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Abstract. For many clustering algorithms, such as k-means, EM, and
CLOPE, there is usually a requirement to set some parameters. Often,
these parameters directly or indirectly control the number of clusters to
return. In the presence of different data characteristics and analysis con-
texts, it is often difficult for the user to estimate the number of clusters
in the data set. This is especially true in text collections such as Web
documents, images or biological data. The fundamental question this pa-
per addresses is: “How can we effectively estimate the natural number of
clusters in a given text collection?”. We propose to use spectral analysis,
which analyzes the eigenvalues (not eigenvectors) of the collection, as the
solution to the above. We first present the relationship between a text
collection and its underlying spectra. We then show how the answer to
this question enhances the clustering process. Finally, we conclude with
empirical results and related work.

1 Introduction

The bulk of data mining research is devoted to the development of techniques
that solve a particular problem. Often, the focus is on the design of algorithms
that outperform previous techniques either in terms of speed or accuracy. While
such effort is a valuable endeavor, the overall success of knowledge discovery
(i.e., the larger context of data mining) requires more than just algorithms for
the data. With an exponential increase of data in recent years, an important and
crucial factor to the success of knowledge discovery is to close the gap between
the algorithms and the user.

A good example to argue a case for the above is clustering. In clustering,
there is usually a requirement to set some parameters. Often, these parameters
directly or indirectly control the number of clusters to return. In the presence
of different data characteristics and analysis contexts, it is often difficult for the
user to determine the correct number of clusters in the data set [1-3]. Therefore,
setting these parameters require either detailed pre-existing knowledge of the
data, or time-consuming trial and error. In the latter case, the user also needs

* spectroscopy n. the study of spectra or spectral analysis.

J.-F. Boulicaut et al. (Eds.): PKDD 2004, LNAI 3202, pp. 301-312, 2004.
© Springer-Verlag Berlin Heidelberg 2004



302 Wenyuan Li et al.

sufficient knowledge to know what is a good clustering. Worse, if the data set is
very large or has a high dimensionality, the trial and error process becomes very
inefficient for the user.

To strengthen the case further, certain algorithms require a good estimate
of the input parameters. For example, the EM [4] algorithm is known to perform
well in image segmentation [5] when the number of clusters and the initialization
parameters are close to their true values. Yet, one reason that limits its applica-
tion is the poor estimate on the number of clusters. Likewise, a poor parameter
setting in CLOPE [6] can dramatically increase its runtime. In all cases above, the
user is likely to devote more time in parameter tuning rather than knowledge
discovery. Clearly, this is undesirable.

In this paper, we provide a concrete instance of the above problem by study-
ing the issue in the context of text collections, i.e., Web documents, images,
biological data, etc. Such data sets are inherently large in size and have dimen-
sionality in magnitude of hundreds to several thousands. And considering the
domain specificity of the data, getting the user to set a value for k, i.e., the num-
ber of clusters, becomes a challenging task. In this case, a good starting point is
to initialize k to the natural number of clusters.

This gives rise to the fundamental question that this paper addresses: “How
can we effectively estimate the natural number of clusters for a given text col-
lection?”. Our solution is to perform a spectral analysis on the similarity space
of the text collection by analyzing the eigenvalues (not eigenvectors) that en-
code the answer to the above question. Using this observation, we next provide
concrete examples of how the clustering process is enhanced in a user-centered
fashion. Specifically, we argue that spectral analysis addresses two key issues
in clustering: it provides a means to quickly assess the cluster quality; and it
bootstraps the analysis by suggesting a value for k.

The outline of this paper is as follows. In the next section, we begin with some
preliminaries of spectral analysis and its basic properties. Section 3 presents our
contribution on the use of normalized eigenvalues to answer the question we
posed in this paper. Section 4 discusses a concrete example of applying the
observation to enhance the clustering process. Section 5 presents the empirical
results as evidence to the viability of our proposal. Section 6 discusses the related
work, and Section 7 concludes this paper.

2 Preliminaries

Most algorithms perform clustering by embedding the data in some similarity
space [7], which is determined by some widely-used similarity measures, e.g.,
cosine similarity [8]. Let S = (8;j)nxn be the similarity space matrix, where 0 <
sij <1, 84 =1 and s;5 = sj;, i.e., S is symmetric. Further, let G(S) = (V, E, S)
be the graph of S, where V' is the set of n vertices and E is the set of weighted
edges. Each vertex v; of G(S) corresponds to the i-th column (or row) of S, and
the weight of each edge v;0; corresponds to the non-diagonal entry s;;. For any
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two vertices (v;, v;), a larger value of s;; indicates a higher connectivity between
them, and vice versa.

Once we obtained G(S), we can analyze its spectra as we will illustrate in
the next section. However, for ease of discussion, we establish the following basic
facts of spectral graph theory below. Among them, the last fact about G(S) is
an important property that we exploit: it depicts the relationship between the
spectra of the disjoint subgraphs G(S;) and the spectra of G(S).

Theorem 1. Let A\ = Ao > ... = A\, be the eigenvalues of G(S) such that
-1 < AN < 1,4 =1,2,---,n. Then, the following holds: (i) > X\i = 0, and
A1 = 1; (i) if G(S) is connected, then Ay < 1; (iii) the spectra of G(S) is the
union of the spectra of its disjoint subgraphs G(S;).

Proof. As shown in [9,10].

In reality, the different similarity matrices are not normalized making it dif-
ficult to analyze them directly. In other words, the eigenvalues do not usually
fall within —1 < \; < 1. Therefore, we need to perform an additional step to get
Theorem 1: we transform S to a weighted Laplacian L = (¢;;), where £;; € [0;2)
is a normalized eigenvalue obtainable by the following:

-2 =

gij = /—di7dj ,  Sij 7£ 0 (1)

0, otherwise

where d; = Zj si; is the degree of vertex v; in G(S). We then derive a variant
of L defined as follows:

L=D Y%S -1)D /2 (2)

where D is the diagonal matrix, diag(d;). From Equations 1 and 2, we can deduce
eig(L) = {1 =X |\ € eig(L)}, where eig(+) is the set of eigenvalues of S. Notably,
the eigenvalues in L maintains the same conclusions and properties of those found
in L. Thus, we now have a set of eigenvalues that can be easily analyzed. Above
all, this approach does not require any clustering algorithm to find k. This is
very attractive in terms of runtime and simplicity. Henceforth, the answer to our
question is now mapped to a matter of knowing how to analyze eig(L). We will
describe this in the next section.

3 Clustering and Spectral Properties

For ease of exposition, we first discuss the spectra properties of a conceptually
disjoint data set, whose chosen similarity measure achieves a perfect cluster-
ing. From this simple case, we extend our observations to real-world data sets,
and show how the value of k£ can be obtained.
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3.1 A Simple Case

Assume that we have a conceptually disjoint data set, whose chosen similarity
measure achieves a perfect clustering. In this case, the similarity matrix A will
have the following structure:

Ay Ay | m

A — R : (3)
Apr - Api | np

ny - Nk

with the properties: all entries in each diagonal block matrix A;; of A are 1; and
all entries in each non-diagonal block matrix A;; in A are 0. From this similarity
matrix, we can obtain its eigenvalues in decreasing order [9], i.e.,

1, 1<i<k

Lemma 1. Given a similarity matriz S as defined in Equation (3), where ny +
-+« 4+ ny = n; where each diagonal entry S;; satisfies 0 < n; — ||Sullr < 6(6 —
0); and where each non-diagonal entry S;; satisfies ||Sijllr — 0 (|| - |F is the
Frobenius norm), then S achieves a perfect clustering of n clusters. At the same
time, the spectra of G(S) exhibit the following properties:

Ai—1 (i=1,---;kand0 < \; <1) (5)
INi|] =0 (t=k+1,---,n)

Proof. Let E =S — A, where A is as defined in Equation (3). From definitions
of A and S, we obtain the following:

0<n;—|Sillr <6(6 —0), [[Aillr=mn;

[Sijllr — 0, [|Aillr=0 } = [|Ellr — 0 (6)

where by the well-known property of the Frobenius norm, and the p matrix norm
(where p = 2 [10]), we have:

[Ell2 < [E[r (7)

and
[Ai(A+E) = X(A)| < |Ell2, (i=1,---,n) (8)
where || - ||2 is the p = 2 matrix norm. Equation (7) states that the Frobenius

norm of a matrix is always greater than or equal to the p matrix norm at p = 2,
and Equation (8) defines the distance between the eigenvalues in A and its
perturbation matrix S. In addition, the sensitivity of the eigenvalues in A to its
perturbation is given by ||El||2. Hence, from Equations (6), (7), and (8), we can
conclude that:

AZ(S)—>)\’L(A)7 (i:l,--~,n) (9)

which when we combine with Equation (4), we arrive at Lemma 1.
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Table 1. A small text collection taken and modified from [11]. It contains the titles of
12 technical memoranda: 5 about human-computer interaction; 4 about mathematical
graph theory; and 3 about clustering. The topics are conceptually disjoint with two
assumptions: (i) the italicized terms are the selected feature set; and (ii) the cosine
similarity measure is used to compute S.

cl| Human machine interface for ABC computer applications

c2| A survey of user opinion of computer system response time

c3| The EPS user interface management system

c4| System and human system engineering testing of FPS

c5| Relation of user perceived response time to error measurement

ml| The generation of random, binary, ordered trees

m2| The intersection graph of paths in trees

m3| Graph minors IV: Widths of trees and well-quasi-ordering
md| Graph minors: A survey

d1| Linguistic features and clustering algorithms for topical document clustering
d2| A comparison of document clustering techniques
d3| Survey of clustering Data Mining Techniques

Simply put, when the spectra distribution satisfies Equation (5), then S shows
a good clustering, i.e., the intra-similarity approaches 1, and the inter-similarity
approaches 0. As an example, suppose we have a collection with 3 clusters as
depicted in Table 1. The 3 topics are setup to be conceptually disjoint, and the
similarity measure as well as the feature set are selected such that the outcome
produces 3 distinct clusters. In this ideal condition, the spectra distribution (as
shown in Figure 1) behaves as per Equation (5).

Of course, real-world data sets that exhibit perfect clustering are extremely
rare. This is especially the case for text collections, where its dimensionality
is large but the data itself is sparse. In this case, most similarity measures do
not rate two documents as distinctively similar, or different. If we perform a
spectral analysis on the collection, we will end up with a spectra of G(S) that
is very different from our example in Figure 1. As we will see next, this spectra
distribution is much more complex.

3.2 Spectra Distribution in Large Data Sets

Point (iii) of Theorem 1 offers a strong conclusion between G(S) and its sub-
graphs. However, real-world data sets often exhibit a different characteristic. If
we examine their corresponding G(S), we will see that the connections between
G(S) and its subgraphs are weak, i.e., Lemma 1 no longer holds.

Fortunately, we can still judge the cluster quality and estimate the number of
natural clusters with spectral analysis. In this section, we present the proofs that
leads to the conclusion about cluster quality and k. But first, we need introduce
the Cheeger constant. Let SV C V of G(S). We define the volume of SV as:

vol(SV) = > d, (10)

veSV
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Fig. 1. The spectra distribution of the collection in Table 1: (a) Spectrum (> 0) of G(S)
and its subgraphs; (b) a graphical representation of S. Note that all grey images in this
paper are not “plots” of the spectra. Rather, they are a graphical way of summarizing
the results of clustering for comparison/discussion purposes.

where d, is the sum of all weighted edges containing vertex v. Further, let
E(6SV) be the set of edges, where each edge has one of its vertices in SV
but not the other, i.e., SV. Then, its volume is given by:

[EGSV)[= ) weight(v;, v;) (11)
v; €SV, ,0; ¢SV

and by Equations (10) and (11), we derive the Cheeger constant:

o B(ESV)
hg) = svev min(vol(SV), vol(SV)) 12

which measures the optimality of the bipartition in a graph. The magnitude
|E(6SV)| measures the connectivity between SV and SV while vol(SV) mea-
sures the density of SV against V.

Since SV enumerates all subsets of V, h(G) is a good measure that finds the
best bipartition, i.e., (SV, SV). Perhaps, more interesting is the observation that
no other bipartition gives a better clustering than the bipartition determined by
h(G). Therefore, h(G) can be used as an indicator of cluster quality, i.e., the
lower its value, the better the clustering.

Theorem 2. Given the spectra of G(S) as 1 =X = Ao = -2 A\, if Ao — 1,
then there exists a good bipartition for G(S), i.e., a good cluster quality.

Proof. From [9], we have the Cheeger inequality: (17—2/\2) < h(G) < /2(1 = A2)
that gives the bound of hA(G). By this inequality, if Ao — 1, then h(G) — 0. And
since h(G) — 0 implies a good clustering, we have the above.
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For a given similarity measure, Theorem 2 allows us to get a “feel” of the
clustering quality without actually running the clustering algorithm. This saves
computing resources and reduces the amount of time the user waits to get a
response. By minimizing this “waiting time” during initial analysis, we promote
interactivity between the user and the clustering algorithm. In such a system,
Theorem 2 can also be used to help judge the suitability of each supported
similarity measure. Once the measure is decided, the theorem to be presented
next, provides the user a starting value of k.

Theorem 3. Given the spectra of G(S) as 1 =X 2 Xy = -+ = N\, Tk > 2 such
that oy — 1 and a; — ap1 > 6 (0 < § < 1) for the sequence a; = i—;’, (i = 2),
where § is a predefined threshold to measure the first large gap between «;; and

k is the natural number of clusters in the data set.

Proof. Since Theorem 2 applies to both G(S) and its subgraphs G(S;;), then
we can estimate the cluster quality of the bipartition in G(S;;) (as well as its
subgraphs). Combine with Point (iii) of Theorem 1, we can conclude that the
number of eigenvalues in G(S) (that approach 1 and have large eigengaps) give
the value of k, i.e., the number of clusters.

To cite an example for the above, we revisit Table 1 and Figure 1. By
the Cheeger constant of G(S), SV = {ci1,ca,¢3,c4,c5} and SV = {mq, mo,
ms, my,dq,ds, ds} produces the best bipartition. Thus, Sq; represents the inter-
similarities in SV and Sso represents inter-similarities in SV. From Theorem 2,
we can assess the cluster quality of G(S)’s bipartition by As. Also, we can
recursively consider the bipartitions of the bipartitions of G(S), i.e., G(S11)
and G(Sz22). Again, the Cheeger constant of G(Sa2) shows that G(S22(1)) and
G(S22(2)) are the best bipartition in the subgraph G(Sa2). Likewise, the Ay of
G(S11), G(S22), G(S22(1)), and G(Sa2) all satisfy this observation.

In fact, this recursive bisection of G(S) is a form of clustering using the
Cheeger constant — the spectra of G(Sa2) contains the eigenvalues of G(S22(1))
and G(S22(2)), and G(S) contains the eigenvalues of G(S11) and G(Sa2) respec-
tively (despite with some small “fluctuations”). As shown in Figure 1(a), Az of
G(S) gives the cluster quality of the bipartition G(S11) and G(S22) in G(S); and
Az of G(S), which corresponds to Ay of G(Sa2), gives the cluster quality indicator
for the bipartition G(S22(1)) and G(S22(2)) in G(Sa2), and so on.

Therefore, if there exist k distinct and dense diagonal squares (i.e., S;; where
1 < i < k) in the matrix, then X\; of G(S) will be the cluster quality indicator
for the i-th bipartition (2 < ¢ < k), and the largest k eigenvalues of G(S) give
the estimated number of clusters in the data.

4 A Motivating Example

In this section, we discuss an example of how the theoretical observations dis-
cussed earlier work to close the gap between the algorithm and the user. For
illustration, we assume that the user is given some unknown collection.
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Table 2. The text collections used in our experiments to estimate k: we selected 4
classes of classic with each class containing 1,000 documents; 5 newsgroups with each
newsgroup containing 500 documents; 2 categories of the webset with each category
containing 600 documents.

Collections Source # Classes | # Documents
classic | ADI/CACM/CISI/CRAN/MED 5 5559

newsgroup UseNet news postings 17 7473
webset Categories in Yahoo [12] 10 6607

If the user does not have pre-existing knowledge of the data, there is a like-
lihood of not knowing where to start. In particular, all clustering algorithms
directly or indirectly require the parameter k. Without spectral analysis, the
user is either left guessing what value of k to start with; or expend time and
effort to find k using one of the existing estimation algorithm. In the case of the
latter, the user has to be careful in setting ky,q. (see Section 5.2) —if it’s set too
high, the estimation algorithm takes a long time to complete; if it’s set too low,
the user risks missing the actual value of k.

In contrast, our proposal allows the user to obtain an accurate value of k
without setting kj,q.. Performance wise, this process is almost instantaneous in
comparison to other methods that require a clustering algorithm. We believe
this is important if the user’s role is to analyze the data instead of waiting for
the algorithms. Once an initial value of k is known, the user can commence
clustering. Unfortunately, this isn’t the end of cluster analysis.

Upon obtaining the outcome, the user usually faces another question: what
is the quality of this clustering? In our opinion, there is no knowledge discovery
when there is no means to judge the outcome. As a result, it is also at this stage
where interactivity becomes important. On this issue, some works propose the
use of constraints. However, it is difficult to formulate an effective constraint
if the answer to the above is unknown. This is where spectral analysis plays a
part. By Theorem 2, the user is given feedback about the cluster quality. At the
same time, grey images (e.g., Figure 1(b)) can also be constructed to help the
user gauge the outcome.

Depending on the feedback, the user may then wish to adjust k, or use
another similarity measure. In either case, the user is likely to make a better
decision with this assistance. Once the new parameters are decided, another run
of the clustering algorithm begins. Our proposal would then kick in at the end
of each run to provide the feedback to the user via Theorem 2. This interaction
exists because different clustering objectives can be formulated on the same data
set. At some point, the user may group overlapping concepts in one class. Other
times, the user may prefer to separate them. In this aspect, our approach is
non-intrusive and works in tandem with the user’s intentions.

5 Empirical Results

The objective of our experiments is to provide the empirical evidence on the
viability of our proposal. Due to space limitation, we only report a summary of
our results here. The full details can be obtained from [13].
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Fig. 2. The spectrum graphs (since A1 is always 1, our analysis begins from \2) and
the graphical representation of their clustering for all 3 collections: the first two data
sets are conceptually disjoint, and the last has overlapping concepts.

Figure 2(a) shows the web2 collection with 2 class labels, and their topic
being completely disjoint: finance and sport. In this case, we observe that Ao has
a higher value than the others. Therefore, we conclude k£ = 2 and meanwhile,
the high value of A2 (by Theorem 2) indicates that this is a good clustering. In
the second case, classic4 has 4 conceptually disjoint topics as observed in
Figure 2(b). From its spectra graph, we see that Ao, A3 and A4 show higher
values and wider gaps than other eigenvalues. Again by Theorem 3, our method
obtains the correct number of clusters, i.e., k = 4.

The third test is the most challenging. There are 5 topics: atheism, comp.sys,
comp.windows, misc.forsale and rec.sport. They are not conceptually disjoint
because comp.sys and comp.windows belong to the broader topic of comp in
the newsgroup. This is also graphically echoed in Figure 2(c). When we apply
our analysis, only A2, A3, and A4 have a higher value and a wider gap than the
others. So by our theorem, k = 4. This conclusion is actually reasonable, since
comp is more different than the other topics. If we observe the grey image in Fig-
ure 2(c), we see that the second and third squares appear to “meshed” together
— an indication of similarity between comp.sys and comp.windows. Furthermore,
comp.sys, comp.windows and misc.forsale can also be viewed as one topic. This
is because misc.forsale has many postings on buying and selling of computer
parts. Again, this can be observed in the grey image. On the spectra graph, A4
is much lower than Ao, A3, and is closer to the remaining eigenvalues. Therefore,
it is possible to conclude that A4 may not contribute to k, and hence k = 3
by Theorem 3. Strictly speaking, this is also an acceptable estimation. In other
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Table 3. Comparison with 3 well-known indexes: the Calinski and Harabasz (CH)
index; Krzanowski and Lai (KL) index; and Hartigan (Hart) index with 3 well-known
clustering algorithms: bisecting k-means, graph-based, and hierarchical — a (/) indi-
cates a correct estimation.

Bisecting k-means Graph-based Hierarchical
web2 | classic4 | newsb | web2 | classic4 | newsb | web2 | classic4 | newsb
CH 5 2 3 3 3 3 7 2 5 (V)
KL 29 17 22 27 21 22 22 21 9
Hart 6 13 4 (/) 6 10 4 (/) 1 2 1

words, the onus is on the user to judge the actual value of k, which is really
problem-specific as illustrated in the Section 4.

Next, we compare the efficiency and effectiveness of our method. To date,
most existing techniques require choosing an appropriate clustering algorithm,
where it is iteratively ran with a predefined cluster number from 2 to k4. The
optimum £ is then obtained by an internal indexed based on the clustering out-
come. In this experiment, we compared our results against 3 widely used statis-
tical methods [14] using 3 well-known clustering algorithms (see Table 3). From
the table, our proposal remarkably outperforms all 3 methods in terms of accu-
racy. More exciting, our proposal is independent of any clustering algorithm, is
well-suited to high dimensional data sets, has low complexity, and can be easily
implemented with existing packages as shown in the following.

On the performance of our method, the complexity of transforming S to L is
O(h), where h is the number of non-zero entries in S. Therefore, the eigenvalues
can be efficiently obtained by the Lanczos method [10]. Since the complexity of
each iteration in Lanczos is O(h+n), the complexity of our method is therefore
O(k(h + n)). If we ignore the very small k in real computations, the complex-
ity of our method becomes O(h + n). There are fast Lanczos packages (e.g.,
LANSO [15], PLANSO [16]) for such computation.

6 Related Works

Underlined by the fact that there is no clear definition of what is a good clus-
tering [2,17], the problem of estimating the number of clusters in a data set
is arguably a difficult one. Over the years, several approaches to this problem
have been suggested. Among them, the more well-known ones include cross-
validation [18], penalized likelihood estimation [19, 20], resampling [21], and find-
ing the ‘knee’ of an error curve [2,22]. However, these techniques either make a
strong parametric assumption, or are computationally expensive.

Spectral analysis has a long history of wide applications in the scientific
domain. In the database community, eigenvectors have applications in areas
such as information retrieval (e.g., singular value decomposition [23]), collabo-
rative filtering (e.g., reconstruction of missing data items [24]), and Web search-
ing [25]. Meanwhile, application areas of eigenvalues include the understanding
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of communication networks [9] and Internet topologies [26]. To the best of our
knowledge, we have yet to come across works that use eigenvalues to assist clus-
ter analysis. Most proposals that use spectral techniques for clustering focused
on the use of eigenvectors, not eigenvalues.

7 Conclusions

In this paper, we demonstrate a concrete case of our argument on the need to
close the gap between data mining algorithms and the user. We exemplified our
argument by studying a well-known problem in clustering that every user faces
when starting the analysis: “What value of k should we select so that the analysis
converges quickly to the desired outcome?”.

We answered this question, in the context of text collections, with spectral
analysis. We show (both argumentatively and empirically) that if we are able
to provide a good guess to the value of k, then we have a good starting point
for analysis. Once the “ground” is known, data mining can proceed by changing
the value of k incrementally from the starting point. This is often better than
the trial and error approach. In addition, we also show that our proposal can
be used to estimate the quality of clustering. This process, as part of cluster
analysis, is equally important to the success of knowledge discovery. Our proposal
contributes in part to this insight.

In the general context, the results shown here also demonstrate the feasibility
to study techniques that bridge the algorithms and the user. We believe that this
endeavor will play a pivotal role to the advancement of knowledge discovery. In
particular, as data takes a paradigm shift into continuous and unbounded form,
the user will no longer be able to devote time in tuning parameters. Rather,
their time should be spent on interacting with the algorithms, such as what we
have demonstrated in this paper.

References

1. Salvador, S., Chan, P.: Determining the number of clusters/segments in hierarchical
clustering/segmentation algorithms. Technical report 2003-18, Florida Institute of
Technology (2003)

2. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a
dataset via the gap statistic. Technical Report 208, Dept. of Statistics, Stanford
University (2000)

3. Sugar, C., James, G.: Finding the number of clusters in a data set : An information
theoretic approach. Journal of the American Statistical Association 98 (2003)

4. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data
via the em algorithm. Journal of Royal Statistical Society 39 (1977) 1-38

5. Evans, F., Alder, M., deSilva, C.: Determining the number of clusters in a mix-
ture by iterative model space refinement with application to free-swimming fish
detection. In: Proc. of Digital Imaging Computing: Techniques and Applications,
Sydney, Australia (2003)



312

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Wenyuan Li et al.

Yang, Y., Guan, X., You, J.: CLOPE: A fast and effective clustering algorithm for
transactional data. In: Proc. of KDD, Edmonton, Canada (2002) 682-687

Strehl, A., Ghosh, J., Mooney, R.: Impact of similarity measures on web-page
clustering. In: Proc. of AAAT Workshop on Al for Web Search. (2000) 58-64

. Jain, A K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing

Surveys 31 (1999) 264-323

Chung, F.R.K.: Spectral Graph Theory. Number 92 in CBMS Regional Conference
Series in Mathematics. American Mathematical Society (1997)

Golub, G., Loan, C.V.: Matrix Computations (Johns Hopkins Series in the Math-
ematical Sciences). 3rd edn. The Johns Hopkins University Press (1996)
Landauer, T., Foltz, P., Laham, D.: Introduction to latent semantic analysis.
Discourse Processes 25 (1998) 259-284

Sinka, M.P., Corne, D.W.: A Large Benchmark Dataset for Web Document Clus-
tering. In: Soft Computing Systems: Design, Management and Applications. I0S
Press (2002) 881-890

Li, W., Ng, W.K., Ong, K.L., Lim, E.P.: A spectroscopy of texts for effective clus-
tering. Technical Report TRC04/03 (http://www.deakin.edu.au/~1leong/pa-
pers/tr2), Deakin University (2004)

Gordon, A.: Classification. 2nd edn. Chapman and Hall/CRC (1999)

LANSO: (Dept. of Computer Science and the Industrial Liason Office, Univ. of
Calif., Berkeley)

Wu, K., Simon, H.: A parallel lanczos method for symmetric generalized eigenvalue
problems. Technical Report 41284, LBNL (1997)

Kannan, R., Vetta, A.: On clusterings: good, bad and spectral. In: Proc. of FOCS,
Redondo Beach (2000) 367-377

Smyth, P.: Clustering using monte carlo cross-validation. In: Proc. of KDD, Port-
land, Oregon, USA (1996) 126-133

Baxter, R., Oliver, J.: The kindest cut: minimum message length segmentation.
In: Proc. Int. Workshop on Algorithmic Learning Theory. (1996) 83-90

Hansen, M., Yu, B.: Model selection and the principle of minimum description
length. Journal of the American Statistical Association 96 (2001) 746-774

Roth, V., Lange, T., Braun, M., Buhmann, J.: A resampling approach to cluster
validation. In: Proc. of COMPSTAT, Berlin, Germany (2002)

Tibshirani, R., Walther, G., Botstein, D., Brown, P.: Cluster validation by predic-
tion strength. Technical report, Stanford University (2001)

Deerwester, S., Dumais, S., Landauer, T., Furnas, G., Harshman, R.: Indexing by
latent semantic analysis. JASIS 41 (1990) 391-407

Azar, Y., Fiat, A., Karlin, A., McSherry, F., Saia, J.: Spectral analysis of data. In:
ACM Symposium on Theory of Computing, Greece (2001) 619-626

Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46 (1999) 604-632

Vukadinovic, D., Huan, P.; Erlebach, T.: A spectral analysis of the internet topol-
ogy. Technical Report 118, ETH TIK-NR (2001)



	1 Introduction
	2 Preliminaries
	3 Clustering and Spectral Properties
	3.1 A Simple Case
	3.2 Spectra Distribution in Large Data Sets

	4 A Motivating Example
	5 Empirical Results
	6 Related Works
	7 Conclusions
	References



