The Boundary Between Decidability and Undecidability
for Transitive-Closure Logics

N. Immerman*, A. Rabinovicl, T. Rep$**, M. Sagiv**, and G. Yorsh* * *

! Dept. of Comp. Sci. Univ. of Massachusettamerman@cs.umass.edu
2 School of Comp. Sci., Tel Aviv Univ.,
{rabinoa,msagiv,gretay }@post.tau.ac.il
3 Comp. Sci. Dept., Univ. of Wisconsineps@cs.wisc.edu

Abstract. To reason effectively about programs, it is important to have some version of a
transitive-closure operator so that we can describe such notions as the set of nodes reach-
able from a program’s variables. On the other hand, with a few notable exceptions, adding
transitive closure to even very tame logics makes them undecidable.

In this paper, we explore the boundary between decidability and undecidability for
transitive-closure logics. Rabin proved that the monadic second-order theory of trees is
decidable, although the complexity of the decision procedure is not elementary. If we go
beyond trees, however, undecidability comes immediately.

We have identified a rather weak language callé(DTC™ [E]) that goes beyond trees,
includes a version of transitive closure, and is decidable. We show that satisfiability of
3v(DTCH[E)) is NEXPTIME complete. We furthermore show that essentially any reason-
able extension oY(DTC™" [E]) is undecidable.

Our main contribution is to demonstrate these sharp divisions between decidable and
undecidable. We also compare the complexity and expressibili§voDTC" [E]) with
related decidable languages including MSO(trees) and guarded fixed point logics.

We mention possible applications to systems some of us are building that use decidable
logics to reason about programs.

1 Introduction

To reason effectively about programs, it is important to have some version of a transitive-
closure operator so that we can describe such notions as the set of nodes reachable from
a program’s variables. On the other hand, with a few notable exceptions, adding transi-
tive closure to even very tame logics makes them undecidable.

In this paper, we explore the boundary between decidability and undecidability for
transitive-closure logics. Rabin [13] proved that the monadic second-order theory of
trees is decidable, although the complexity of the decision procedure is not elementary.
If we go beyond trees, however, undecidability comes immediately.

Modal logics and their extension to thecalculus have proved quite useful. The
calculus has an EXPTIME-complete satisfiability problem [3] and the same has been
shown true even for the more expressive guarded fixed-point logic, as long as the vocab-
ulary remains of bounded arity [6]. Guarded fixed-point logic can express reachability
from a specific constant, or from some point of a specific color, and it can restrict this
reachability to be along paths specified, for example, by a regular expression. What it
cannot express is a reachability relation between a pair of variables, i.e., that there is a
path fromu to v.

We have identified a rather weak language, callé(DTC' [E]), that goes beyond
trees, includes a version of the latter sort of transitive closure, and is decidable. We show

* Supported by NSF grant CCR-0207373 and a Guggenheim fellowship.
** Supported by ONR contract N0O0014-01-1-0796 and the von Humboldt Foundation.
*** Supported by the Israel Science Foundation.

that satisfiability oBY(DTC" [E]) is NEXPTIME complete. We furthermore show that
essentially any reasonable extension av(DTC™[E]) is undecidable

The main contribution of this paper is to demonstrate the above sharp divisions
between decidable and undecidable. We also compare the complexity and expressibility
of 3¥(DTC™ [E]) with related decidable languages, including MSO(trees) and guarded
fixed-point logics.

The main application we have in mind is for the static-analysis methods that we are
pursuing. Very generally, we model the properties of an infinite set of data structures that
can be generated by the program we are analyzing, using a bounded set of first-order,
three-valued structures [14]. In [15], it is shown that this modeling can be improved so
that it computes the most precise possible transformation summarizing each program
step, through the use of decidable logics.

Furthermore, in [9] we show that we can use a method we call “structure simulation”
to significantly extend the sets of data structures that we can model with decidable logics
over trees (monadic second-order logic) or graphg§DTC™[E])). In the latter case,
transitive-closure information must be restricted to deterministic paths.

The advantage afv(DTC*[E]) compared with MSO(trees) is that while the latter
is usually much more expressive, we can go beyond trees in the former. As an example,
to express reachability in dynamic, undirected graphs, as in [2], we need not only a
spanning forest, but a record of all the remaining edges in the undirected graph [9].

Fig. 1 summarizes results concerning the decidability and complexity of satisfia-
bility for relevant logics. All the languages will be defined precisely in the next two
sections. For previously known results we include a reference, and for results new to
this paper we include the number of the relevant theorem.

] Decidable | Complexity [Citation|
7 calcglus . EXPTIME complete [3]]UndecidaquCitation ‘
Guarded Fixed PointEXPTIME complete| [6] FO(T0) Bl
MSO(trees) non-elementary [13] F*(DTC) Bl
FO’ NEXPTIME completé [11, 4] V(TCT[E]) | Cor
v 2% complete [1] W(DTCT) | Ths
IV(TC™) X% complete Prop 2 VDTC-TLT Th i3
3IY(DTCT[E]) |[NEXPTIME complete Th 4,5 (E])
W(TC, f) NEXPTIME complet¢ Cor 6

Fig. 1. Summary of the decidability and complexity, and the undecidability of the logics
we study. The arity of all relation symbols is bounded. The results are the sarie for
and3V, and they are the same for the satisfiability and finite-satisfiability problems.

2 Background and Tiling

As we have mentioned, being able to express reachability is crucial for our applications.
However, adding a transitive-closure operator tends to make even very tame logics un-
decidable. We use T,/ [¢] to denote the reflexive, transitive closure of binary relation
¢(u,u’) [8]. Note: In this paper, we confine our attention to applications ofd]Gor

which ¢ is quantifier-free and TC-free. Furthermore, we assume throughout that the
arity of all relation symbols is boundéd.

For example, consider the simple, decidable logi¢ Fis is first-order logic re-
stricted to having only two variables, y. Gradel et al. [5] prove that if we add the
transitive-closure operator (TC) to EGhen the resulting logic is undecidable. In fact,
they prove that even FODTC) is undecidable. Here DTC — deterministic transitive
closure — is the restriction of transitive closure to paths that have no choices. For the
binary relationE (z, y), defineE,(z, y) as follows:

Eq(z,y) o E(xz,y) AN Vz(E(z,2) = z=1y).

That is, if vertexv has more than one outgoirfg-edge, then it has no outgoinfg,;-

edges. Then define DTC as follows: D[} = TC[Ey].
It is surprising that F&DTC) is undecidable, but the proof is that even this seem-
ingly very weak language is strong enough to express tilings.

Definition 1 Define atiling problem 7 = (T, R, D), to consist of a finite list of
tile types, T = [to, ... tx], together with horizontal and vertical adjacency relations,
R,D C T?. Here R(a,b) means that tiles of typefitimmediately to the right of tiles

of typea, and D(a, b) means that tiles of typefit one step down from those of typeA
solutionto a tiling problem is an arrangement of instances of the tiles in a rectangular
grid such that ai, tile occurs in the top left position, andta tile occurs in the bottom
right position, and all adjacency relationships are respected.

Given a Turing machine}/, and an inputw, we can build a tiling problent], of
sizeO(|M| + |w]), such thatZ” has a solution iff\/ on inputw eventually halts. Here
any correct tiling solution would represent an accepting computatidd oh inputw.
Think of ¢y as representing the initial state ahdas representing the final accepting
state. Thus, as is well known, any logic that can express tilings has undecidable finite
satisfiability — and general satisfiability — problems.

(Standard definitions of tiling problems only requigeat the top left, and do not
also ask for;, at the lower right. This minor change does not affect the undecidability
and complexity results, but makes some of our constructions slightly simpler.) See [1]
for a nice treatment of tiling problems, as well as discussions of many relevant decidable
and undecidable logics.

3 Decidability of 3V(DTC*[E])

We start with the first-order logigV, consisting of first-order formulas in prenex form
with all existential quantifiers preceding all universal quantifiers. The vocabulary has
no function symbols. It is well known and easy to see that the satisfiability problem for
3V is decidable: Letp € 3V. Form the Skolemization,s, by replacing the existential
quantifiers 3z, ..., z, by new constantsy, . .., cx. Supposed = ¢g. LetC be the
substructure ofA whose universe consists of the constant symbols appearipg.in
Sinceys is universal, we have tha = ¢s. Thus, has a model iff it has a small
model, i.e., one of size less thap|. We say thaBlV has thesmall-model property

in this case with models of at most linear size. To test if a universal formugajs

4 For our intended applications, arity 2 is sufficient and arity 3 is a luxury. In theory, an un-
bounded arity can significantly increase some of the complexity bounds.

satisfiable, we would guess a structurg, of size at mosk. = |pg| and then check
that A = pg. Testing whether a given structure satisfies an input universal first-order
formula is co-NP complete. Thus satisfiability=0f formulas is in, and in fact complete
for, 2%, the second-level of the polynomial-time hierarchy.

Since the existential quantifiers #y formulas can be eliminated by adding con-
stants, we limit our discussion to universal formulas. ¥8DTC) consist of univer-
sal formulas in which DTC may occur. Unfortunately, as we will see, satisfiability of
V(DTC) andV(TC) are undecidable (Theorem 8).

It is the positive occurrences of TC that cause the satisfiability(dC) to be un-
decidable. LeBY(TC™) consist of formulas in prenex form in which TC only occurs
negatively.

Proposition 2 Satisfiability and finite satisfiability afv(TC™) are decidable with com-
plexity complete fo?.

Proof: The above argument faiv continues to work. Ifp € 3V(TC™) is satisfiable,
let A = ¢g, wherepg is the Skolemization of. As above, let be the substructure

of .4 whose universe consists of the constant symbols appearipg.ifthenC = ¢g
because if a path did not exist id then it still does not exist it€. (Recall that we
only apply TC to quantifier-free formulas.) Furthermore, we can test in polynomial
time whether such a path existsdnThus, the complexity of satisfiability remais)
complete. a

Definition 3 Define3v(DTCT[E]) to be the restriction ofly(DTC) in which the lan-
guage has only one binary relation symbal, (plus unary relation symbols and con-
stants), and all applications of DTC are positive occurrences of the @W@[E]. In
addition, we include irdv(DTC™[E]) arbitrary negative occurrencesof TC[y)] for
quantifier-free> However, it is very important that there an® negative occurrences
of DTC, for otherwise the language would become undecidable (Theorem 13).

Theorem 4 3Y(DTC'[E]) has the small-model property, with models of size at most

20(n*) wheren is the size of the formula. Thus, satisfiability and finite satisfiability of
3¥(DTCT[E]) are decidable, with complexity at most NEXPTIME.

Proof: Using Skolemization, it suffices to prove these results/A@TC[E]). Lety €
V(DTCIE]) be satisfiable and let |= ¢. We will show that there exists a modgl= ¢

such thaf B < 20("*). Here| B| denotes the cardinality of the universe of the structure
B, andn = ||,

Letc; ... ¢, be the constants occurring ¢n For each pair of constants, c;, such
that A = DTC[E](c;, ¢;), there is a unique pathy; from ¢; to ¢; in A. Let A’ be the
substructure ofd whose universe consists of the constants, plus all vertices that lie on
any of the pathg;;.

We claim that4d’ = ¢. To see this, first observe that for any two elementsof
the universe of4’ we have

A = DTC[E|(a,b) = A’ |= DTC|E](a, b) (1)

5 A more accurate name f@v(DTC'[E]) would really bed¥(DTCT[E], TC™), but this is a
mouthful, and all bounds remain the same whether or not the negative occurrences of TC are
allowed.

(The proof of Theorem 12 exploits the fact that the converse need not hold.) &ince
andb occur on pathg;;, if A = DTC[E](a, b) then the path frona to b must be along
the pathg;;. ThusA’ = DTC[E](a, b) holds as well.

Since A’ is a substructure afA and ¢ is a universal formula with only positive
occurrences of DTC, it follows from Equation (1) thdt = ¢. (Note that the neg-
ative occurrences of T[@¢] with ¢ quantifier-free do not cause problems: sinteis
a substructure ofd it follows that if A = —TCl¢](a, b), then A" = =TC[y](a,b) as
well.)

Structure A’ consists of a set of “trees” directed from leaf to root, all of whose
leaves and roots are constants; however, (1) some of the “trees” may end in a cycle
rather than a root; and (2) multiple edges may occur from some of the roots to other
vertices. Note that if there is more than one edge from vartélienv does not occur
on any DTC path, except perhaps as the last vertex. For this reason, if there are multiple
edges in4 from constant;, then we can remove all such edges and replace them by a
new unary relation symbd); true of all the vertices that had edges fromas long as
we modify e accordingly. (In particular, we would change all occurrences#f, y)”
to “E(z,y) V (x = ¢; A Qi(y))".) Because we can eliminate issue (2), we henceforth
assume that the graplt has outdegree at most one.

Note that some of the paths;;, p;/;; may intersect. If so, for simplicity we identify
the first point of intersection for each pair of paths as a new constant. Observe that there
are a total of at most — 1 such new constant symbols. Thus from now on we will
only considerdirect pathsp;; containing no intermediate constants. See Fig. 2 for an
example graph where constantscs, andcg have been added.

Fig. 2. ExampleA’ from proof of Theorem 4 after constants cs, cg have been added.

After these normalization stepsl’ consists oft’ constants and at most direct
paths,p;;, wherek’ < 2k — 1. Letr be the number of unary relation symbols, and
m be the number of (universal) quantifiersgnWe claim that no direct path;; need
have length greater tha&i"” + m + 1. Suppose on the contrary that the lengthyof
is greater thar2™™ + m + 1. Let the color of a vertex be the set of unary relation
symbols that it satisfies. There &&possible colors an?l™™ possiblem-tuples of col-
ors; consequently there must be at least two identically colored conseguiiuples,
Up, - - ., Um, @aNduvy, . .., vy, in the interior ofp,5. (By “consecutive” we mean the-
tuple is a path.) Form the structufrom A’ by deleting vertices, throughv; and
adding an edge from to vs.

We claim thatB = ¢. It suffices to show that for any.-tuple of vertices froni3,
bi,ba, ..., by, there is a corresponding, isomorphie-tuple fromA’, a1, as, . . . , Gum.

5 More explicitly, we mean that the map taking edgho a; is an isomorphism of the induced
substructures o8 and A’ generated by, ...,b, andas, ..., an, respectively. This may

Note that every vertex i is in A’, and furthermore, the only difference betweén
and.A’ concerning these vertices is thatu,, v2) holds in5 but not in A’.

If any b; is not on the pathp,2, then we leta; be the identical vertex itd’. We
may thus confine our attention to the most difficult case, namelybthad, . .. , b, are
all in the pathp,>. Assume for simplicity that they occur in order. Our only problem
is if for some?, b, = u; andby,y; = vs. In this case, we let; = b; for ¢ < ¢, but
we letagi1 = uq. Similarly, if by;,—1 = v; forall i € {2,...s}, then we must let
ae+i—1 = u;. Consider the first gap (if any), i.éh, andb;;; are not consecutive. We
have tha; = v, anda; = u., for somez. We can leta; = b; for j > i, see Fig. 3.
Note that we have replaced somgs by w;’s but all unary relations, edge relations

and connectivity have been preserved. Thus, as desited;, . . ., a,, is isomorphic
toby,be, ..., bp,.

<) @ (©) 4

Tl--- Tl THI.“ TI af":i.af*'s'l“. T.m
T Cpnimns U= Uy—>eee Uy oo e —> U Amns V=V —> ooe —>\,—>eee—>eennee — Vs G
B ClTwlfl \T/z_n..q\I/Z_)..._)T....T._.VmJT C2

kjia;_)bl @ b|+i" b<|_(3) bi:—i. b|+s—(h.)" bm
Fig. 3. lllustration of how for everym-tuple of vertices, ..., b,, from B there is a
corresponding isomorphi@-tuple of verticesuy, . . ., a,, from A’. In region (2) of3,
by, ...,b; are assigned consecutive vertices; similarly, in region (216fa,, ..., a;
are assigned consecutive vertices. Becaysadb; , are separated by two or mofe
edges in region (3) dB (i.e., there a “gap”), the assignments > 1, . . . , a,, in region

(4) of A’ can match those fdr,, 1, ..., by, in region (4) of B exactly.

ThusB = ¢ as desired. We can continue shortening any remaining paths of length
greater thar2”™ + m + 1. It follows that there is a modé# of ¢ and|B| < (2k —

1) (2™ +m+1) < 2/°, as desired. i

It follows from Theorem 4 that the satisfiability @(DTC" [E]) formulas can be
checked in NEXPTIME. We next show that this cannot be improved.

Theorem 5 The satisfiability ofiv(DTC*[E]) formulas is NEXPTIME-complete.

Proof: Let 7 be a tiling problem as in Definition 1, and letbe a natural number. It is
an NEXPTIME-complete problem to test on ingdt, 1™) whether there is & -tiling
of a square grid of siz2™ by 2™ [12].

We will define a formulap,, that expresses exactly a solution to this tiling problem.
There will be two constants; denoting the cell in the upper-left corner, andenoting
the cell in the lower-right corner. The desired model will consi?*ftiles:

be thought of as an Ehrenfeucht-Fa# game in which the spoiler chooses this and the
duplicator answers with the;'s [8].

§= [1717t0] ’ [laznvt]
2,1,¢] - [2,27,¢"]
[2n’1,t///] [27172n,tk] =t

The binary relatior will hold between each pair of consecutive tiles, including, for
example|1,2",¢] and|[2, 1,%']. We will include the following unary relation symbols:
H,y,... H,, indicating the horizontal position as arbit number;V;, ...V, indicating
the vertical position; andy, . . . T}, indicating the tile type.

The formulay,, is the conjunction of the following assertions:

L To(s) A A\ (SHls) AVils)) A Tilt) A N (0 A Vi)
2. Vx /\ —(T;(z) AN Tj(z))

0<i<j<k
3. Vx,y((Suq(x,y) — Vert(z,y)) A (Sug,(z,y) — Hor(x,y)))
4. DTCE](s,t) A Vx,y(E(a:,y) — Nexf(x,y))

Here (1) says that is the first tile, has tile typé,, andt is the last tile and has tile
typet,. We have chosen for simplicity to encode the tile types in unary so we need (2),
which says that tile types are mutually exclusive.

Conjunct (3) says that the arrangement of tiles hofidssadjacency requirements.
The abbreviation Sygx,y) means that: andy have the same vertical position and
y's horizontal position is one more than thatwofSug, (z, y) means that andy have
the same horizontal position ané vertical position is one more than that of The
abbreviations Hdz, y) and Vertz, y) are disjunctions over the tile types asserting that
the tiles in positionse andy are horizontally, respectively vertically, compatible; for
example,

Hor(z,y) = \/ (Tu(x) ATy(y)))

R(t; ,tj)

Finally, (4) says that there is a path frosrto ¢. The abbreviation Nekt, y) means
Sug,(z,y) or z has horizontal positio@™, y has horizontal position 1, angds vertical
position is one more than that of]

The formulay,, described in the above proof can be written in len@iin) using
only two variables. When satisfiable, it has a minimal model of 8{2¢). In Corol-
lary 16 we extend the above argument, showing thafHe”) bound of Theorem 4 is
in fact optimal. For this we need a variant of the abgyethat uses: variables.

4 Logics With One Function Symbol

We next discuss the langua@€TC, f), which consists of universal first-order logic
with a transitive-closure operator and one unary function symbol, plus arbitrary unary
relation symbols and constants. This is closely related to the langid@I C* [E]).

One important difference is that (/) we may write a formula that has only infinite
models’

! For exampleYz, y(c # f(z) A (f(z) = f(y) — 2 =y)).

It is well known that the satisfiability and finite-satisfiability problems for monadic
second-order logic with a single unary function symbol are decidbaliyough their
complexities are not elementary, even when restricted to first-order quantification [10,
13,1,7].

It is not hard to modify the proofs of Theorems 4 and 5 to apply(fBC, f). (For
functions, the implication of Equation (1) is a biimplication, and thus the result goes
through for positive and negative DTC’s.)

Corollary 6 The finite satisfiability problem for(TC, f) is NEXPTIME complet.

Proof: If a formulay € V(TC, f) has a finite model, then it must have a model of the
form A’ as in the proof of Theorem 4. The only difference is that sificeust be a total
function, there are no roots; that is, all trees end in cycles. The size of the smallest model
is still 20(n*) The difference in counting is slight, namely, applications of the function
symbol f can extend the apparent number of constant symlfdts) behaves like a

new constant symbef, and f (x) behaves like a new universally quantified variagle

such thatE(c;, ¢;) and E(z, y), respectively, must hold. Thus, the proof of Theorems

4 and 5 go through if we repladeandm by gk andgm, respectively, whereg is the
number of occurrences gfin ¢. |

5 Undecidability of Related Logics

We next show that most reasonable extensions of the langd@T C* [E]) can ex-

press the solution to tiling problems, and thus are undecidable. In this section we show
that any of the following changes cause undecidability: the use of TC; the presence of
more than one binary relation symbol; or a single positive use of Bf@heres is
quantifier-free. In the next section, we show tHeDTC™ [E]) is undecidable. To begin,

we first show

Theorem 7 Satisfiability and finite satisfiability of(DTC*[V],DTC™ [H]) — univer-
sal logic with two binary relationsy” and H, and their positive deterministic transitive
closure — are undecidable.

Proof: Let 7 be a tiling problem (Definition 1). We show how to write a formuylae
V(DTC*[V],DTC"[H]) such thatp is satisfiable iff7 has a solution.

Formulap contains four constant symbols,b, ¢, andd, representing the four cor-
ners of the solution t@’; see Fig. 4.

We assert that every element satisfies exactly one of the tile relafipns,. , T%.
We asserf(a) ATk (d), i.e., the upper left tile i, and the lower right i$;.. We assert
that H andV paths exist between the four corners: OFJ(a,b) A DTC[H](¢,d) A
DTC[V](a,c) ADTC[V](b,d).

We add a unary predicatkast, and assert the conjunction of the universal closure
of the following formulas:Last(b), -V (z,b), V(z,y) — (Lastz) < Lasty)), and
(H(z,y) N =V (z,y)) — —Lastz). These assure thagstis true exactly of the tiles

8 This is equivalent to the MSO theory of trees with multiple successor functions.

9 This holds as well for the general satisfiability problem. For infinite structures there is a similar
“small model” except that from some constants there is an infinite chain that intersects no other
vertices of the structure. The infinite chain must repeatratuple of colors and can from

thereafter repeat exactly. Thus it has a representation 0p8ize).

Last

a |to b
Vv v V| H
[] [] H
[] []
v ¢ ¢ V| H
[N N] X H y [X N]
v v
TTH [
: [N X) X y [X N) :
[] []
c H H H H Hlt, | d

Fig. 4. A tiling as expressed in Theorem 7.

in the rightmost column. In this column, we make theedges go down along the
V-edges, i.e.last(z) A Lasty) — (H(z,y) < V(x,y)). This allows us to express
the fact thatH-edges continue all the way to the right in every row, i.e., we assert:
VzDTC[H|(z,d).

We assert thaf{ and V' edges satisfy the corresponding horizontal and vertical
tiling constraints, using the formulas Hor and Vert as in Equation2)y ((H (x,y) A
—Last(z) — Hor(z,y)) A (V(z,y) — Vert(x,y))).

We assert that the intermediate rows are filledin:y, 2,y (H (z, y) AV (z, 2") A
Viy.y) — H(z'y)).

Finally, we assert that the columns are filled in and linevapzy, =’ v’ ((ﬁLast(x)/\
H(z,y) NV (z,2") NH(2'y) — V(y,y)).

It is not hard to see that the conjunction of the above assertions is equivalent to
the existence of a solution to the tiling problef, Thus satisfiability of?(DTC*[V],
DTC*[H]) is undecidable. i

Theorem 7 shows that a second binary relation over which we can take DTC causes
undecidability. We can modify the proof to show that even if there is only one (positive)
occurrence of DTC, the logic is still undecidable if a second binary relation is allowed,
or if DTC is allowed to be taken not just over the relatién but over a formula that
also involves unary relation symbols.

Theorem 8 Satisfiability and finite satisfiability of/(DTC") are undecidable. This
holds even if there is only one occurrence of DTC and only one binary relation symbol.
Also, if there is a second binary relation symbol, then the single occurrence of DTC can
be restricted to the forr@TC[E].

Proof: We modify the proof of Theorem 7 so that the path freo d through the tiled
rectangle is along a single snake-like path of the edge prediEates in Fig. 5.

We do this by adding unary relatidfirst denoting the first column of the tiling
rectangle, plus the relatioR true of the tiles in the odd-number rows. We then make
the E-path go left-to-right on the rows satisfyirigand right-to-left on the other rows.

First Last

Rato E E E E E E E
E E E E
E N . E
e ®
E * * E
R E
—_— eee X y XX —
E E E E
= o0eo | X E y XX D
. .
. .
. .
R E E E E E E E ty q

Fig. 5. A tiling expressed with a single occurrence of DTC as in Theorem 8.

Define the edges along the snake-like paily;, y) = E(z,y) A ((R(z) < R(y))V
(First(z) A =R(z) A R(y)) V (Last(z) A R(z) A =R(y))).

The single use of DTC is the assertion Dj§{a, d). We also assert the completion
of squares (see Fig. 5),

(E(z,y) NE(y,y') NE(Y',2') AN(R(x) < R(y)) AN(R(z") < R(y')) A (R(y) <
“R(y))) — B(x,2').

Finally, we add the following assertions, which together make sure that all models
must be valid tilings:

1. Ty(a) A Ty (d) A First(a) A Lastd) A —(First(z) A Last(z))

k
2\ Tiw) A N\ ~(T@) ATy ()
i=0 0<i<j<k
3. (E(z,y)A(R(z) < —R(y))) — ((First(z) < First(y)) A (Lastz) < Lasty))

4. E(z,y) — ﬂ((R(x)/\R(y)/\(Last(x)\/First(y)))\/(—\R(x)/\—\R(y)/\(LaS(y)\/

First(z))))
5. ((E(z,y) A R(z) A R(y)) V (E(y,) A ~R(x) A —R(y))) — Hor(z, y)
6. (E(z,y) A (R(z) < ~R(y))) — Vert(z,y)
Again formulas Hor and Vert are as in Equation (2). The conjunction of the univer-
sal closure of all the above assertions thus asserts a solution to the tiling prablem,

as desired. To prove the last assertion in the statement of the theorem: with a second
relation symbolJ//, we can letE' correspond tar, andW correspond td& A —-¢o. O

We remark that if in the proof of Theorem 8 we reverse the edges that are not
edges, then we can use [} in lieu of DTC[s| and the proof goes through. Thus we
have,

10

Corollary 9 Satisfiability and finite satisfiability of(TC[E]) are undecidable. This
holds even if there is only a single occurrence of TC (it occurs aZl)Gind E is the
only binary relation symbol.

Note that the formulas in Theorems 7, 8, and Corollary 9 use only two variables
except in the completion-of-squares formula. In fact, using an extra occurrence of TC,
we can write equivalent formulas with only two variables. We do this by reversing the
vertical edges in the even columns. We then assert that each non-boundaryegdpge,
is in an appropriate cycle, i.e., TE](y,) or DTC[v](y, «) holds, for appropriate.

Corollary 10 If we allow a second occurrence of a transitive-closure operator, the un-
decidability results of Theorems 7, 8, and Corollary 9 all remain true for the corre-
sponding languages with only two variables.

6 Undecidability of ¥(DTC[E])

We were quite surprised to find that althougTC™) is decidabley(DTC™ [E]) is not.
We give the somewhat subtle proof in this section. First we showAREC™ [E]) has
an infinity axiom.

Proposition 11 There is a sentence W(DTC™ [E]) that is satisfiable, but only in an
infinite model.

Proof: The idea is that we know that #(cg, ¢;) and—=DTC[E](cy, ¢1) both hold, then

there must be another edge fram We can use this observation to write an infinity
axiom that essentially expresses the existence of a successor function. We write the
conjunction of the following formulas:

1. Vo(v # c¢1 — (E(v,e1) A-DTC[E](v, ¢1)))
2. Youguz(v # 1 A E(u1,v) A E(uz,v) — w1 = uz)
3. ¢co # 1 ANV E(v,¢)

(1) says that every vertex besidgshas an edge to, but not a DTC path te;, so it
must have outdegree greater than 1; (2) says that every vertex besltEsin-degree
at most one; and (3) says thathas in-degree 0. Thus, there must be an infinite chain
of edges starting at.
These formulas are satisfied by a model that contains the natural numbers plus a
new point called:;, with edgesE(n,c¢;) andE(n,n + 1), forn =0,1, a

Theorem 12 Satisfiability and finite satisfiability &f(DTC[E]) are undecidable.

Proof: We take as our starting point the undecidability proof of Theorem 8. Our new
idea is to remove all of the non-boldfaégs in Fig. 5 and to replace them by a gadget of
new green vertices, satisfying the unary relation sym@oland associated edges. The
existence of the green vertices and their associated edges will be implied by the “not
DTC trick” introduced in the proof of Proposition 11, together with some universal
first-order statements that make sure that the vertical edges continue to be attached
appropriately.

Just as in the proof of Theorem 8, we express the existence of a tiling. Since we
have removed the non-boldfaé&s, we can now simply express the path from the first
tile to the last as DT®](a, d).

11

Fig. 6. Gadget used in Theorem 12.

To define the gadget, we add two new constantir the top rightmost tile, and;
for the top rightmost green vertex, just below it. The green path proceeds in the opposite
direction of the non-green, tile path directly above it, see Fig. 6.

We make the following assertions. These all concern the green row belowzach
i.e., right-going, row of tiles. For simplicity, we skip the analogous case below each
left-going row of tiles.

1. G(c1) A E(e1,b) AVuz(E(cr,) AN G(z) A E(b, ,
2. Vz((-G(z) < DTC[E](x,d)) A (-G(z) < DTC[E](a, z)))
3. Vayz(G(z) AN E(z,y) A E(z,2) ANy # 2z — (z
4. Yuvzyz(—~G(u) A-G(0) NG (z) AG(y) AG(z

E(z,y) AN E(y,2) — E(z,v))

5. Vuvzyz(—G(u) A =G(v) A G(z) A G(y) A G(z) A —~R(u) A =R(v) A E(u,v) A

E(z,u) A E(z,y) A E(y,z) — E(z,v))

6. Vu,v,z,y(~G(u) A=G(v) AG(z) AG(y) AR(u) A=R(v) A E(z,u) AE(z,y) A

E(y,v) — Vert(u,v))

(1) starts us out by saying that is green, has an edge &ipand its green successor
has an edge to the tile directly beldw(2) says that green vertices do not have DTC
paths tad, but all non-green vertices do; it also says that all the non-green edges occur
on the DTC-path frona to d. (3) says that if the outdegree of a green vertex is at least 2,
then it has a green and a non-green successor. We will assure later, inductively, that each
green vertex has an edge to a non-green vertex. Since the non-green vertex has a DTC-
path tod, but the green vertex does not, this assures that the green vertex has outdegree
2. (4) is an inductive condition, which says thatzify, andz are consecutive green
nodes, and if: points up to a non-green node,thenz points up tou's predecessot;.
(5) is the similar condition for the edges going down.

Finally, condition (6) asserts that these green gadgets transmit the vertical informa-
tion between the non-green, i.e., tile, nodes as desired. O

Theorem 12 leaves open the question of the decidability(DTC™ [E]). It would
seem that the positive use of DTC was crucial in the statement| BI&, d). How-
ever, even this can be replaced by the “not DTC trick”. (The positive uses of DTC in
formula (2) of the proof of Theorem 12 can easily be removed.) The conclusion is that
V(DTC™ [E]) is undecidable.

Theorem 13 Satisfiability and finite satisfiability of(DTC™ [E]) are undecidable.
Proof: We modify the proof of Theorem 12 by removing the assertion]G, d)
and replacing it using the “not DTC trick”. More explicitly, we add another unary pred-

icate B true of the tiles, and we add another constapt,Then we make the following
additional assertions:

12

1. B(a) AVz(B(x) Nx # d — E(x,co) AN =-DTC[E](x, ¢p))
2. Vay(B(z) Ny # co N E(z,y) — B(y))
3. The in-degree foB-vertices fromB-vertices is at most one, and it is zero for

(1) and (2) together assert that ed8hvertex besided has an edge to anoth&-
vertex. It follows that either DT{E](«, d) holds, or there is an infinite path. Thus, the
formula is finitely satisfiable iff the corresponding tiling problem has a solution. (To
show that the general satisfiability problem f§DTC™ [E]) is undecidable, we would
modify the construction to assert that there is no ngdend thus an infinite path, so that
the corresponding Turing machine, when started on blank tape, never halts. The tiling
would have to be modified so that the first row has length one, and each successive
row has one greater length. This is necessary so that an infinite path corresponds to an
infinite computation rather than an infinitely long first row.) m|

7 Complexity of the Decision Procedure

In this section, we study the complexity of the decision procedur@f¢pTC*[E]).
The first thing we do is look more carefully at the proof of Theorem 5, and show that

our lower bound is tight, matching ti€ () upper bound of Theorem 4.

Lemma 14 The formulay,, used in the proof of Theorem 5 may be written in length
O(n).

Proof: The only difficulty in keepingp,, to total sizeO(n) is in writing the formulas
Sug, (z,y) and Sug(zx, y). These are nearly identical and we will restrict our attention
to Sug,(z,y). Recall that Sug(z,y) means that the horizontal position gfis one
greater than the horizontal position of (Our convention is that the bit positions are
numbered 1 ta:, with 1 being the high-order bit, andthe low-order bit.) Sug(z, y)

can be written as follows:

swey) =\ AW @AH @) A (GH) A H)

A N (@) < Hi(y)]

J<i

However, the length of the above formula¥n?). We can decrease the size by
keeping track of the positionin the above formula. We do this by addigg more
unary relation symbols7;, K;, 1 < j < n. The intuitive meaning of; () is that it is
bit 7 of the horizontal number that will be incremented as we go fiaimits successor.
This means thatH;(z), and for allj > i, H;(z); i.e., there is a “0” in position, and
a “1” in each position to the right of

The intuitive meaning o7 (z) is thatj > i whereK;(z). We also use the abbre-
viation L;(z) = =(K,(x) V G;(z)). (The mnemonic is thaf holds for elements in
positions “greater” than th& position; L holds for elements in “lesser” positions.)

The advantage of having these new relations is that we can now reduce the length
of Sug, (z, y) as follows:

13

Sug,(z,y) =

=

((Gy(@) A Hy(2) A —H, (y)
(K(x) A —~Hj(z) A Hj(y))
(L (@) A (H; () = Hy(y)))

T.
< < ¢

Finally, we must write down several more conditions. The conjunction of the fol-
lowing conditions assures that the new relatiGhsand K; are defined correctly.

1 Va(Ki(x)V Ky(z) V-V Ky (z) vV (Hy(z) A Ho(x) - - - Hp()))

2. o A U(0) = Gunn(@) A A\ (i) = L)
3. Va(/\ i /\ — Giy1(2)))
4. Vz /\ /\ (@) = H;()) A (Ki(x) — ~H;i())))

O

It follows from Lemma 14 and the proof of Theorem 5 that we can write a sequence
of formulasy,, € IV(DTCT[E]), n = 1,2,... such thaty,| = O(n), ¢, has only
two variables, and yep,,’s smallest model is of siz&("). This is the best possible
with only two variables. To match theP (n*) upper bound of Theorem 4, we need a
formula withn variables.

We can count up @’ using a sequence of consecutive vertices, each with a
number betweem and2™. We will addn more unary relation symbols;;, 1 < i < n.
A tile will then be encoded by vertices as follows:

[017 h17 V1, t] [027 h27 V2,] T [C’na hn7 Un,]
[Clah/lavllat/] [Cth/Q"Ué’t] [th;w ’;L7 /]
That is, the firstn vertices hold tilet with its (collective) horizontal and vertical
numbers(hy, ..., hy,) and(vy,...,v,) having values between 1 adl’, the nextn

vertices hold tilet’ with the successor number, etc. Using very similar ideas to the
proof of Lemma 14 we can prove,

Lemma 15 Given any tiling problem7’, we can write a sequence of formula§ of
lengthO(n),n = 1,2,..., such thatp,, is satisfiable iff there is a solution t that is

a2’ by2”2 square.
It follows that
Corollary 16 The2°(*) upper bound of Theorem 4 is optinAl.
10 A referee pointed out that we are measuring the size of a formula as the number of symbols
occurring in it. One could also consider that when thereradifferent relation symbols we
need lengthog n per symbol. Our formulation is simpler and the lower bound is tight because

the upper bound used an even more lax measure of size, namely, the maximum of the number
of constant symbols, relation symbols, and quantifiers.

14

8

Conclusions

We have introduced the languageé(DTC'[E]), which is a decidable transitive-closure
logic that goes beyond trees. We have shown that all the reasonable extensions of
3¥(DTC'[E]) that we could think of are undecidable. UsesI{DTC'[E]) exist,

but how useful it might be remains to be seen. The following questions are worth con-
sidering:

— Unlike our other undecidability proofs, which only required two variables, our

proof of the undecidability of/(DTC™ [E]) used five variables. We suspect that
this can be improved.

— We showed that the satisfiability @(DTC"[E]) is NEXPTIME complete. The

lower bound depended on a formula that describes an exponentially long sequence
of colors. We suspect that in practice the formulas one encounters would have
much, much shorter sequences of color types. We suspect that techniques related
to Ehrenfeucht-Fiiae games can automatically find the relevant color sequences.
These ideas might lead to a satisfiability algorithm that is feasible in practice.

References

1.

2.

3.

10.

11.

12.
13.

14.

15.

E. Borger, E. Gédel, and Y. GurevichThe Classical Decision ProblenSpringer-Verlag,
1996.

G. Dong and J. Su. Space-bounded foie®rinciples of Database Systenpages 139-150.
ACM Press, 1995.

E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of
programs. IrProc. 29th IEEE Symposium on Foundations of Computer Scipages 328—

337. IEEE Computer Society Press, 1988.

. E. Giadel, Ph. Kolaitis, and M. Vardi. On the decision problem for two-variable first-order

logic. Bulletin of Symbolic Logic3:53—-69, 1997.

. E. Gidel, M. Otto, and E. Rosen. Undecidability results on two-variable lodigshive of

Math. Logig 38:313-354, 1999.

. E. Giadel and |. Walukiewicz. Guarded fixed point logic.Rroc. 14th IEEE Symposium on

Logic in Computer Sciencpages 45-54. IEEE Computer Society Press, 1999.

. J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sandholm.

Mona: Monadic second-order logic in practice Twols and Algorithms for the Construction
and Analysis of Systems, First International Workshop, TACAS 95, LNCS 1995.

. N. Immerman Descriptive ComplexitySpringer-Verlag, 1999.
. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. Verification via structure

simulation. To appear in CAV'04, 2004.

Albert R. Meyer. Weak monadic second-order theory of successor is not elementary re-
cursive. InLogic Colloquium, (Proc. Symposium on Logic, Boston, 19@ayes 132—-154,
1975.

M. Mortimer. On languages with two variable&eitschr. f. math. Logik u. Grundlagen d.
Math, 21:135-140, 1975.

C. PapadimitriouComputational ComplexityAddison—Wesley, 1994.

M. Rabin. Decidability of second-order theories and automata on infinite fness. Amer.

Math. Soc,.141:1-35, 1969.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valuedTogis. on

Prog. Lang. and Systpages 217—-298, 2002.

G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract operations
for shape analysis. IMACAS pages 530-545, 2004.

15

