
Data Retrieval and Evolution on the (Semantic)
Web: A Deductive Approach

François Bry, Tim Furche, Paula-Lavinia Pătrânjan, and Sebastian Schaffert

Institut für Informatik, Ludwig-Maximilians-Universität München
Oettingenstr. 67, D-80538 München, Germany

Abstract. To make use of data represented on the Semantic Web, it
is necessary to provide languages for Web data retrieval and evolution.
This article introduces into the (conventional and Semantic) Web query
language Xcerpt and the event and update language XChange, and shows
how their deductive capabilities make them well suited for querying,
changing and reasoning with data on both the conventional and the
Semantic Web. To this aim, small application scenarios are introduced.

1 Introduction

The Semantic Web is an endeavour aiming at enriching the existing Web with
meta-data and data and meta-data processing to allow computer systems to
actually reason with the data instead of merely rendering it. To this aim, it is
necessary to be able to query and update data and meta-data. Existing Semantic
Web query languages (like DQL1 or TRIPLE2) are special purpose, i.e. they are
designed for querying and reasoning with special representations like OWL3 or
RDF4, but are not capable of processing generic Web data, and are furthermore
restricted to a specific reasoning algorithm like a certain description logic (e.g.
SHIQ). In contrast, the language Xcerpt presented in this article (and more
extensively in e.g. [1]) is a general purpose language that can query any kind
of XML data, i.e. “conventional” Web as well as Semantic Web data, and at
the same time provides advanced reasoning capabilities. It could thus serve to
implement a wide range of different reasoning formalisms.

Likewise, the maintenance and evolution of data on the (Semantic) Web is
necessary: the Web is a “living organism” whose dynamic character requires lan-
guages for specifying its evolution. This requirement regards not only updating
data from Web resources, but also the propagation of changes on the Web. These
issues have not received much attention so far, existing update languages (like
XML-RL Update Language [2]) and reactive languages [3] developed for XML
data offer the possibility to execute just simple update operations while impor-
tant features needed for propagation of updates on the Web are still missing. The
1 DAML Query Language, http://www.daml.org/dql.
2 TRIPLE Language, http://triple.semanticweb.org.
3 Web Ontology Language, http://www.w3.org/TR/owl-ref/
4 Resource Description Framework, http://www.w3.org/TR/rdf-primer/

http://www.daml.org/dql
http://triple.semanticweb.org
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-primer/

language XChange also presented in this article builds upon the query language
Xcerpt and provides advanced, Web-specific capabilities, such as propagation
of changes on the Web (change) and event-based communication between Web
sites (exchange), as needed for agent communication and Web services.

This article is structured as follows: Section 2 summarises the design prin-
ciples underlying the languages Xcerpt and XChange. Section 3 gives a brief
introduction into the Web query language Xcerpt, and illustrates the use of re-
cursion as a first step towards Semantic Web querying. Section 4 subsequently
introduces the event language XChange that builds upon Xcerpt. Section 5 intro-
duces a simple Semantic Web scenario and uses it to illustrate how Xcerpt and
XChange can be used for querying and evolution on the Semantic Web. Finally,
Section 6 concludes with a summary and perspectives for future research.

2 Design Principles of Xcerpt and XChange

2.1 Principles of Xcerpt

Pattern-Based Queries. Most query languages for the Web, like XQuery or
XSLT, use a path-based or navigational selection of data items, i.e. a selection is
specified in terms of path expressions (usually expressed in the language XPath)
consisting of a sequence of location steps that specify how to reach nodes in
the data tree in a stepwise manner. In contrast, Xcerpt uses a positional or
pattern-based selection of data items. A query pattern is like a form that gives
an example of the data that is to be selected, like the forms of the language QBE
or query atoms in logic programming. As in logic programming, a query pattern
can furthermore be augmented by zero or more variables, which serve to retrieve
data items from the queried data.

Incomplete Patterns. As data on the Web (e.g. XML) often differs much
in structure and does not necessarily conform to an (accessible) schema, query
patterns in a Web query language like Xcerpt need to be much more flexible
than in logic programming or relational databases. Therefore, Xcerpt allows to
specify incompleteness in breadth (i.e. within the same parent in the data tree)
as well as in depth (i.e. on paths in the data tree), and it is possible to consider
ordered and unordered content.

Rules. Xcerpt programs consist of deduction rules (if . . . then . . . rules) that
may interact via (possibly recursive) rule chaining. Rules are advantageous as
they are easy to comprehend even for novice users and can serve to structure
a program into logical components. They are also well-suited for deduction, i.e.
they allow to give meaning to data very much like rules in logic programming.

Backward Chaining. Rule-based query languages for traditional database sys-
tems (like Datalog) mainly use forward chaining, where rules are applied to the
current database until saturation is achieved (it is thus data driven). On the
Web, forward chaining is not always possible, for the database is the whole Web,

2

which is not feasible as an initial point for forward chaining. As a consequence,
a backward chaining approach is sought for. Backward chaining is goal driven,
i.e. only such resources are retrieved that are necessary to answer the query.

Separation of Querying and Construction. Most XML query languages
(e.g. XQuery and XSLT, but also pattern-based approaches such as XML-QL)
mix querying and construction by embedding data selection in construction pat-
terns and by using subqueries inside construction patterns. In this way, however,
the structure of the queried data is no longer apparent from the query. Therefore,
a strict separation of querying and construction is favourable.

Reasoning Capabilities. A query language for the Web should be capable
of querying both, XML data (on the standard Web) and meta-data (on the
Semantic Web). Most currently available query languages are specific to a certain
task, i.e. they are either capable of querying XML data, or capable of querying
and reasoning with meta-data in a specific formalism. However, meta-data might
be given in different formalisms (like OWL Light/DL/Full or RDF), wherefore
it is desirable that a query language is generic enough to work with any kind
of meta-data, and provides generic reasoning capabilities (e.g. like Prolog) that
allow to implement a wide range of different formalisms.

2.2 Principles of XChange

Communication Between Web Sites. XChange uses events to communicate
between Web Sites. An event is an XML document with a root element with
label event and the four parameters (represented as child elements as they may
contain complex content) raising-time (i.e. the time of the raising machine
when the event is raised), reception-time (i.e. the time of the receiving machine
when the event is received), sender (i.e. the URI of the site where the event has
been raised), and recipient (i.e. the URI of the site where the event has been
received). An event is an envelope for arbitrary XML content, and multiple
events can be nested (e.g. to create trace histories).

Peer-to-peer communication. XChange events are directly communicated be-
tween Web sites without a centralised processing or management of events. All
parties have the ability to initiate a communication. Since communication on
the Web might be unreliable, synchronisation is supported by XChange.

No broadcasting. The approach taken in XChange excludes broadcasting of
events on the Web, as sending events to all sites is not adequate for the frame-
work which XChange has been designed for (i.e. the Web). Hence, before an
event is sent, its recipient Web sites are determined.

Transactions as Updating Units. Since it is sometimes necessary to execute
complex updates in an all-or-nothing manner (e.g. when booking a trip on the
Web, a hotel reservation without a flight reservation is useless), the concept of
transactions is supported by the language XChange. More precisely, XChange

3

transactions are composed of events posted on the Web and updates to be per-
formed on one or more Web sites.

Complex applications specifying evolution of data and meta-data on the (Se-
mantic) Web require a number of features that cannot always be specified by
simple programs. In XChange transactions can also be used as means for struc-
turing complex XChange programs.

Rule-Based Language. The language XChange aims at establishing reactivity,
expressed by reaction rules, as communication paradigm on the Web. Reaction
rules (also called Event-Condition-Action rules or active rules) are rules of the
form on event if condition do action . At every occurrence of the event,
the rule is triggered and the corresponding action is executed if the specified
condition is satisfied. The components of an XChange Event-Condition-Action
rule are:

– Event is an Xcerpt query against events received by the Web sites,
– Condition is an Xcerpt query against (local or remote) Web resources, and
– Action might be raising events and/or executing updates. These actions may

be compound and considered as transactions. XChange considers transac-
tions instead of isolated actions as active rules heads.

Pattern-Oriented Update Specifications. A metaphor for XChange (and at
the same time one of the novelties of the update language) is to see XChange
update specifications (i.e. Xcerpt queries against data terms, augmented with
update operations) as forms, answers as form fillings yielding the data terms
after update execution.

3 Xcerpt: Querying the Web

An Xcerpt program consists of at least one goal and some (possibly zero) rules.
Rules and goals contain query and construction patterns, called terms. Terms
represent tree-like (or graph-like) structures. The children of a node may either
be ordered, i.e. the order of occurrence is relevant (e.g. in an XML document
representing a book), or unordered, i.e. the order of occurrence is irrelevant and
may be chosen by the storage system (as is common in database systems). In the
term syntax, an ordered term specification is denoted by square brackets [], an
unordered term specification by curly braces { }.

Likewise, terms may use partial term specifications for representing incom-
plete query patterns and total term specifications for representing complete query
patterns (or data items). A term t using a partial term specification for its sub-
terms matches with all such terms that (1) contain matching subterms for all
subterms of t and that (2) might contain further subterms without corresponding
subterms in t. Partial term specification is denoted by double square brackets
[[]] or curly braces {{ }}. In contrast, a term t using a total term speci-
fication does not match with terms that contain additional subterms without
corresponding subterms in t. Total term specification is expressed using single
square brackets [] or curly braces { }.

4

Data Terms represent XML documents and the data items of a semistructured
database, and may thus only contain total term specifications (i.e. single square
brackets or curly braces). They are similar to ground functional programming
expressions and logical atoms. A database is a (multi-)set of data terms (e.g. the
Web). A non-XML syntax has been chosen for Xcerpt to improve readability,
but there is a one-to-one correspondence between an XML document and a data
term.

Example 1. The following two data terms represent a train timetable (from
http://railways.com) and a hotel reservation offer (from http://hotels.net).

At site http://railways.com: At site http://hotels.net:
travel {

last-changes-on { "2004-04-30" },
currency { "EUR" },
train {

departure {
station { "Munich" },
date { "2004-05-03" },
time { "15:25" }

},
arrival {

station { "Vienna" },
date { "2004-05-03" },
time { "19:50" }

},
price { "75" }

},
train {

departure {
station { "Munich" },
date { "2004-05-03" },
time { "13:20" }

},
arrival {

station { "Salzburg" },
date { "2004-05-03" },
time { "14:50" }

},
price { "25" }

},
train {

departure {
station { "Salzburg" },
date { "2004-05-03" },
time { "15:20" }

},
arrival {

station { "Vienna" },
date { "2004-05-03" },
time { "18:10" }

}
}...

}

voyage {
currency { "EUR" },
hotels {

city { "Vienna" },
country { "Austria" },
hotel {

name { "Comfort Blautal" },
category { "3 stars" },
price-per-room { "55" },
phone { "+43 1 88 8219 213" },
no-pets {}

},
hotel {

name { "InterCity" },
category { "3 stars" },
price-per-room { "57" },
phone { "+43 1 82 8156 135" }

},
hotel {

name { "Opera" },
category { "4 stars" },
price-per-room { "106" },
phone { "+43 1 77 8123 414" }

},
...
},

...
}

Query Terms are (possibly incomplete) patterns matched against Web re-
sources represented by data terms. They are similar to the latter, but may
contain partial as well as total term specifications, are augmented by variables
for selecting data items, possibly with variable restrictions using the ; con-
struct (read as), which restricts the admissible bindings to those subterms that
are matched by the restriction pattern, and may contain additional query con-
structs like position matching (keyword position), subterm negation (keyword
without), optional subterm specification (keyword optional), and descendant
(keyword desc).

5

Query terms are “matched” with data or construct terms by a non-standard
unification method called simulation unification that is based on a relation called
simulation. In contrast to Robinson’s unification (as e.g. used in Prolog), sim-
ulation unification is capable of determining substitutions also for incomplete
and unordered query terms. Since incompleteness usually allows many different
alternative bindings for the variables, the result of simulation unification is not
only a single substitution, but a (finite) set of substitutions, each of which yield-
ing ground instances of the unified terms such that the one ground term matches
with the other.

Construct Terms serve to reassemble variables (the bindings of which are
specified in query terms) so as to construct new data terms. Again, they are
similar to the latter, but augmented by variables (acting as place holders for
data selected in a query) and the grouping construct all (which serves to collect
all instances that result from different variable bindings). Occurrences of all
may be accompanied by an optional sorting specification.

Example 2. Left: A query term retrieving departure and arrival stations for a
train in the train document. Partial term specifications (partial curly braces) are
used since the train document might contain additional information irrelevant
to the query. Right: A construct term creating a summarised representation of
trains grouped inside a trains term. Note the use of the all construct to collect
all instances of the train subterm that can be created from substitutions in the
substitution set resulting from the query on the left.

travel {{
train {{

departure {{
station { var From } }},

arrival {{
station { var To } }}

}}
}}

trains {
all train {

from { var From },
to { var To }

}
}

Construct-Query Rules (short: rules) relate a construct term to a query
consisting of AND and/or OR connected query terms. They have the form

CONSTRUCT Construct Term FROM Query END

Rules can be seen as “views” specifying how to obtain documents shaped in
the form of the construct term by evaluating the query against Web resources
(e.g. an XML document or a database). Queries or parts of a query may be fur-
ther restricted by arithmetic constraints in a so-called condition box, beginning
with the keyword where.

Example 3. The following Xcerpt rule is used to gather information about the
hotels in Vienna where a single room costs less than 70 Euro per night and where
pets are allowed (specified using the without construct).

6

CONSTRUCT
answer [all var H ordered by [P] ascending]

FROM
in {

resource { "http://hotels.net"},
voyage {{

hotels {{
city { "Vienna" },
desc var H ; hotel {{

price-per-room { var P },
without no-pets {}

}}
}}

}}
} where var P < 70

END

An Xcerpt query may contain one or several references to resources. Xcerpt
rules may furthermore be chained like active or deductive database rules to
form complex query programs, i.e. rules may query the results of other rules.
Recursive chaining of rules is possible. In contrast to the inherent structural
recursion used e.g. in XSLT, which is essentially limited to the tree structure of
the input document, recursion in Xcerpt is always explicit and free in the sense
that any kind of recursion can be implemented. Applications of recursion on the
Web are manifold:

– structural recursion over the input tree (like in XSLT) is necessary to perform
transformations that preserve the overall document structure and change
only certain things in arbitrary documents (e.g. replacing all em elements in
HTML documents by strong elements).

– recursion over the conceptual structure of the input data (e.g. over a sequence
of elements) is used to iteratively compute data (e.g. create a hierarchical
representation from flat structures with references).

– recursion over references to external resources (hyperlinks) is desirable in
applications like a Web crawler that recursively visit Web pages.

Example 4. The following scenario illustrates the usage of a “conceptual” recur-
sion to find train connections, including train changes, from Munich to Vienna.

The train relation (more precisely the XML element representing this rela-
tion) is defined as a “view” on the train database (more precisely on the XML
document seen as a database on trains):

CONSTRUCT
train [from [var From], to [var To]]

FROM
in {

resource { "file:travel.xml" },
travel {{

train {{
departure {{ station { var From } }},
arrival {{ station { var To } }}

}}
}}

}
END

A recursive rule implements the transitive closure train-connection of the
relation train. If the connection is not direct (recursive case), then all interme-

7

diate stations are collected in the subterm via of the result. Otherwise, via is
empty (base case).

CONSTRUCT
train-connection [

from [var From],
to [var To],
via [var Via, all optional var OtherVia]

]
FROM

and {
train [from [var From], to [var Via]],
train-connection [

from [var Via],
to [var To],
via [[optional var OtherVia]]

]
}

END

CONSTRUCT
train-connection [

from [var From],
to [var To],
via []

]
FROM

train [from [var From], to [var To]]
END

Based on the “generic” transitive closure defined above, the following rule
retrieves only connections between Munich and Vienna.

GOAL
connections {

all var Conn
}

FROM
var Conn ; train-connection [[from { "Munich" } , to { "Vienna" }]]

END

4 XChange: Evolution on the Web

XChange is a declarative language for specifying evolution of data and meta-data
on the (Semantic) Web.

Events. As mentioned in section 2.2, XChange events are XML data, hence a
generic data exchange between Web sites is supported by XChange, simplifying
the transfer of parameters (e.g. raising time, recipient(s)) and thus the execution
of actions in a user-defined synchronised manner.

Example 5. Assume that a train has 30 minutes delay. The control point that
observes this raises the following event and sends it to http://railways.com:

event {
recipient { "http://railways.com" },
delay {

train { departure { station { "Munich" }, date { "2004-09-23" },
time { "21:30" } },

minutes-delay { "30" } }
}

}

8

The recipient sites (e.g. http://railways.com in Example 5) process the
incoming events in order to execute (trans)actions or to raise other events. Thus
only the information of interest for these sites is used (e.g. the time stamps
may be used to decide whether the events are too old or not). The processing
of events is specified in XChange by means of event-raising rules, event-driven
update rules, and event-driven transaction rules.

Event-Raising Rules. The body of an event-raising rule may contain Xcerpt
queries to incoming events, Xcerpt queries to XML resources (local or remote),
and conditions that variables (specified in the queries to incoming events or
XML resources) should satisfy. The head of an event-raising rule contains re-
source specifications (i.e. the resources to which events shall be sent) and event
specifications (used to construct event instances). In the following, an example
of an XChange event-raising rule is given.

Example 6. Mrs. Smith uses a travel organiser that plans her trips and reacts to
happenings that might influence her schedule. The site http://railways.com
has been told to notify her travel organiser of delays of trains Mrs. Smith travels
with:

RAISE
event {

recipient { "http://travelorganizer.com/Smith" },
delay {

train { departure { var M, estimated-time { var DT + var Min } },
arrival { var U, estimated-time { var AT + var Min } }

}
}

}
ON
event {{

delay {{
train {{ departure { var M ; station { "Munich" },

var Date ; date { "2004-09-23" },
time { var DT ; "21:30" } },

minutes-delay { var Min } }}
}}

}}
FROM
in {

resource { "http://railways.com" },
travel {{ train {{ departure {{ var M, var Date, time { var DT } }},

arrival {{ var U ; station { "Vienna" }, time { var AT } }}
}}

}}
}

END

Update Rules. The XChange update language uses rules to specify intensional
updates, i.e. a description of updates in terms of queries. The notion of update
rules is used to denote rules that specify (possibly complex) updates (i.e. in-
sertion, deletion, and replacement). The body of an XChange update rule may
(and generally does) contain Xcerpt queries (to XML resources and/or incoming
events), which specify bindings for variables and conditions that variables should
satisfy. The head of an XChange update rule contains resource specifications for
the data that is to be updated, update specifications, and relations between the
desired updates.

9

An XChange update specification is a (possibly incomplete) pattern for the
data to be updated, augmented with the desired update operations. The notion
of update terms is used to denote such patterns containing update operations for
the data to be modified. An update term may contain different types of update
operations. The head of an update rule may contain one or more update terms.

Example 7. At http://railways.com the train timetable needs to be updated
as reaction to the event given in Example 5:

UPDATE
in {

resource { "http://railways.com" },
travel {{

last-changes-on { var L replaceby var RTime },
train {{

departure {{ station { var DS }, var Date, time { var DT },
insert estimated-time { var DT + var Min } }},

arrival {{ time { var AT }, insert estimated-time { var AT + var Min } }}
}}

}}
}

ON
event {{

raising-time { var RTime },
delay {{

train {{ departure { station { var DS }, var Date, time { var DT } },
minutes-delay { var Min } }}

}}
}}

END

Synchronisation of Updates. XChange provides the capability to specify relations
between complex updates and execute the updates synchronously (e.g. when
booking a trip on the Web one might wish to book an early flight and of course
the corresponding hotel reservation, or a late flight and a shorter hotel reserva-
tion). As the updates are to be executed on the Web, network communication
problems could cause failures of update execution. To deal with such problems,
an explicit specification of synchronisation of updates is possible with XChange,
a kind of control which logic programming languages lack. Means to realise syn-
chronisation of updates on the Web: dependent updates (specified by means of
XChange synchronisation operations, which express ordered/unordered conjunc-
tion of updates, or ordered/unordered disjunction of updates), time specification
for updates (expressing e.g. an explicit time reference, or a timeout for update
execution), and user specified commitment (realised by supporting transactions
in XChange).

Transaction Rules. Transaction rules are very similar to XChange update
rules, with the important difference that transactions (consisting of event and/or
update specifications that should be raised and/or executed in an all-or-nothing
manner) are specified in the head of reaction rules. In case of transaction abort,
a rollback mechanism that undoes partial effects of a transaction is to be used.

XChange transactions are transactions executed on user requests or as reac-
tions to incoming XChange events. The latter transactions are specified in the
head of XChange event-driven transaction rules. An example of an event-driven
transaction rule is given next.

10

Example 8. The travel organiser of Mrs. Smith uses the following rule: if the
train of Mrs. Smith is delayed such that her arrival will be after 23:00h then
book a cheap hotel at the city of arrival and send the telephone number of the
hotel to her husband’s address book. The rule is specified in XChange as:

TRANSACTION
and [

update {
in { resource { "http://hotels.net" },
reservations {{

insert reservation { var H, name { "Christina Smith" },
from { "2004-09-23" }, until { "2004-09-24" } }

}} } },
update {

in { resource { "address-book://addresses/my-husband" },
addresses {{

insert my-hotel { phone { var Tel },
remark { "I’m staying in Vienna over night!" } }

}} } }
]

ON
event {{

sender { "http://railways.com" },
delay {{

train {{ arrival { station { var City ; "Vienna" }, estimated-time { var ETime } }
}}

}}
}} where var ETime after 23:00

FROM
in {
resource { "http://hotels.net" },
voyage {{

hotels {{ city { var City },
desc var H ; hotel {{ price-per-room {var P}, phone { var Tel } }} }}

}}
} where var P < 70

END

5 Querying and Evolution on the Semantic Web

The vision of the Semantic Web is that of a Web where the semantics of data
is available for processing by automated means. Based on standards for rep-
resenting Semantic Web (meta-)data, such as RDF and OWL, the need for a
expressive, yet easy-to-use query language to access the large amounts of data
expected to be available in the Semantic Web is evident. However, in contrast
to most current approaches for querying the Semantic Web, we believe that it
is crucial to be able to access both conventional and Semantic Web data within
the same query language. The following examples illustrate based on a small
set of RDF data some of the peculiarities and pitfalls of a Semantic Web query
language and how these can be handled in Xcerpt and XChange.

Example 9. The data term shows a small excerpt from a book database together
with a sample ontology over novels and other literary works. Some of the concepts
used are drawn from the “Friend of a Friend” (foaf) project5. The rest of this
paper uses prefixes to abbreviate the URLs for RDF, RDFS and OWL properties.

5 http://www.foaf-project.org/

11

http://www.foaf-project.org/

Writing

Novel Essay

Historical Novel Historical Essay

author

translator

foaf:Person

Bellum Civile

The First Man in Rome

Colleen McCullough

Julius Caesar

Aulus Hirtius

J. M. Carter

rdfs:domain

rdfs:domain

rdfs:range

rdfs:range

dc:title

dc:title

author

translator

author

author

foaf:name

foaf:name

foaf:name

foaf:name

Classes

Properties

Literals

Resources

rdf:type (“is-a”)
Relation

rdf:subClassOf
(“is-a-kind-of”)
Relation

Fig. 1. RDF Graph for Example 9

At site http://bookdealer.com:
RDF {

Historical_Novel {
author {

foaf:Person {
foaf:name{"Colleen McCullough"}

}
},
dc:title{"The First Man in Rome"}

}
Historical_Essay {

author {
foaf:Person {

foaf:name { "Julius Caesar" }
},
foaf:Person {

foaf:name { "Aulus Hirtius" }
}

},
dc:title { "Bellum Civile" },
translator {

foaf:Person {
foaf:name { "J. M. Carter" }

} } }
&author @ rdf:Property {

rdfs:domain {
^&writing

}
rdfs:range {

^&foaf:Person
}

}

&translator @ rdf:Property {
rdfs:domain {

^&writing
}
rdfs:range {

^&foaf:Person
}

}
&historical_novel @ rdfs:Class {

rdfs:label { "Historical_Novel" },
rdfs:subClassOf {

&novel @ rdfs:Class {
rdfs:label { "Novel" },
rdfs:subClassOf {

&writing @ rdfs:Class {
rdfs:label { "Writing" }

} } }
}
rdfs:subClassOf {

&historical_essay @ rdfs:Class {
rdfs:label { "Historical_Essay" }
rdfs:subClassOf {

&essay @ rdfs:Class {
rdfs:label { "Essay" }
rdfs:subClassOf {

^&writing
} } } }

}
}

}

This data term represents the RDF graph shown in Figure 1: There are
two books in the data, the first one is classified (via rdf:type) as a Historical
Novel, a term defined in the sample ontology. Furthermore, it has an author
that is a foaf:Person with foaf:name “Colleen McCullough”. The second one
also has a translator and several authors. The sample ontology is basically
a conceptual hierarchy for a (small subset of) terms used to classify books and
other literary works. The terms are related by rdfs:subClassOf, indicating that,
e.g., a Historical Novel is a kind of Novel that, in turn, is a kind of Writing.
Note the Xcerpt notation id @ ... (^id, resp.) for representing ID (IDREF,
resp.) attributes.

For reasons of brevity and readability, a representation of the RDF graph as
an Xcerpt data term is used that is very close to the syntactic representation of

12

RDF graphs in XML. In this respect, our approach is similar to [4] for querying
RDF data with XQuery. However, as is illustrated in the following, there are
several peculiarities of Semantic Web data that most query languages for the
conventional Web do not support easily.

Properties are optional and multi-valued. In RDF, relations such as author
or rdf:type between objects (also referred to as resources) are called properties.
In contrast to traditional knowledge representation techniques, such as Frames,
all properties in RDF are optional and multi-valued: it is not possible to formally
restrict the number of properties of the same type between two resources. E.g.,
a Writing may have no translator, one translator, or any number of translators.

In Xcerpt, optional and multi-valued properties can easily be retrieved by
using all and optional, as shown in Example 10.

Example 10. Retrieve all writings from http://bookdealer.com together with
their title only if they have a title. Also return any authors or translators for each
book, if there are any. subClassOf[var BookType, "Writing"] expresses that
the type of the resource must be a subclass of Writing (cf. Example 12).

CONSTRUCT
RDF {

var BookType {
optional dc:title{ var Title },
all optional author{ var Author },
all optional translator{ var Translator }

}
}

FROM
and {

in {
resource { "http://bookdealer.com" },
RDF {{

desc var BookType {
optional author{ var Author },
optional dc:title{ var Title },
optional translator{ var Translator }

}
}}

},
subClassOf[rdfs:Class {{ rdfs:label{var BookType} }},

rdfs:Class {{ rdfs:label{"Writing"} }}]
}

END

Inference. One of the most fundamental promises of the Semantic Web is that,
given a machine-processable semantics for data, new data can be inferred from
existing one automatically.

Example 11. All persons that have published together can be retrieved by the
following program. The reflexivity of the co-author relation is expressed using un-
ordered subterm specification (i.e. curly braces), as in co-author{var X, var Y}.

CONSTRUCT
co-author{var X, var Y}

FROM
and {

in {
resource { "http://bookdealer.com" },
RDF {{

var BookType {{
author { var X },

13

author { var Y },
}}

}}
},
subClassOf[rdfs:Class {{ rdfs:label{var BookType} }},

rdfs:Class {{ rdfs:label{"Writing"} }}]
}

END

More interesting is the kind of inference that arises from traversing the
structure of the RDF graph recursively, similar to the train connections in
Example 4. This is required, e.g., to compute the closure of transitive rela-
tions. RDF Schema defines two such transitive relations rdfs:subClassOf and
rdfs:subPropertyOf, OWL allows the definition of additional transitive prop-
erties by classifying them as subclasses of owl:TransitiveProperty.

Support for RDF Schema. RDF Schema extends RDF with a set of pre-
defined properties and specifies a (partial) semantics for these properties. Most
notably, means for defining a subsumption hierarchy for concepts and properties
are provided by rdfs:subClassOf and rdfs:subPropertyOf. These properties
are transitive. E.g., if a query asks for all Writings, also resources that are clas-
sified as Novels or Historical Essays should be returned (under the sample
ontology specified above).

Example 12. The semantics of, e.g., rdf:subClassOf can be easily implemented
in Xcerpt as demonstrated by the following program. The transitive closure of
rdf:subClassOf is computed using recursion (cf. Example 4).

CONSTRUCT
subClassOf[var Subclass, var Superclass]

FROM
or { RDF {{

desc var Subclass ; rdfs:Class {{
rdfs:subClassOf {

var Superclass ; @ rdfs:Class {{ }}
}

}}
}},
and [RDF {{

desc var Subclass ; rdfs:Class {{
rdfs:subClassOf {

var Z ; rdfs:Class {{ }}
}

}}
}},
subClassOf[var Z, var Superclass]]

}
END

Other predefined relations from RDF (Schema) such as rdf:type, rdfs:domain,
or rdfs:range can be implemented in a similar manner.

Evolution. Evolution and reactivity are at the core of the Semantic Web vision.
It is crucial that relevant changes to data that has been used by a Semantic Web
agent, e.g. in deciding which book to buy or what train to book, are consistently
and rapidly propagated to all interested parties.

Example 13. Mrs. Smith is very interested in Essays and therefore wants to be
notified about any new book that is classified as an Essay once it is added to the

14

list of books managed by http://bookdealer.com. The following two XChange
programs illustrate this scenario, the left hand shows the event specification, the
right hand an update that triggers the event.

RAISE
event {

recipient { "http://.../Smith" },
new_book {

type { var Type },
all optional var Title

}
}

ON
event {

sender {"http://bookdealer.com"},
RDF {{

insert var Type {{
optional var Title ; dc:title{{}}

}}
}}

}
FROM

subClassOf[
rdfs:Class {{ rdfs:label{var Type} }},
rdfs:Class {{ rdfs:label{"Essay"} }}

]
END

UPDATE
in {

resource { "http://bookdealer.com" },
RDF {{

insert Historical_Novel {
dc:title { "Ein Kampf um Rom" }
author {

foaf:Person {
foaf:name { "Felix Dahn" }

}
}

}
}}

}
END

6 Perspectives and Conclusion

This article first introduced into the deductive query language Xcerpt and the
event and update language XChange. It furthermore illustrated how the de-
ductive capabilities of these languages make them well suited for querying and
evolution on the conventional as well as the Semantic Web.

Xcerpt and XChange are ongoing research projects. Whereas the language
Xcerpt is already in an advanced stage [1] (cf. also http://www.xcerpt.org),
work on the language XChange has begun more recently, but first results are
promising. Applying both languages to more complex Semantic Web applica-
tions is currently investigated and will likely result in the implementation of
(partial) reasoners for certain ontologies. Also, including native support for cer-
tain reasoning constructs might increase usability and/or performance.

Acknowledgement. This research has been funded by the European Commission

and by the Swiss Federal Office for Education and Science within the 6th Framework

Programme project REWERSE number 506779 (cf. http://rewerse.net).

References

1. Schaffert, S., Bry, F.: Querying the Web Reconsidered: A Practical Introduction to
Xcerpt. In: Research Report PMS-FB-2004-7. (2004)

2. Liu, M., Lu, L., Wang, G.: A Declarative XML-RL Update Language. In: Proc.
Int. Conf. on Conceptual Modeling (ER2003). LNCS 2813, Springer-Verlag (2003)

3. Papamarkos, G., Poulovassilis, A., Wood, P.T.: Event-Condition-Action Rule Lan-
guages for the Semantic Web. In: Workshop on Semantic Web and Databases,
Berlin, VLDB’03 (2003)

4. Robie, J.: The Syntactic Web: Syntax and Semantics on the Web. In: XML Con-
ference and Exposition 2001, Orlando, Florida (2001)

15

http://www.xcerpt.org
http://rewerse.net

