root node, then with the non-leaf nodes, and finally locate the desired micro-
clusters in the leaf nodes. The search complexity is bounded by the tree height
and the intersected number of microclusters in the tree. The objects in these
neighboring microclusters are examined whether they are e-neighbors of skyline
objects in mc,. The microcluster mc, is then removed from hq, and the algorithm
terminates until h; is empty. Based on the above description, The pseudocode
for the Microcluster-based algorithm is as follows.

Algorithm 2 A Microcluster-based Method.
Input: m microclusters, and the distance threshold e.
Output: The thick skyline.

Method:

1. S=0;T=0; heap, = 0;

2. WHILE any mc¢; with minmdist, not visited DO
3. IF =(mc; € heapy = mc;) THEN

4 Add mc; to heapi;

5. WHILE heap is not empty DO

6. Select mc; at the top of heaps;

7. Select object p in mc; with min mdist,;
8. IF =(p € S = p) THEN;

9. Add p to S;

10. Find neighboring microclusters of mc;
11. Add e-neighbors of skyline in mc] to T}

12. Output thick skyline S U T

264 Wen Jin, Jiawei Han, and Martin Ester

4 Experiments

In this section, we report the results of our experimental evaluation in terms of
efficiency and effectiveness. We compare the runtime performance and evaluate
several factors such as the choice of e. We focus on the cost in the computing
stage instead of pre-processing stage such as index or CF-tree building. Follow-
ing similar data generation methods in [3], we employ two types of datasets:
independent databases where the attribute values of tuples are generated using
uniform distributions and anti-correlated datasets where the attribute values are
good in one dimension but are bad in one or all other dimensions. The dimen-
sionality of datasets d is between 2 and 5, the value of each dimension is in the
integer range [1, 1000] and the number of data (cardinality) N is between 100k
and 10M. We have implemented the three proposed methods in C++. All the
experiments are conducted on Intel 1GHZ processor with 512M RAM.
e Runtime Performance To investigate the runtime versus different dimensionali-
ties, We use dataset with cardinality 1M. Figures 5 and 6 depict the result in in-
dependent and anti-correlated distribution respectively. In both cases, Indexing-
and-Estimating method achieves best performance in small dimensionality (d=2),
due to its list structure being most suitable for relative small dataset and skyline
size. Microcluster-based method is best towards large dimensionality (d > 2) and
large skyline size, and the Sampling-and-Pruning method ranks the third.
Figures 7 and 8 show the runtime w.r.t. varied cardinality in independent
and anti-correlated distributed 3-d datasets respectively(e = 1). In both cases,
Microcluster-based method starts to over compete Indexing-and-Estimating
when N > 600K due to its region pruning and good scalability of hierarchical
structure. As there is no index to facilitate computation, Sampling-and-Indexing
still ranks the third, but the run time is not bad even when cardinality N=10M.

45 50
Indexing-and-Estimating —»—
40 Sampling-and-Pruning —<—
35 | MicroCluster-based —+—
30
25 | 30 |
20 25

15 20 |
10] 15 b
5r E 10 |

Indexing-and-Estimating —%—
45 Sampling-and-Pruning —<—
40 b MicroCluster-based

35

Runtime(sec.)
Runtime(sec.)

o ‘ ‘ ‘ ‘ 5 : : ‘ ‘
o 1 2 3 4 5 o 1 2 3 4 5
Dimensions Dimensions
Fig. 5. Runtime vs. Dimensionality (I). Fig. 6. Runtime vs. Dimensionality (II).

e The Effect of ¢ Obviously, the choice of € values will affect the size of thick
skyline. € is usually small w.r.t. the domain bound, reflecting the “local neigh-
borhood”, and can be recommended by the system as an initial parameter for the
future interaction. When we increase ¢ value from 1 to 30 in 1M independent 3-d
dataset, Figure 12 and Figure 9 show that both the number of thick skyline and
the run time of all algorithms increase. In particular, Microcluster-based method

Mining Thick Skylines over Large Databases 265

60 T T T 350 T T T T
Indexing-and-Estimating —%— Indexing-and-Estimating —*%—
Sampling-and-Pruning —>— 300 F Sampling-and-Pruning —»—
50 MicroCluster-based —+— MicroCluster-based —+—
_ 250 |
¢ 40 S
3 8 200 |
£ %0 £
E 2 150
20
« = 100
10 50
0 L L L 0 H L L L
0 500 1000 1500 2000 0 2000 4000 6000 8000 10000
Cardinality(x 1k) Cardinailty(x 1k)
Fig. 7. Runtime vs. Cardinality(I). Fig. 8. Runtime vs. Cardinality (II).
35 30000

‘Indexing‘-and-Est‘imating o "Thick Independen\ —a—

30 F Sampling-and-Pruning —>— g Thin Independent —%—
MicroClustey:b: 25000 - Thick AntiCorrelated —<—

o5 i Thin AntiCorrelated —+—
20000

20 R
15000

10 —M 10000 |
5000

Runtime(sec.)
(T)Skyline

0 o
0 5 10 15 20 25 30 o 1
Eps Dimensions
Fig. 9. Runtime vs. Eps. Fig. 10. Dimensionality vs. (T)Skyline.
45000 25000
3-d 1M Independent dataset —+—
40000
35000 20000
2 30000 2
= = 15000
& 25000 =
< 2
2 20000 £ 10000
E 15000 S
10000 5000
5000
o , ‘ ‘ ‘ o
o] 2000 4000 6000 8000 10000 o 5 10 15 20 25 30
Cardinality(x 1k) Eps
Fig. 11. Thick Skyline vs. Cardinality. Fig. 12. Thick Skyline vs. Eps.

is always the best and keeps a good scalability. Indexing-and-Estimating method
is better than Sampling-and-Pruning method in runtime.

e The Effect of Dimensionality and Cardinality The change of dimensionality will
affect the size of thick skyline which is illustrated in Figure 10. With the cardi-
nality of 100K, € chosen as the square root of sum of 0.1% of the maximum value
in each dimension, Figure 10 shows the size of both thin and thick skylines in
different dimensions. We notice that if dimensionality increases, the number of
the thick skyline objects increases dramatically for both independent and anti-
correlated distributed dataset, with the latter having higher speed. The affect of
cardinality is shown in Figure 11.

5 Conclusions

The paradigm of rank-aware query processing, in particular, the new skyline
operator, has recently received a lot of attention in database community. In

266 Wen Jin, Jiawei Han, and Martin Ester

this paper, we propose a novel notion of thick skyline based on the distance
constraint of a skyline object from its neighbors. The task of mining thick sky-
line is to recommend skyline objects as well as their e-distance neighbors. We
develop three algorithms, Sampling-and-Pruning, Indexing-and-Estimating and
Microcluster-based, to find such thick skylines in large databases. Our experi-
ments demonstrate the efficiency and effectiveness of the algorithms. We believe
the notion of thick skyline and mining methods not only extends the skyline op-
erator in database query, but also provides interesting patterns for data mining
tasks. Future work includes mining thick skylines in data streams and combining
the task with other regular data mining process.

References

1. J. L. Bentley, K. L. Clarkson, D. B. Levine. Fast linear expected-time alogorithms
for computing maxima and convex hulls. In SODA 1990.
2. W.-T. Balke, U. Giintzer, J. X. Zheng. Efficient Distributed Skylining for Web
Information Systems In EBDT 2004.
3. S. Borzsonyi, D. Kossmann, and K. Stocker, The Skyline Operator. In ICDFE 2001.
4. T. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms,
second edition. The MIT Press, 2001.
5. Alexander Hinneburg, Daniel A. Keim Optimal Grid-Clustering: Towards Breaking
the Curse of Dimensionality in High-Dimensional Clustering. VLDB 1999: 506-517
6. W. Jin, K. H. Tung, and J. Han. Mining Top-n Local Outliers in Very Large
Databases. In KDD 2001.
7. H. T. Kung et. al. On finding the maxima of a set of vectors. JACM, 22(4), 1975.
8. D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky: An Online
Algorithm for Skyline Queries. In VLDB 2002.
9. J. Matousek. Computing dominances in E™. Inf. Process. Lett., 38(5), 1991.
10. R. Motwani, P. Raghavan. Randomized Algorithms. Cambridge Univ. Press, 1995.
11. F. Nielsen. Output-sensitive peeling of convex and maximal layers. Thesis, 1996
12. F. P. Preparata, and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.
13. D. Papadias, Y. Tao, G. Fu, and B. Seeger. An Optimal and Progressive Algoroithm
for Skyline Queries. In SIGMOD’03.
14. 1. Stojmenovic and M. Miyakawa. An Optimal Parallel Algorithm for Solving the
Maximal Elements Problem in the Plane. In Parallel Computing, 7(2), 1988.
15. K. Tan et al. Efficient Progressive Skyline Computation. In VLDB 2001.
16. T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering
method for very large databases. In SIGMOD’96.

	1 Introduction
	2 Related Work
	3 The Thick Skyline and Mining Algorithms
	3.1 Sampling-and-Pruning Method
	3.2 Indexing-and-Estimating Method
	3.3 Microcluster-Based Method

	4 Experiments
	5 Conclusions
	References

