
 
 

  
Abstract—The underlying assumptions for interpreting the 

meaning of data often change over time, which further 
complicates the problem of semantic heterogeneities among 
autonomous data sources. As an extension to the COntext 
INterchange (COIN) framework, this paper introduces the 
notion of temporal context as a formalization of the problem. 
We represent temporal context as a multi-valued method in 
F-Logic; however, only one value is valid at any point in time, 
the determination of which is constrained by temporal 
relations. This representation is then mapped to an abductive 
constraint logic programming framework with temporal 
relations being treated as constraints. A mediation engine that 
implements the framework automatically detects and 
reconciles semantic differences at different times. We 
articulate that this extended COIN framework is suitable for 
reasoning on the Semantic Web. 
 

Index Terms—context, ontology, temporal semantics 
 

I. INTRODUCTION 
HE Web, and many other data sources, accumulate a 
large amount of data over time. In certain cases, it is 

even required by law for organizations to store historical 
data and make sure it is accurate and easy to retrieve1. It is 
critical that the retrieved data can be correctly interpreted, 
especially in the context of the Semantic Web where users 
or agents make decisions based on information coming 
from multiple autonomous sources. This well known 
semantic heterogeneity problem is further complicated 
when the semantics of data not only differs across sources, 
 

H. Z. Zhu is with MIT Engineering Systems Division, School of 
Engineering, Room E53-336, Cambridge, MA 02142 USA. (e-mail: 
mrzhu@mit.edu).  

S. E. Madnick is with MIT Engineering Systems Division, School of 
Engineering and MIT Information Technologies Group, Sloan School of 
Management, Room E53-321, Cambridge, MA 02142 USA (phone: 617-
253-6671; fax: 617-253-3321; e-mail: smadnick@mit.edu). 

M. D. Siegel is with MIT Information Technologies Group, Sloan 
School of Management, Room E53-320, Cambridge, MA 02142 USA. (e-
mail: msiegel@mit.edu). 

1 See Robert Sheier on “Regulated storage” in ComputerWorld, 37(46), 
November 17, 2003. Health Insurance Portability Act requires healthcare 
providers keep records till two years after death of patients; Sarbanes-
Oxley Act requires auditing firms retain records of financial statements. 

but also changes over time. 
As an example, suppose an arbitrage specialist in New 

York City wants to study longitudinal stock price 
differences among exchanges. Within several keystrokes 
and mouse clicks at Yahoo Finance site, he retrieves the 
historical prices for Daimler-Chrysler at New York and 
Frankfurt exchanges, see Figure 1. He is astonished by 
what he sees: 1) the prices at the exchanges are 
extraordinarily different (what an arbitraging opportunity); 
and 2) the price at Frankfurt plunged by almost a half at the 
turn from 1998 to 1999 (too bad if someone bought the 
stock right before the price decline)! Possible conclusions 
from the observations are in parentheses. 

 

 
 

 
Fig. 1. Stock prices for Daimler-Chrysler from Yahoo. Top: New York; 
Bottom: Frankfurt 

These are wrong conclusions based on false 
observations, all resulted from unresolved heterogeneous 
and changing semantics. Here, not only are the currencies 
for stock prices different at the two exchanges, but the 
currency at Frankfurt exchange also changed from German 
Marks to Euros at the beginning of 1999. Once the data is 
transformed into the analyst context, i.e., all prices in US 
dollars, it can be seen that there is neither significant 
arbitraging opportunity nor abrupt price plunge for this 
stock. Unfortunately, the technologies used by the analyst 
do not sufficiently represent and make use of the semantics 
of the data being exchanged.  

The example illustrates the kinds of problems that the 

Reasoning about Temporal Context using 
Ontology and Abductive Constraint Logic 

Programming  

Hongwei Zhu, Stuart E. Madnick, Michael D. Siegel                                            
 MIT School of Engineering, MIT School of Engineering and MIT Sloan School of Management, MIT 

Sloan School of Management 

T 



 
 

Semantic Web aims to solve. Context Interchange (COIN) 
framework [7, 10], originated from the semantic data 
integration research tradition, shares the common goal and 
provides an extensible solution to semantic heterogeneity 
problems. COIN is a web-based mediation approach with 
several distinguishing characteristics: 

− Detection and reconciliation of semantic differences are 
a system service and are transparent to users; 

− Mediation does not require that any semantic differences 
between each source-receiver pair to be specified a 
priori, rather, it only needs a declarative description of 
data semantics and the methods of reconciling possible 
differences. Semantic differences are detected and 
reconciled at the time of query; and 

− Mediation is implemented in abductive constraint logic 
programming. As a result, it allows for knowledge level 
query and can generate intensional answers as well as 
extensional answers. Efficient reasoning is achieved by 
combining abduction with concurrent constraint solving.  

With the temporal extension presented in this paper, 
COIN is capable of processing static semantic 
heterogeneities as well as those that change over time. As 
elaborated later, these features make COIN suitable for the 
Semantic Web. In this paper, we describe the COIN 
framework with a focus on the representation and 
reasoning of changing semantics. The use of SQL is for 
convenience purpose and should not be construed as a 
constraint of the framework, which will become clear as 
we describe the logic formalism of COIN. 

II. CONTEXT INTERCHANGE BY EXAMPLE 
Before a formal definition is given, we call implicit 

metadata knowledge such as the currency for price context 
and the history of time varying metadata temporal context. 
The temporal context in the previous example is quite 
simple. To illustrate the COIN approach, let’s consider a 
slightly more complicated example in Figure 2, where 
various aspects of data semantics in a company financials 
data source change at different times. 

 
Context c_src 

1. All monetary values are in French Francs 
until 2000 and in Euros afterwards; 

2. All monetary values have a scale factor of 
1M until 1999, 1K until 2001, and 1M from 
2002 

3. Profit is tax excluded until 2000,  tax 
included afterwards 

4. All other numbers have a scale factor of 1 
until 2001 and 1K afterwards 

 
Financials 

Year Num_Employee Profit Tax 
…     
1999 5100 4.2 1.1 
2000 12000 13000 2500 
2001 25.3 20000 4800 
2002 30.6 35.3 7.97 
…     

Context c_target 
1. All monetary values are always 

in USD; 
2. All monetary values always have 

a scale factor of 1K 
3. Profit is always tax included 
4. All other numbers always have a 

scale factor of 1K  
 
Query Q1: 
 
Select 
Year,Num_Employee,Profit 
From Financials 
Where 2000=<Year; 

Fig. 2. Temporal context example. Various aspects of data semantics 
change at different times 

This example involves one data source with 

asynchronously changing semantics shown on the left side, 
and one data receiver, whose context is stated on the right 
side in Figure 2. The situation becomes much more 
difficult for humans to handle when there are multiple 
sources being used to serve multiple receivers – each with 
a potentially different context. Although our design is 
intended for the more complex case, we will use the simple 
situation of Figure 2 for presentation purposes.  We 
distinguish two kinds of temporal contexts: 1) 
representational – different representations for the same 
concept, e.g., different currencies and scale factors for 
monetary values; and 2) ontological – similar concept with 
slight differentiation, e.g., profit with taxes included or 
excluded. In resolving ontological differences, 
representational differences of related concepts should be 
resolved as well.  

In this example, the user knows what can be queried 
from the source but is unaware of the context differences. 
This is similar to how the Web is typically used. Clearly, a 
direct execution of the sample query Q1 in Figure 2 over 
the source will return data that is not correct in the user 
context. With COIN, however, the user can issue the query 
and expect that the results can be correctly interpreted in 
his context. To relieve the users of the burden of keeping 
track of and reconciling context differences, data semantics 
of sources and receivers need to be explicitly recorded as a 
set of context axioms and elevation axioms with reference 
to an ontology.  

 

Query 

Ontology 

Executioner 

Optimizer 
Context 
Mediator 

Context 
Axioms 

Context 
Axioms 

Context 
Axioms 

Elevation  
 Axioms 

Elevation  
 Axioms Wrapper Wrapper 

Mediated 
Query 

Query Plan 

Subqueries 

DBMS 

Semi-structured 
Data Sources 
(e.g., XML) 

Local Store 

CONTEXT MEDIATION SERVICES USERS and 
APPLICATIONS 

  Money 
    EUR /USD 

Euros

USD

Conversion 
Library 

 
Fig. 3. Architecture of the COIN system 
 
As shown in Figure 3, the Context Mediator detects 

context differences at run time and rewrites user queries 
into mediated queries (MQ) that reconcile these 
differences. The MQ can be returned to the user as an 
intensional answer to the original query, or it can be sent to 
the query optimizer to generate an optimized query plan for 
the executioner to retrieve data, perform necessary 
conversions, and assemble the data records as an 
extensional answer.   

So when query Q1 is issued, the mediator can generate 
the following MQ1:  

 



 
 

 
Select Year, Num_Employee*0.001, Profit*R.Rate+Tax*R.Rate 
From Financials, (Select Rate from Olsen, Financials  
  where Expressed=’FRF’ and Exchanged=’USD’ and Date=Year) R 
Where Year=2000 
Union 
Select Year, Num_Employee*0.001, Profit*R.Rate 
From Financials, (Select Rate from Olsen, Financials  
  where Expressed=’EUR’ and Exchanged=’USD’ and Date=Year) R 
Where Year=2001 
Union 
Select Year, Num_Employee, Profit*R.Rate*1000 
From Financials, (Select Rate from Olsen, Financials  
  where Expressed=’EUR’ and Exchanged=’USD’ and Date=Year) R 
Where 2002=<Year; 
     

MQ1 considers all the semantic changes since year 2000 
and reconciles the semantic differences between the source 
and the receiver through three sub-queries. Note an 
auxiliary data source Olsen for currency conversion is 
introduced in MQ1. The execution of an optimized MQ1 
will return the dataset whose values have been transformed 
to conform to the user context.  

III. TEMPORAL CONTEXT IN COIN FRAMEWORK 
The example in Figure 2 can be understood with the 

notion of context as in [17]. Each tuple in the Financials 
table represents a statement about the company, which is 
true only within the given context c_src. Each statement is 
not true when it is directly restated in the c_target context. 
The COIN framework provides a logic formalism for 
describing context and a mediation service for restating 
statements from source contexts in the receiver context. 
For example, it is true that the number of employees in 
1999 is 5100 in the c_src context, which can be expressed 
as 
 ).5100,1999(_,_(: employeenumsrccistc  
a correct restatement of which in the c_target should be 
 ).1.5,1999(_,_(: employeenumtargetcistc  
because the scale factors in the two contexts are different.  

The COIN system automates the process that restates the 
facts from the source context in the target context. This is 
achieved by formally capturing context knowledge and 
automatically detecting and reconciling context 
differences.  

The original COIN framework was based on a snapshot 
data model that lacks the capability of describing and 
reasoning about changes of semantics. We will describe the 
ongoing research that non-trivially extends COIN to 
represent and process temporal context, the understanding 
of which can be benefited by a brief introduction to the 
existing COIN framework; further details can be found in 
[7, 10]. 

A.  Overview of the COIN Framework 
The COIN framework consists of a formalism for 

context knowledge representation and a service of query 
mediation and execution. Knowledge representation in 
COIN is based on an object oriented deductive data model 
that consists of three components:  

− Ontology – to define the semantic domain using a 
collection of semantic types and their relationships. A 

type can be related to another in three ways: 1) as a 
subtype or super-type (e.g., profit is a subtype of 
monetary value; 2) as a named attribute (e.g., temporal 
entity such as year is a temporal attribute of profit); and 
3) as a modifier or contextual attribute, whose value is 
specified in context axioms and can functionally 
determine the interpretation of instances of the type that 
has this modifier (e.g., monetary value type has a scale 
factor modifier). There is a distinguished type basic in 
the ontology that serves as the super type of all the other 
types and represents all primitive data types. Objects are 
instances of the defined types;  

− Elevation axioms – to establish correspondences 
between data elements in sources and the types in the 
ontology, e.g., tax in the example in Figure 2 
corresponds to monetary value in the ontology; and  

− Context axioms – to specify the values of modifiers for 
each source or receiver and the conversions for 
transforming an object in one context to another. The 
context of each source or receiver is uniquely identified 
with a context label, e.g., c_src and c_target in the 
example. The value specification for modifiers can be a 
simple value assignment or a set of rules that specify 
how to obtain the value. Thus, conceptually a context 
can be thought to be a set of <modifier, object> pairs, 
where object is a singleton in most non-temporal cases. 

These components can be naturally represented using F-
Logic [15], which has rich constructs for describing types 
and their relationships and has formal semantics for 
inheritance and overriding.  Attributes and modifiers are 
represented as functions or methods of the defined types; 
since modifier values vary by context, methods for 
modifiers are parameterized with a context label. 
Comparison between objects is only meaningful when 
performed in the same context, i.e., suppose x and y are 
objects, 

.])([])([ vuvcvalueyucvaluexyx
c

◊∧→∧→⇔◊  
where ◊ is one of the comparison operators for primitives 
in { K,,,,,, ≥>≤<≠= }, and the value method is a 
parameterized function that returns the primitive value of 
an object in the specified context c. 

The detection and reconciliation of context differences 
are through a mediation engine implemented in abductive 
constraint logic programming, details of which are 
provided later.  

B. Representation of Temporal Context 
For temporal context representation, the ontology is 

augmented with explicit time concepts such as the ones 
defined in DAML Time Ontology [12]. Temporal entity is 
the most general concept and can be further specialized 
into time instant and time interval. Any other concepts or 
types whose value or semantics change over time are 
related to temporal concepts via named attributes or 
modifiers in the COIN ontology, e.g., monetary value has a 
temporal attribute of type temporal entity, which can be 



 
 

described in F-Logic as: 
].[ titytemporalEntempAttrluemonetaryVa ⇒  

A graphical representation of the ontology for the example 
is given in Figure 4. 
 

monetaryValue

profit

kind

temporalEntity tempAttr

basic

sem_number tempAttr

scaleFactor

Sub-/super- type
Attribute
Modifier

Legend
Semantic type

currency scaleFactor

 
 
Fig. 4. A graphical representation of the example ontology 
 

The changing semantics of data is captured by 
specifying the history of the modifiers. Thus modifiers are 
multi-valued over the entire history; but at any point in 
time, there is only a single valid value for each modifier. 
For example, to describe the temporal context regarding 
the currency in the example, we first declare in the 
ontology that currency is a multi-valued modifier for 
monetary value: 

].)([ basicctxtcurrencyluemonetaryVa ⇒⇒  
Next, we specify the values and their corresponding time 
intervals using the following context axiom (which 
corresponds to two clauses in clausal form): 

).][]'')_([(
)][]'')_([(

])_([
|::

2001

_ 2000

_

≤

≤

∈∧→←→
∧∈∧→←→

∧→
−∃∀

ITTtempAttrXEURsrccvalueY
ITTtempAttrXFRFsrccvalueY

YsrcccurrencyX
basicYluemonetaryVaX

srcc

t

srcc

t

   (1) 

where −| is used for pre-declaration for object types, 

2000≤I represents the time interval up to year 2000 and t∈ is 
a temporal inclusion relation, which can be translated into 
a set of comparisons between time points by introducing 
functions that return the beginning and ending points of an 
interval: 

)).()(())()((

|:,:

IendTendTbeginIbeginIT

titytemporalEnItitytemporalEnT
ccc

t ≤∧≤⇔∈

−∀
 

Conceptually, we can think of temporal context as a set of 
<modifier, history> pairs with history being a set of 
<object, time_interval> pairs or a set of time-stamped 
objects.  

Another way of thinking about history specification is to 
regard it as a set of rules with applicability of each being 
constrained by an appropriate temporal relation. With this 
view, temporal context representation is analogous to data 
level context in snapshot based COIN, by data level context 
we mean that within a named context a modifier can have 
different values depending on other characteristics of the 
object. [11] gives an example of this kind where the scale 
factor for monetary value is 1 if it is not in Japanese Yen 
and is 1000 if otherwise: 

 

).''])([]1000)([(
)''])([]1)([(

])([
|::

JPYZZccurrencyXcvalueY
JPYZZccurrencyXcvalueY

YcrscaleFactoX
basicYluemonetaryVaX

c

c

=∧→←→

∧≠∧→←→

∧→
−∃∀

 
This data level context specification is similar to temporal 
context especially after the temporal relation is transformed 
into a set of comparisons between time points. Thus 
temporal context is analogous to data level context even 
though they are conceptually quite different. This analogy 
suggests that the mediation engine for snapshot COIN can 
be extended with additional rules for temporal relations to 
process temporal context.   

Because modifiers are single valued at any given point 
in time, the conversion functions for temporal context 
handling are the same as those in snapshot COIN. Earlier 
we described conversions as part of context specification. 
Through parameterization, a conversion function can be 
defined more generally to be used in multiple contexts. For 
example, the following currency conversion function can 
be used to convert monetary values from any arbitrary 
context c1 to any other arbitrary context c2:  

.*])2([
),,,_(

][
])2([])1([

],1@)2,([
|:

222

ruvrcvalueR
DTBCACDRBAolsen

TtempAttrx
CccurrencyxCccurrencyx

vucccurrencycvtx
luemonetaryVax

cc

t

c

f

tf

=∧→
∧=∧=∧=∧

∧→∧
→∧→

←→
−

   (2) 

where olsen_ corresponds to an external relation that gives 
exchange rate between two currencies on any specified 
date.  

A recent effort [8] introduced automatic conversion 
composition based on equational relationships between 
contexts, e.g., given conversions between 1) base price and 
tax-included price; and 2) tax-included price and final 
price, the conversion between base price and final price 
can be composed using symbolic equation solvers.  

C. Mediation with Abductive Constraint Logic 
Programming  
The task of mediation is to translate a user query that 

assumes everything is in user context to a mediated query 
(MQ) that reconciles context differences detected during 
the mediation process; when the MQ is subsequently 
executed, facts stated in source contexts are correctly 
restated in the user context. This task corresponds to the 
abductive logic programming (ALP) framework [13] very 
well, i.e., the user query corresponds to the observation in 
ALP and the MQ, which is derived from knowledge 
representation axioms to incorporate all necessary 
conversions, serves as the abductive explanation to the user 
query. As we see earlier, temporal relations in temporal 
context representation can be considered as temporal 
constraints over the time domain, which suggests 
constraint solving is necessary. It follows that mediation 



 
 

can be implemented with the abductive constraint logic 
programming (ACLP) [14] where abduction, consistency 
checking, and constraint propagation are interleaved. 
As an extension to ALP, ACLP is a triple <P, A, IC>, 
where P is a constraint logic program, A is a set of 
abducible predicates different from the constraint 
predicates, and IC is a set of integrity constraints over the 
domains of P. Query answering in ACLP is that given a 
query )(Xq

r
, generate a set of abductive hypothesis ∆ and 

a substitution θ  so that ∆UP entails θ)(Xq
r

and is 
consistent; ∆ consists of abducible predicates and 
simplified constraints. 

The COIN framework can be straightforwardly mapped 
to ACLP. Knowledge representation in COIN can be 
translated into an equivalent normal Horn program [1]; or 
alternatively, the knowledge representation can be directly 
expressed in first order Horn clauses. This corresponds to 
P. Predicates and arithmetic operators allowed by the query 
languages of the sources and other callable external 
functions constitute A. We also allow constraints to be 
abducibles. IC consists of integrity constraints in data 
sources and any constraints introduced in the user query.   

Abductive inference in COIN is a modified SLD-
resolution [6] in that literals corresponding to predicates in 
data sources are abducted without evaluation; constraints 
over non-temporal types are also directly abducted. 
Constraints introduced in user query, by the conversion 
functions, and related to temporal entity types are 
evaluated after they are abducted. The prototype is 
implemented using constraint logic programming 
environment ECLiPSe (http://www.icparc.ic.ac.uk/eclipse/) 
with the extension of Constraint Handling Rules (CHR) 
[9]. Naturally, we use the constraint store to collect the 
abucibles; when a constraint is abducted, applicable CHR 
rules will be triggered to simplify/propagate the constraint 
or signify a failure to cause backtracking of abduction. At 
the end of a successful resolution, predicates in the 
constraint store constitute the abductive answer. 

The current implementation is an enhancement to the 
procedure described in [4] with significant extensions to 
handle conversion composition [8] and temporal context. 
We will focus on temporal context handling, thus we only 
briefly describe the procedure here and refer readers to [4] 
for other details.  

The mediator accepts queries in clausal form. Auxiliary 
components in our prototype translate a SQL query into its 
equivalent logic form for mediation and translate the MQ 
back into SQL for query planning and execution. The 
example query can be translated to the following clausal 
form: 

.2000),,,(),,(
).,,(

ytpnyfinancialspnyanswer
pnyanswer

≤∧←
←  

where we use predicate answer to simulate projection. This 
query is naïve in the sense that it directly references the 
primitive objects in data sources without the concern about 

potential context differences. The query is further 
translated into a well formed context-aware query by 1) 
replacing each primitive object with its Skolemized 
semantic counterpart as specified in elevation axioms. We 
call a so transformed relation a semantic relation; 2) 
replacing comparison operators for non-temporal objects 

with 
ettc arg_

◊ ; 3) replacing comparison for temporal objects 
with temporal relations (e.g., replacing ≤  with tle_, which 
stands for inclusive before);  and 4) introduce the 
parameterized value function for each projected object; as 

defined earlier, 
ettc arg_

◊  also introduces value function calls. 
After this transformation, the naïve query becomes: 

].)_([
])_([])_([

),_(),,,_(
),,(

2000

ptargetcvaluesk
ntargetcvalueskytargetcvaluesk

sksktleskskskskfinancials
pnyanswer

p

ny

ytpny

→
∧→∧→

∧∧
←

 
This is the query that is fed to the mediator. Literals 

corresponding to semantic relations are unified with 
elevation axioms and the corresponding source predicates 
are abducted. Constraints are abducted and immediately 
processed if corresponding CHR rules exist; abduction 
backtracks after a failure in constraint process. Value 
functions are processed with the following algorithm: 
For each value function  
  Find direct and inherited modifiers of the object 
  For each modifier 
    Compare modifier values in source and target contexts 
    If they differ 
      Find conversion function for the object  
      If not found, find conversion function of parents 
      If not found, invoke function composition  
      Invoke found/composed conversion and return a primitive 
  If no modifier, return the primitive value of the object ■ 

 
This algorithm implements the semantics and simulates 

non-monotonic inheritance afforded in the knowledge 
representation language. It is recursive in that modifiers are 
objects, comparison of which introduces value function 
calls; declaratively defined conversions usually introduce 
value function calls as well.  

Given the well formed query, the resolution of the first 
literal generates the abducible financials(y0, n0, p0, t0). 
Similarly ),2000( 0ytle  is abducted into the constraint store 
when ),_( 2000 ysksktle is resolved. The object corresponding 
to Year attribute has no modifier, thus this sub-goal 
succeeds without generating any abducible. The other two 
value function calls will non-trivially involve the above 
algorithm. For elucidation purpose, let’s focus on the 
resolution for value function call on profit object. Modifier 
kind for describing whether taxes are included is directly 
found; other modifiers including currency and scale factor 
are found through inheritance from monetary value type. 
Let’s focus on the conversion for currency differences. In 
the conversion function for currency, a value function call 
(3rd line in formula 2) is made to find the currency in the 
source, which will find the first rule for history 
specification that essentially says before year 2000 the 
currency is ‘FRF’ (3rd line in formula 1). Further resolution 



 
 

will post )2000,( 0ytle  into the constraint store. This 
constraint, along with the constraint ),2000( 0ytle that was 
posted earlier, will trigger the following CHR rule: 

antisymmetry @ X tle Y, Y tle X <=> X=Y. 
which is a simplification rule that replace the two tle 
temporal constraints with a single equality constraint. 
There are other CHR rules for handling cases such as 
transitivity, overlapping, and inconsistency. When this 
resolution finishes successfully, the constraint store 
contains all the abudcibles that can be translated into the 
first sub-query in MQ1. With backtracking, all the other 
answers are found.  

Although finding the values of all modifiers with non-
conflicting temporal constraints is a combinatorial search, 
many of the search branches are very shallow, e.g., given 
the constraint introduced in user query, the search branch 
that tries scale factor before 1999 fails immediately after 
this temporal constraint is posted into the store. 

IV. DISCUSSION 
With the extension of temporal context handling, the 

COIN framework is now capable of solving a much wider 
range of semantic heterogeneity problems. Any changes in 
representational and ontological semantics can be 
represented and reasoned about within the extended COIN 
framework. For example, [5] describes a spatio-temporal 
scenario where historic statistics of the economy (e.g., 
GDP) and the environment (e.g., CO2 emissions) of each 
sovereign country is stored in several sources. Let us 
consider a user who performs longitudinal studies in the 
Balkans and is used to using ‘YUG’ to refer to the 
geographic area bounded by the former Yugoslavia. 
Because the area has gone through a series of 
balkanizations, notably in 1991 the region broke up into 
five sovereign states, the user’s query that worked before 
the broken-up would stop working correctly afterwards. 
With COIN, however, the query continues to work 
correctly once the temporal context is appropriately 
encoded. We have successfully tested this scenario with 
our prototype. The MQ, which will not be shown here, is 
about a page long because it needs to combine data from 
appropriate individual countries, convert currency 
differences for each, and reconcile other context 
differences (e.g., scale factors, etc.). 

This Balkans example is interesting because it 
demonstrates that the extended COIN framework can 
process different aggregation rules that are applicable at 
different time periods. There are many accounting rules of 
this nature. Just like in our solution approach we draw 
analogy between temporal context and non-temporal data 
level context, there are also analogous non-temporal 
aggregation rules. For example, instead of depending on 
time periods, it depends on purposes (SEC filing, risk 
assessment, taxation, etc) that the rules differ for whether 
the total revenue of a corporation should include those of 
foreign branches, subsidiaries, subsidiaries of branches and 

subsidiaries, and other companies majority-owned by the 
corporation. As is demonstrated in the Corporate 
Householding research [16], COIN framework can be 
applied to this scenario as well to represent and reasoning 
about those complex rules.      

The analogy between temporal context and data level 
context is important. It allows us to use computationally 
more mature technologies such as constraint solving to 
reconcile temporal context differences. This was not 
obvious when we first approached the problem of changing 
semantics because the nature of the problem naturally 
suggests the use of temporal logics.  

The COIN framework is applicable to the Semantic Web 
for several reasons. Although we used relational sources in 
the example, COIN is not restricted to the relational data 
model because the framework is in fact based on an object 
oriented logic model, which is expressive enough to 
encompass non-relational data sources. The ACLP based 
implementation of the mediator generates the MQ from a 
set of abducibles, which include predicates admissible by 
most query languages, be it relational, keyword based, or 
ontology based. More importantly, the COIN framework 
relies on the description of data semantics, not on the 
description of the semantic differences; the latter are 
automatically detected and reconciled when a query is 
issued. This is very well in line with the Semantic Web, 
where each source furnishes a description of its semantics 
for agents from other contexts to process.  And lastly, a 
recent extension to the basic COIN system added an 
ontology merging capability to allow large applications to 
be built by merging separate ontologies [7]. This is very 
similar to how agents work with distributed ontologies on 
the Semantic Web.   

In this paper we assumed that time is uniformly 
represented in all sources and receivers. In reality, 
temporal entities can be heterogeneous across systems. For 
future research, we would like to extend the notion of 
temporal context to deal with semantic heterogeneities 
among temporal entities. This may be achieved by 
introducing the full Time ontology into knowledge 
representation. The conversions for reconciling these sorts 
of heterogeneity can be implemented as external function 
calls to web services that specifically handle time zones, 
calendars, and granularities [2, 3].   

ACKNOWLEDGEMENT 
The work reported herein was supported, in part, by the 
Singapore-MIT Alliance (SMA) and the Malaysia 
University of Science and Technology (MUST)-MIT 
collaboration. 

REFERENCES 
[1] S. Abiteboul, G. Lausen, H. Uphoff, E. Waller, "Methods and 

Rules", SIGMOD Rec., 22(2), pp. 32-41, 1993. 
[2] C. Bettini, "Web services for time granularity reasoning," TIME-

ICTL'03, 2003. 



 
 
[3] C. Bettini, S. Jajodia, and X. S. Wang, Time Granularities in 

Databases, Data Mining, and Temporal Reasoning: Springer, 2000. 
[4] S. Bressan, C.H. Goh, T. Lee, S. Madnick, M. Siegel, "A Procedure 

for Mediation of Queries to Sources in Disparate Context", ILPS’97, 
1997. 

[5] N. Choucri, S. Madnick, A., Moulton, M. Siegel, H. Zhu, " 
Information Integration for Counter Terrorism Activities: The 
Requirement for Context Mediation1", IEEE Aerospace Conference, 
2004. 

[6] K. Eshgi, Kowalski, R. "Abduction Compared with Negation as 
Failure", Proceedings of 6th Intl Conf. on Logic Programming, 1989. 

[7] A. Firat, "Information Integration using Contextual Knowledge and 
Ontology Merging," PhD Thesis, MIT, 2003. 

[8] A. Firat and S. Madnick and B. Grosof, "Financial information 
integration in the presence of equational ontological conflicts", 
WITS, 2002. 

[9] T. Frühwirth, "Theory and Practice of Constraint Handling Rules," 
Journal of Logic Programming, 37, pp. 95-138, 1998. 

[10]  C.Goh, "Representing and Reasoning about Semantic Conflicts in 
Heterogeneous Information Systems", PhD Thesis, MIT, 1997 

[11] C. Goh, S. Bressan, S. Madnick, and M. Siegel, "Context 
Interchange: New Features and Formalisms for the Intelligent 
Integration of Information," ACM TOIS, vol. 17, pp. 270-293, 1999. 

[12] J. R. Hobbs, "A DAML Ontology of Time," LREC, 2002. 
[13] A.C. Kakas, R.A. Kowalski, F. Toni, "Abductive Logic 

Programming", Journal of Logic Programming, 2(6), pp. 719-770, 
1993. 

[14]  A.C. Kakas, A. Michael, and C. Mourlas, "ACLP: Integrating 
Abduction and Constraint Solving," Journal of Logic Programming, 
44, pp. 129-177, 2000. 

[15] M. Kiffer, G. Laussen, J. Wu, "Logic Foundations of Object-
Oriented and Frame-based Languages", J. ACM, 42(4), pp. 741-843, 
1995. 

[16] S. Madnick, R. Wang, X. Xian, "The Design and Implementation of 
a Corporate Householding Knowledge Processor to Improve Data 
Quality", JMIS, 20(3), pp. 41-69, 2004. 

[17] J. McCarthy, "Generality in Artificial Intelligence", CACM, 30(12), 
pp. 1030-1035, 1987. 

 
 


