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Abstract. It is well known that in an o-minimal hybrid system the
continuous and discrete components can be separated, and therefore the
problem of finite bisimulation reduces to the same problem for a tran-
sition system associated with a continuous dynamical system. It was
recently proved by several authors that under certain natural assump-
tions such finite bisimulation exists. In the paper we consider o-minimal
systems defined by Pfaffian functions, either implicitly (via triangular
systems of ordinary differential equations) or explicitly (by means of
semi-Pfaffian maps). We give explicit upper bounds on the sizes of bisim-
ulations as functions of formats of initial dynamical systems. We also
suggest an algorithm with an elementary (doubly-exponential) upper
complexity bound for computing finite bisimulations of these systems.

Introduction

We assume that the reader is familiar with the motivation and basic concepts of
the theory of hybrid systems. This material can be found in collection of papers
[7]. The more recent accounts are (not exclusively) [8, 3, 9].

Recall that in certain natural cases continuous and discrete components of
a hybrid system can be separated. Moreover, the continuous component allows
finite bisimulation, thus reducing the decidability questions for the original sys-
tem to similar questions for a finite system. An important example having this
property is the class of o-minimal hybrid systems, introduced in [9]. The main
result of [9] is that under certain natural assumptions, o-minimal systems allow
finite bisimulations. This statement was generalized in [3], where a convenient
and elementary technique was developed, based on encoding of trajectories of
o-minimal dynamical systems in partitioned spaces by means of words in finite
alphabets. The elements of bisimulations are then encoded by dotted words.

In the present paper we use the technique of [3] to obtain some quantitative
versions of the finite bisimulation theorems. We introduce Pfaffian hybrid sys-
tems which essentially reduce to Pfaffian dynamical systems defined by means
of equations and inequalities involving Pfaffian functions. The latter are real
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analytic functions satisfying triangular systems of first order partial differen-
tial equations with polynomial coefficients. They include polynomials, real alge-
braic functions, and all major transcendental functions in appropriate domains.
Pfaffian functions form the broadest natural class of real analytic functions for
whose elements the size or format can be adequately assigned. The concept of
the format can be extended to sets in IRn and to maps definable using Pfaffian
functions.

We consider dynamical systems defined by Pfaffian functions, either implic-
itly (via triangular systems of ordinary differential equations) or explicitly (by
means of semi-Pfaffian maps). We give explicit upper bounds on the sizes of
bisimulations as functions of formats of initial dynamical systems. We also sug-
gest an algorithm with an elementary (doubly-exponential) upper complexity
bound for computing finite bisimulations of these systems.

More precisely, the outline of the paper is as follows. In Section 1 we sum-
marize some well-known definitions and results about hybrid systems closely
following [3, 9]. We also recall the (dotted) words encoding technique from [3].
Section 2 presents a brief digest of Pfaffian functions, upper bounds on topolog-
ical complexities of semi- and sub-Pfaffian sets, and algorithms for computing
their closures and cylindrical cell decompositions. In Section 3 two types of dy-
namical systems defined using Pfaffian functions are introduced. In Section 4 we
consider dynamical systems determined by triangular systems of ordinary differ-
ential equations, and prove an upper bound on the size of its bisimulation (note
that such systems may not be o-minimal in the sense of [3, 9]). In Section 5 we
solve the similar problem for dynamical systems defined by explicit semi-Pfaffian
maps. Finally, in Section 6 we propose an algorithm (with the usual for Pfaffian
functions theory oracle) which actually computes a finite bisimulation for dy-
namical systems defined in Section 5. The complexity of the algorithm is doubly
exponential in the format of the input system.

1 Transition systems and dynamical systems

In [3, 9] it is explained how some central problems in the theory of o-minimal
hybrid systems can be reduced to bisimulations of transition systems associated
to o-minimal dynamical systems.

The exposition in this section closely follows [3]. The first group of definitions
describes transition systems and bisimulations between the transition systems.

Definition 1. Let Q be an arbitrary set and → be a binary relation on Q. In
the context of hybrid systems theory we call Q the set of states, → the transition,
and T := (Q,→) the transition system.

Definition 2. Given two transition systems T1 := (Q1,→1) and T2 := (Q2,→2)
we define a simulation of T1 by T2 as a binary relation ∼⊂ Q1 ×Q2 such that:

• ∀q1 ∈ Q1∃q2 ∈ Q2(q1 ∼ q2);
• ∀q1, q

′
1 ∈ Q1∀q2 ∈ Q2∃q′2((q1 ∼ q2 ∧ q1 → q′1) ⇒ (q′1 ∼ q′2 ∧ q2 → q′2)).
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Definition 3. Abisimulation between two transition systems T1 := (Q1,→1)
and T2 := (Q2,→2) is a simulation ∼ ⊂ Q1 × Q1 of T1 by T2 such that the
reciprocal relation ∼−1:= {(q2, q1) ∈ Q2 ×Q1|q1 ∼ q2} is a simulation of T2 by
T1.

Definition 4. A bisimulation between a transition system T and itself is called
bisimulation on T .

Definition 5. Let ∼ be a bisimulation on T = (Q,→) and also an equivalence
relation on Q. Let P be a partition of Q. We say that ∼ is a bisimulation with
respect to P if any P ∈ P is a union of some equivalence classes of ∼.

In this paper we are concerned with estimating cardinality and computing
bisimulations in the sense of Definition 5. We now give some definitions concern-
ing dynamical systems.

Definition 6. Let G1 ⊂ IRk1 and G2 ⊂ IRk2 be open domains. The dynamical
system is a map

γ : G1 × (−1, 1) → G2.

In the sequel γ will always be definable in an o-minimal structure over IR. For
a given x ∈ G1 the set

Γx = {y|∃t ∈ (−1, 1) (γ(x, t) = y)} ⊂ G2

is called the trajectory determined by x, and the graph

Γ̂x = {(t,y)| γ(x, t) = y} ⊂ (−1, 1)×G2

is called the integral curve determined by x.

Definition 7. The transition system Tγ = (Q,→) associated to the dynamical
system γ is defined as follows:

• Q := G2, and
• y1 → y2 for y1,y2 ∈ Q if and only if

∃x ∈ G1∃t1, t2 ∈ (−1, 1)((t1 ≤ t2) ∧ (γ(x, t1) = y1) ∧ (γ(x, t2) = y2)).

We now introduce, following [3], a technique of encoding trajectories of
dynamical systems by words. Let P := {P1, . . . , Ps} be a finite partition of
γ(G1× (−1, 1)) definable in the o-minimal struicture. Fix x ∈ G1. Define the set
of points and open intervals in IR:

Fx := {I| I is a point or an interval in (−1, 1) maximal w.r.t. inclusion for the

property ∃i ∈ {1, . . . , s}∀t ∈ I (γ(x, t) ∈ Pi)}.
Let the cardinality |Fx| = r and y1 < · · · < yr be the set of representatives of
Fx such that γ(x, yj) ∈ Pij . Then define the word ω := Pi1 · · ·Pir in alphabet
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P. Informally, ω is the list of names of elements of the partition in the order
they are visited by trajectory Γx.

Let y ∈ Γx. Then y ∈ Pij for some 1 ≤ j ≤ r, where Pij is a letter in ω. We
represent the location of y on trajectory Γx by the dotted word

ω̇ := Pi1 · · · Ṗij · · ·Pir .

It will be convenient to use the operation

undot(ω̇) = ω := Pi1 · · ·Pij
· · ·Pir

.

In the sequel we will always assume that a dynamical systems γ is injective. In
this case there is a unique dotted word associated to a given y ∈ γ(G1×(−1, 1)).

Introduce sets of words Ω := {ω| x ∈ G1}, Ω̇ := {ω̇| x ∈ G1}.
The following statement is an easy consequence of o-minimality.

Lemma 1. [3] The set Ω is finite.

An obvious (purely combinatorial) corollary is that Ω̇ is also finite.

Definition 8. The transition system TΩ̇ is defined as follows:

• Q := Ω̇, and
• ω̇1 → ω̇2 for ω̇1, ω̇2 ∈ Q if and only if ω1 = ω2 and the dot on ω̇2 is on the

righter (or the same) position than the dot on ω̇1.

Theorem 1. [3] Let the o-minimal dynamical system γ be bijective, and the
partition P be definable in the o-minimal structure. Then there is a finite bisim-
ulation on Tγ with respect to P.

Proof. To prove the theorem one first shows that TΩ̇ is a bisimulation of Tγ , and
then considers the following equivalence relation ∼ on G2: y1 ∼ y2 iff for respec-
tive pre-images (x1, t1), (x2, t2), the locations of y1,y2 on trajectories Γx1 , Γx2

are described by the same dotted word ω̇. Then ∼ is the required bisimulation
(see details in [3]).

2 Pfaffian functions and related sets

This section is a digest of the theory of Pfaffian functions and sets definable with
Pfaffian functions. The detailed exposition can be found in the survey [4].

Definition 9. A Pfaffian chain of the order r ≥ 0 and degree α ≥ 1 in an open
domain G ⊂ IRn is a sequence of real analytic functions f1, . . . , fr in G satisfying
differential equations

∂fj

∂xi
= gij(x, f1(x), . . . , fj(x)) (1)
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for 1 ≤ j ≤ r, 1 ≤ i ≤ n. Here gij(x, y1, . . . , yj) are polynomials in x =
(x1, . . . , xn), y1, . . . , yj of degrees not exceeding α. A function

f(x) = P (x, f1(x), . . . , fr(x)),

where P (x, y1, . . . , yr) is a polynomial of a degree not exceeding β ≥ 1, is called
a Pfaffian function of order r and degree (α, β).

Apart from polynomials, the class of Pfaffian functions includes real algebraic
functions, exponentials, logarithms, trigonometric functions, their compositions,
and other major transcendental functions in appropriate domains (see [4]).

Definition 10. A set X ⊂ IRn is called semi-Pfaffian in an open domain G ⊂
IRn if it consists of points in G satisfying a Boolean combination of some atomic
equations and inequalities f = 0, g > 0, where f, g are Pfaffian functions having
a common Pfaffian chain defined in G. A semi-Pfaffian set X is restricted in G
if its topological closure lies in G.

Definition 11. A set X ⊂ IRn is called sub-Pfaffian in an open domain G ⊂ IRn

if it is an image of semi-Pfaffian set under a projection into a subspace.

In the sequel we will be dealing with the following subclass of sub-Pfaffian
sets.

Definition 12. Consider the closed cube [−1, 1]m+n in an open domain G ⊂
IRm+n and the projection map π : IRm+n → IRn. A subset Y ⊂ [−1, 1]n is
called restricted sub-Pfaffian if Y = π(X) for a restricted semi-Pfaffian set X ⊂
[−1, 1]m+n.

Note that a restricted sub-Pfaffian set need not be semi-Pfaffian.

Definition 13. Consider a semi-Pfaffian set

X :=
⋃

1≤i≤M

{x ∈ IRs| fi1 = · · · = fiIi , gi1 > 0, . . . , giJi > 0} ⊂ G, (2)

where fij , gij are Pfaffian functions with a common Pfaffian chain of order r and
degree (α, β), defined in an open domain G. Its format is a tuple (r,N, α, β, s),
where N ≥ ∑

1≤i≤M (Ii + Ji). For s = m + n and a sub-Pfaffian set Y ⊂ IRn

such that Y = π(X), its format is the format of X.

We will refer to the representation of a semi-Pfaffian set in the form (2) as
to disjunctive normal form (DNF).

Remark 1. In this paper we are concerned with upper bounds on sizes of bisim-
ulations and complexities of computations, as functions of the format. In the
case of Pfaffian dynamical systems these sizes and complexities also depend on
the domain G. So far our definitions imposed no restrictions on an open set G,
thus allowing it to by arbitrarily complex and induce this complexity on the
corresponding semi- and sub-Pfaffian sets. To avoid this we will always assume
in the context of Pfaffian dynamical systems that G is “simple”, like IRn, or
(−1, 1)n.
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Theorem 2. [6, 11] Consider a semi-Pfaffian set X ⊂ G ⊂ IRn, where G is
an open domain, represented in DNF with format (r,N, α, β, n). Then the sum
of the Betti numbers (in particular, the number of connected components) of X
does not exceed

Nn2r(r−1)/2O(nβ + min{n, r}α)n+r.

In this paper we examine complexities of algorithms for computing bisimula-
tions. In order to estimate the “efficiency” of a computation we need to specify
more precisely a model of computation. As such we use a real numbers machine
which is an analogy of a classical Turing machine but allows the exact arithmetic
and comparisons on real numbers. Since we are interested only in upper complex-
ity bounds for algorithms, we have no need in a formal definition of this model
of computation (it can be found in [2]). In some of our computational prob-
lems we will need to modify the standard real numbers machine by equipping
it with an oracle for deciding feasibility of any system of Pfaffian equations and
inequalities. An oracle is a subroutine which can be used by a given algorithm
any time the latter needs to check feasibility. We assume that this procedure
always gives a correct answer (“true” or “false”) though we do not specify how
it actually works. An elementary step of a real numbers machine is either an
arithmetic operation, or a comparison (branching) operation, or an oracle call.
The complexity of a real numbers machine is the number of elementary steps it
makes in worst case until termination, as a function of the format of the input.

Now we define cylindrical decompositions of semi- and sub-Pfaffian sets.

Definition 14. Cylindrical cell in [−1, 1]n is defined by induction as follows.

1. Cylindrical 0-cell in [−1, 1]n is an isolated point.
2. Cylindrical 1-cell in [−1, 1] is an open interval (a, b) ⊂ [−1, 1].
3. For n ≥ 2 and 0 ≤ k < n a cylindrical (k + 1)-cell in [−1, 1]n is either a

graph of a continuous bounded function f : C → IR, where C is a cylindrical
(k + 1)-cell in [−1, 1]n−1, or else a set of the form

{(x1, . . . , xn) ∈ [−1, 1]n| (x1, . . . , xn−1) ∈ C and

f(x1, . . . , xn−1) < xn < g(x1, . . . , xn−1)},
where C is a cylindrical k-cell in [−1, 1]n−1, and f, g : C → [−1, 1] are
continuous bounded functions such that f(x1, . . . , xn−1) < g(x1, . . . , xn−1)
for all points (x1, . . . , xn−1) ∈ C.

Definition 15. Cylindrical cell decomposition D of a subset A ⊂ [−1, 1]n is
defined by induction as follows.

1. If n = 1, then D is a finite family of pair-wise disjoint cylindrical cells (i.e.,
isolated points and intervals) whose union is A.

2. If n ≥ 2, then D is a finite family of pair-wise disjoint cylindrical cells in
[−1, 1]n whose union is A and there is a cylindrical cell decomposition of
π(A) such that π(C) is its cell for each C ∈ D, where π : IRn → IRn−1 is
the projection map onto the coordinate subspace of x1, . . . , xn−1.
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Definition 16. Let B ⊂ A ⊂ [−1, 1]n and D be a cylindrical cell decomposition
of A. Then D is compatible with B if for any C ∈ D we have either C ⊂ B or
C ∩B = ∅ (i.e., some subset D′ ⊂ D is a cylindrical cell decomposition of B).

Definition 17. For a given finite family f1, . . . , fN of Pfaffian functions fi in
an open domain G define its consistent sign assignment as a non-empty semi-
Pfaffian set in G of the kind

{x ∈ G | fi1 = · · · = fiN1
= 0, fiN1+1 > 0 . . . , fiN2

> 0, fiN2+1 < 0, . . . , fiN
< 0},

where i1, . . . , iN1 , . . . , iN2 , . . . , iN is a permutation of 1, . . . , N .

Theorem 3. [5, 10] Let f1, . . . , fN be a family of Pfaffian functions in an open
domain G ⊂ IRs, G ⊃ [−1, 1]s having a common Pfaffian chain of order r,
and degrees (α, β). Then there is an algorithm (with the oracle) producing a
cylindrical cell decomposition of [−1, 1]s which is compatible with each consistent
sign assignment of f1, . . . , fN . Each cell is a sub-Pfaffian set represented as a
projection of a semi-Pfaffian set in DNF. The number of cells, the components
of their formats and the complexity of the algorithm are less than

(α + βN)rO(n)2O(n2)
.

3 Pfaffian dynamical systems

Definition 18. A triangular system of ordinary differential equations is defined
by

ẋ = f(t,x), (3)

where x ∈ IRn, and f is a vector-function f = (f1, . . . , fn) where

fi ∈ IR[t, x1, x2, . . . , xi]

for every 1 ≤ i ≤ n. By a solution of (3) with initial conditions (t0,x0),
t0 ∈ (−1, 1) we mean any analytic vector-function ϕ : (−1, 1) → IRn such that
dϕ/dt = f(t, ϕ) for all t ∈ (−1, 1) and ϕ(t0) = x0.

From the Definition 9 it follows that any solution of (3) is a vector of Pfaffian
functions in the common domain (−1, 1).

To any system (3) we can relate a dynamical system γ : G × (−1, 1) → G,
where G = I1 × · · · × In, and Ii is an open interval (possibly unbounded) for all
1 ≤ i ≤ n. More precisely, assume that for any x ∈ G the system has a solution
ϕ with initial conditions (x, 0). Then γ(x, t) := ϕ(t).

Along with the dynamical systems associated with triangular systems of the
kind (3) we will consider Pfaffian dynamical systems defined as follows.

Definition 19. A dynamical system

γ : G× (−1, 1) → G,

where G is open in IRn and γ is a map with a semi-Pfaffian graph, is called
Pfaffian dynamical system.
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Remark 2. Observe that the dynamical system γ associated with (3) may not
be a Pfaffian dynamical system in the sense of the last definition since γ, being
a Pfaffian vector-function for any fixed x, is not necessarily a Pfaffian map for
variable x.

4 Bisimulations of dynamical systems associated with a
differential equation

Let in the system (3) the degree deg(fi) < α for any 1 ≤ i ≤ n and the
associated dynamical system γ be bijective. Let T = (G,→) be the transition
system associated with γ. Consider a partition P := {P1, . . . , Ps} of G into s
semi-Pfaffian sets Pj each having the format (r,N, α, β, n). Let m := max{n, r},
M := max{n,N}.
Theorem 4. There is a bisimulation on T with respect to P consisting of

ssMn2m(m−1)/2O(n(α+β))n+m

(4)

equivalence classes.

Proof. We use the notations and arguments of Section 1. First we estimate the
length ` of the word ω for any x ∈ G. Fix x. Since ` coincides with the total
number of connected components of intersections

Pj ∩ Γx = {y|∃t ∈ (−1, 1)(y = γ(x, t) ∧ y ∈ Pj)}

for all 1 ≤ j ≤ s. The semi-Pfaffian set P̂j := {(y, t)|y = γ(x, t) ∧ y ∈ Pj}
has the format (m,M,α, β, n), thus according to Theorem 2 the number of its
connected components does not exceed

L := Mn2m(m−1)/2O(n(α + β))n+m.

Since Pj ∩ Γx is the projection of P̂j along t, the number of all connected com-
ponents of Pj ∩ Γx is also less or equal to L, and the total number of connected
components for all 1 ≤ j ≤ s does not exceed sL. Since the number of distinct
letters in any word ω is at most s, the number of all words in the set Ω does
not exceed (4). Then the cardinality of the set Ω̇ of all dotted words also does
not exceed (4). It remains to notice that due to Theorem 1, the finite transition
system TΩ̇ is a bisimulation of T .

5 Bisimulations of Pfaffian dynamical systems

Consider a bijective Pfaffian dynamical system γ : G × (−1, 1) → G, where
G = (−1, 1)n, and a partition P := {P1, . . . , Ps} of G into s semi-Pfaffian sets
Pj . Let the graph of γ and each set Pj have the format (r,N, α, β, n), and all
Pfaffian functions involved have the common Pfaffian chain.
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Theorem 5. There is a bisimulation on T with respect to P consisting of

ssNn2r(r−1)/2O(n(α+β))n+r

(5)

equivalence classes.

Proof. A straightforward adjustment of the proof of Theorem 4.

Using the Pfaffian dependence on x in the case of a Pfaffian dynamical sys-
tem we obtain another upper bound on the size of the bisimulation which is
asymptotically better in general than the bound in Theorem 5 (except the case
when n is significantly larger than the rest of the parameters).

Theorem 6. There is a bisimulation on T with respect to P consisting of

(α + βsN)rO(n)2O(n2)
(6)

equivalence classes.

Proof. Consider the family of Pfaffian functions in the domain

G× (−1, 1)×G

consisting of all functions in variables x, t,y involved in the defining formulae for
the graph of the map γ : (x, t) 7→ y, and for all sets Pj considered in the latter
case as functions in variables y. According to Theorem 3, there is a cylindrical
decomposition D for this family with respect to (x, t,y), consisting of at most (6)
cylindrical cells. By the definition of cylindrical decomposition, D induces the
cylindrical decomposition on G (equipped with coordinates x) which we denote
by E .

We claim that for any cell C ∈ E and any two points x1,x2 ∈ C the trajec-
tories Γx1 , Γx2 ∈ G are intersecting sets P1, . . . , Ps in the same order (i.e., are
encoded by the same word from Ω). Indeed, let π : G× (−1, 1)×G → G be the
projection on G with coordinates x. Decomposition D induces cylindrical decom-
positions D1 and D2 on π−1(x1) and π−1(x2) respectively. In particular, each
of the integral curves Γ̂x1 and Γ̂x2 is decomposed into a sequence of alternating
points and open intervals. Due to basic properties of a cylindrical decomposition,
there is a natural bijection ψ : D1 → D2 such that

(i) the restriction of ψ to the set of all cells in Γ̂x1 is a bijection onto the set of
all cells in Γ̂x2 ;

(ii) for each 1 ≤ j ≤ s the restriction of ψ to the set of all cells in (−1, 1)×Pj ⊂
π−1(x1) is a bijection onto the set of all cells in (−1, 1)× Pj ⊂ π−1(x2).

It follows that if a cell B ∈ D1 and B ⊂ Γ̂x1 ∩ ((−1, 1)×Pj) for some 1 ≤ j ≤ s,
then ψ(B) ⊂ Γ̂x2 ∩ ((−1, 1)× Pj). The claim is proved.

It follows that the cardinality of Ω does not exceed the cardinality of E which
does not exceed the cardinality of D which in turn is at most (6). Therefore, the
cardinality of Ω̇ does not exceed (6), and the theorem is proved.
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6 Computing bisimulations

In this section we introduce an algorithm for computing finite bisimulations
described in Theorem 6. It is sufficient to construct the set of dotted words Ω̇
corresponding to the bijective Pfaffian dynamical system γ : G × (−1, 1) → G
(with G = (−1, 1)n) and a partition P := {P1, . . . , Ps}. Since Ω̇ is trivially
obtained from the set Ω, we will be constructing the latter set.

The algorithm applies the procedure from Theorem 3 to the family of Pfaffian
functions consisting of all functions in variables x, t,y involved in the defining
formulae for the graph of the map γ : (x, t) 7→ y, and for all sets Pj considered
in the latter case as functions in variables y. As a result, the algorithm produces
a cell decomposition D which induces the cell decomposition E (see the proof
of Theorem 6). Using the oracle, the algorithm selects the cells from D which
are subsets of {(x, t,y)|y = γ(x, t}. Denote the set of the selected cells by B.
Observe that for any fixed x′ ∈ G the set

⋃
B∈B B ∩ {x| x = x′} coincides with

the integral curve Γ̂x′ . Then the algorithm determines the order in which the
cells B ∈ B intersected with {x| x = x′} appear in the trajectory Γx′ .

More precisely, for each pair of distinct cells B1, B2 ∈ B the algorithm decides,
using the oracle, whether

∃x∃t1∃t2∃y1∃y2 ((x, t1,y1) ∈ B1 ∧ (x, t2,y2) ∈ B2 ∧ (t1 < t2)).

For a given C ∈ E , after all pairs of cells are processed we get the ordered set of
cells B1, . . . , Bk in D such that for any 1 ≤ i ≤ k and any x′ ∈ C the sequence
of points and intervals

B1 ∩ {x| x = x′}, . . . , Bk ∩ {x| x = x′}

forms the integral curve Γ̂x′ . By the definition of the cylindrical decomposition,
for any pair Bi, Pj either Bi ⊂ (C× (−1, 1)×Pj) or Bi ∩ (C× (−1, 1)×Pj) = ∅.
The algorithm uses the oracle to decide for every pair which of these two cases
takes place. As the result, the sequence B1, . . . , Bk becomes partitioned into
subsequences of the kind

(B1, . . . , Bk1), (Bk1+1, . . . , Bk2), . . . , (Bk`−1+1, . . . , Bk),

where for any i, 0 ≤ i ≤ `− 1, the cells Bki+1, . . . , Bki+1 lie in C × (−1, 1)× Pji

for some ji, while Bki∩C×(−1, 1)×Pji = ∅ and Bki+1+1∩C×(−1, 1)×Pji = ∅.
Then the word ω := Pj0 · · ·Pj`−1 corresponds to the cell C. Considering all cells
in E the algorithm finds Ω and then Ω̇. This completes the description of the
construction of TΩ̇ . It remains to construct the bisimulation ∼ on G.

As it was explained in the proof of Theorem 1, for y1,y2 ∈ G we have
y1 ∼ y2 iff for respective pre-images (x1, t1), (x2, t2), the locations of y1,y2 on
trajectories Γx1 , Γx2 are described by the same dotted word. Fix a cell C ∈ E .
To all points x ∈ C correspond the trajectories Γx encoded by the same word,
say ω := Pi0 · · ·Piq · · ·Pi`−1 . Consider a dotted word ω̇ := Pi0 · · · Ṗiq · · ·Pi`−1 .



11

Then all points y ∈ Γx (for various x ∈ C) whose locations are described by ω̇
form the set

Aω̇(C) := {y ∈ G| ∃x ∈ C ∃t ((x, t,y) ∈ (Bkq+1 ∪ · · · ∪Bkq+1))}.

Notice that Aω̇(C) is a sub-Pfaffian set with components of the format not
exceeding (6). The equivalence relation ∼ is now defined by the partition

G =
⋃

ω̇∈Ω̇

Aω̇,

into disjoint classes
Aω̇ :=

⋃

C∈E
Aω̇(C).

This completes the description of the algorithm.
A straightforward analysis shows that the complexity of the algorithm does

not exceed (6), taking into account the bounds from Theorem 3.

7 Future research

Observe that upper bounds from Theorems 5 and 6 on the size of bisimulations
are doubly exponential in some parameters of the format of the original dynamical
system. It looks feasible that there exists a singly exponential upper bound.
The proof would require avoiding cylindrical cell decomposition technique which
is intrinsically doubly exponential. Instead, it could use ideas related to those
employed in effective quantifier elimination over real closed fields (see, e.g., [1])
and in recent upper bounds on topological complexity of definable sets [6].
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