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Abstract. We present a simple calibration method for computing the
extrinsic parameters (pose) and intrinsic parameters (focal length and
principal point) of a camera by imaging a pattern of known geometry.
Usually, the patterns used in calibration algorithms are complex to build
(three orthogonal planes) or need a lot of features (checkerboard-like pat-
tern). We propose using just two concentric circles that, when projected
onto the image, become two ellipses. With a simple mark close to the
outer circle, our algorithm can recover the full pose of the camera.
Under the perfect pinhole camera assumption, the pose and the focal
length can be recovered from just one image. If the principal point of
the camera has to be computed as well, two images are required. We
present several results, using both synthetic and real images, that show
the robustness of our method.

1 Introduction

In the past two decades, several methods have been proposed for calibrating
a camera by taking images of a pattern with known geometry. First in photo-
grammetry and then in computer vision, researchers have developed methods to
recover a camera’s extrinsic parameters (position and orientation) and intrinsic
parameters (focal length and principal point). Those methods usually require
expensive laboratory settings, or use complex fiducials [1].

In order to take the computer vision from the laboratory to the home user,
robust, inexpensive and effective techniques are needed. In this paper, we present
an algorithm that easily recovers the pose and the focal length of a camera by
taking a single photo of a simple calibration pattern. We use a pattern made
of two concentric circles of known radii, usually printed on a sheet of paper.
We show how this pattern can be used in a simple setup to recover the camera
parameters. Our method can be applied to camera tracking and related problems
like robotics, entertainment and augmented reality.

This paper is organized as follows. The next section presents previous work
in the field of camera calibration with circular markers. Section 3 presents the
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theoretical model and mathematical foundations of our work. In the following
section we present some results of our method, and discuss the tests we run
with both synthetic and real data. Our paper finishes with some conclusions and
directions for future work.

2 Previous Work

Early work that used conics for computer vision applications was reported in [2–
4]. Circular markers have been extensively used in tracking applications due to
their robustness properties [6, 7]. Kim et al. [8, 9] proposed a calibration method
using two concentric circles. Their algorithm requires some initial information
about the camera to get an initial value for the intrinsic matrix. They define a
cost function on the calibration parameters and minimize it. This method only
recovers the normal of the marker’s supporting plane.

Another method that recovers the supporting plane of the circles was propo-
sed in [10]. The method computes the plane’s normal and a point on it expressed
in camera coordinates. The method assumes that the principal point is at the
center of the image.

Unlike the previous methods, our algorithm does not require any a priori
information about the camera parameters to calibrate it. Furthermore, we reco-
ver the pose (the full rotation matrix and the translation vector) using a simple
marker. Finally, we also compute the position of the principal point.

3 Calibrating the Camera

3.1 Detecting the Marker

Our marker is composed of two concentric circles or radii r1 and r2, and an
exterior mark that intersects with a circle of radius r3 (see Fig. 1).

The ellipses can be automatically recovered from an image by applying stan-
dard methods in Computer Vision. Pixel chains are extracted from the image
and ellipses are fitted with, e.g., Fitzgibbon’s algorithm [5]. See for example [7]
for an explanation of an automatic extraction algorithm. To find the X axis
mark, a circle of radius r3 has to be projected using the same (unknown) camera
as the other two. In an Appendix we explain how to project a circle of arbitrary
radius concentric to two circles whose projections are known.

3.2 Pinhole Projection of a Circle

The pinhole camera configuration (assuming zero skew and square pixels) is
usually described using an intrinsic parameter matrix (A), that describes the
focal length and principal point (see Fig. 2), and an extrinsic parameter matrix
(M), that establishes the camera pose (position and orientation) from a given
global coordinate system:
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Fig. 1. Design of our fiducial Fig. 2. Pinhole camera in the scene
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In Fig. 2, the world coordinate system (WCS) has its origin at the center of
the concentric circles. Those circles are in the XwYw plane of the WCS, so the
Zw axis is perpendicular to them. The projection operator (P ), that computes
the image pixel coordinates that corresponds to a 3D point in WCS is P = AM .

Given a point X in WCS, equation λx = PX computes its homogeneous
coordinates in the image coordinate system. The two circles are located on the
plane Zw = 0, so we can write:
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If we assume that the image coordinate system is centered at the principal
point of the image, then u0 = 0 and v0 = 0 in (1) and we can write (see [10]):

Xw =
xt (R2 × T )

xtR3

and Yw =
xt (T × R1)

xtR3

, (2)

where x =
[

u v f
]t

, and M =
[

R1 R2 R3 T
]

.
In the WCS, the exterior circle of radius r2 has coordinates C(Xw, Yw) =

X2
w+Y 2

w−r2
2 = 0. Substituting (2) in this equation and factoring, we can express

the exterior circle in terms of the image coordinate system as follows:

C ′(x, y) = Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 . (3)



3.3 Recovering the Circles’ Projected Center

Under perspective projection any conic is transformed into another conic. Spe-
cifically, circles are transformed into elipses when imaged by a camera. The
projected center of the original circle, however, does not generally coincide with
the center of the ellipse in the image. The projected center of the circles has to be
computed in order to recover the normal to the supporting plane. The direction
of the Zw axis in the camera coordinate system (or R3) can be computed as
follows [2, 3]:
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where (xc, yc) are the coordinates of the projected circle center in the image
coordinate system (see Fig. 2), N represents the normalization to a unit vector,
and Q is the matrix that describes the ellipse, as defined in [3]:

Q =





A B/2 D/2f
B/2 C E/2f
D/2f E/2f F/f2



 . (5)

Parameters A to F are those defined in (3) and f is the focal length. Two
methods to recover the projected center of two concentric circles can be found
in [8] and [9]. In the Appendix we present our own original method.

3.4 Recovering the Pose

Each parameter of the ellipse in (3) can be expressed in terms of f2, f2/T 2
z and a

constant term by substituting (5) in (4) [10]. This derivation uses the properties
of the rotation matrices and the following relations derived from the pinhole
camera model in Fig. 2:

Tx =
Tzxc

f
and Ty =

Tzyc
f

. (6)
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where:

α1 =
2Axc + Byc + D

2
α2 =

Bxc + 2Cyc + E

2
α3 =

Dxc + Eyc + 2F

2
.



Therefore, (3) can be expressed as:

C ′(x, y) =



Q′
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t

G = 0 , (8)

where G =
[

x2 xy y2 x y 1
]t

. The unknowns to be computed are f2 and f2/T 2
z ,

so we rearrange (8) to leave the constant terms on the right-hand side of the
expresion:

([

q11 q21 q31 q41 q51 q61

q12 q22 q32 q42 q52 q62

]

G

)t
[

f2

f2

T 2

z

]

= −
[

q13 q23 q33 q43 q53 q63

]

G , (9)

where qij is the element of row i, column j of matrix Q′ in (7). Given N points
of the ellipse in the image we can build an N -degree over-determined system
WX = B:
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where Wi1, Wi2 and Bi are computed using (9) with (x, y) replaced by the
coordinates (xi, yi) of the i-th point on the ellipse.

This system can be solved using the least square pseudo-inverse technique:

[

f2

f2

T 2

z

]

=
(

W tW
)

−1
W tB .

Solving the system leads to f and Tz. The components of R3 can be computed
by replacing f in (4). Tx and Ty can be recovered from (6).

Following the previous steps we recover the normal to the plane that contains
the circles (R3) and the position of the origin of the WCS in camera coordinates
(T ) (see Fig. 2). Fremont [10] proposed a calibration pattern that uses three
orthogonal planes to recover the other two axes (Xw and Yw). Instead, we use
a single mark on the exterior circle that defines the Xw direction, an idea that
has been used before in marker detection [7].

Given the pixel coordinates of the Xw axis mark in the image, we reproject
it onto the plane of the concentric circles. That plane is completely defined by
its normal (R3) and a point on it (T ). Let the X axis mark position be (r3, 0, 0)
in WCS, (xm, ym) in image coordinates, and Xm in camera coordinates. Then

Xm = µ
[

xm ym f
]t

where

µ =
−D

R13xm + R23ym + R33f
,



and D = −R3
tT . Having the 3D coordinates of the Xw axis mark given in ca-

mera coordinates, and the 3D coordinates of the origin of the WCS, given in ca-
mera coordinates as well, the Xw axis (or R1) is defined by Xw = N {Xm − T }
where N is a normalization operator. Obviously, in a right-handed coordinate
system, Yw = Zw × Xw, or R2 = R3 × R1.

3.5 Recovering the Principal Point

So far we have assumed that the optical axis of the camera is perfectly centered
at the image (i.e., the principal point is the center of the image). In this section
we remove this assumption and compute the principal point using the results of
the previous sections.

Due to the error in the estimation of the principal point, reprojecting the
original circle using the parameters computed in the previous sections does not
produce the ellipses in the image. This misalignment is proportional to the error
incurred in the estimation of the position of the principal point. By minizating
that error, the principal point can be recovered. When processing a video stream
with multiple frames, the principal point can be recovered once and kept fixed
for the remaining frames. This is true as long as the internal camera settings are
not changed.

Once the parameters that define the projection have been recovered, we can
reproject the circle of radius r2 onto an ellipse in the image. By minimizing the
error in the reprojection, a good approximation to the principal point can be
computed. We have found that the error of reprojection can be defined as the
distance between the center of the ellipse used for the calibration and the center
of the reprojected ellipse. Alternatively, we can define the error in terms of the
angle between the principal axes of those two ellipses. The algorithm would be:

1. Start with an initial guess of the principal point (i.e., the center of the image).
2. Define the ellipses and the X axis marker of the image with respect to that

principal point.
3. Calibrate the camera.
4. Reproject the original circle (of radius r2) using the parameters obtained in

the previous step.
5. Compute the reprojection error and update the working principal point ac-

cordingly.

Optimization methods like Levenberg-Marquardt [11] (implemented in MIN-
PACK) can efficiently find the 2D position of the principal point that minimizes
the error of reprojection.

4 Validating our Method

We have validated our method using both synthetic and real data. We use synt-
hetic data to determine how robust is our method in the presence of noise.
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Fig. 3. Relative errors in the estimations of T and R3 (Zw)

4.1 Robustness

To check the robustness of the algorithm, we project two concentric circles using
a known synthetic camera configuration.Then, we perturb the points of the pro-
jected circles by adding random noise to their coordinates. We fit an ellipse to
each set of perturbed points using Fitzgibbon’s algorithm [5]. Finally, we com-
pute the camera parameters using these two ellipses. Figure 3 shows the errors
that the added noise produces in the recovered normal of the supporting plane
(R3) and the translation vector (T ). Note that the error incurred is relatively
small.

We have found that the system is very robust in the presence of systematic
errors, i.e., when both ellipses are affected by the same error (for instance, with
a non-centered optical axis). On the other hand, if the parameters of the ellip-
ses are perturbed beyond a certain limit, the accuracy of the results decreases
dramatically.

4.2 Experimental Results

In order to validate the computed calibration with real images, we have applied
our algorithm to several images taken with a camera. Figure 4 shows an example
of the process. First, the ellipses were recovered from the image and the camera
parameters were computed. By using those parameters, we can draw the WCS
axes on the image. Furthermore, the marker has been reprojected using the same
parameters. The marker seen in the image has the following properties r1 = 2.6
cm, r2 = 5 cm and r3 = 6.5 cm.

5 Conclusions and Future Work

In this paper we introduce a camera calibration technique that uses a very simple
pattern made of two circles. The algorithm obtains accurate intrinsic and extrin-
sic camera parameters. We show that our method behaves in a robust manner in
the presence of different types of input errors. We also show that the algorithm



Fig. 4. Reprojecting the marker and the coordinate system in the images

works well with real world images as long as good ellipse extraction and fitting
algorithms are used.

Our work has a lot of applications, particularly in camera tracking and related
fields. Our marker is easy to build and use. This makes it particularly well suited
for augmented reality and entertainment applications. We are currently working
on applications in these two areas. We are also trying to extend our camera model
to take into account skew and lense distortion, in order to better approximate the
behavior of a real camera. We are exploring the working limits of our algorithm
and we are studying techniques to make the results more stable in the presence
of noise.
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Appendix

Given two concentric circles whose projections are known, we show how to pro-
ject a third circle of known radius using the same projection. A circle C of radius
r centered at the origin and located in the plane Z = 0 is defined by:

XtCX =
[

X Y 1
]





1 0 0
0 1 0
0 0 −r2









X
Y
1



 .

A projection matrix P projects a circle C onto an ellipse Q by λQ =
P−tCP−1. We compute the difference between the projection of a circle of radius
r + α and the projection of a circle of radius r:

λ1Qr+α − λ2Qr = P−t(Cr+α − Cr)P
−1 = α(α + 2r)M , (11)

where M = qtq and q is the third row of matrix P−1. Therefore, we can write:

{

Q3 = Q1 − α1(α1 + 2r1)M
Q3 = Q2 − α2(α2 + 2r2)M

,

where α1 = r3 − r1 and α2 = r3 − r2. Using these two equations we can express
Q3 as:

Q3 = kQ2 − Q1
r2
3 − r2

2

r2
3 − r2

1

, (12)

where k is a scale correcting factor of Q1 and Q2. That factor can be computed
applying the rank 1 condition to the ellipses (note that as Cr+α − Cr in equa-
tion (11) has rank 1, λ1Qr+α − λ2Qr should have rank 1, too) [9]. Solving for k
in Q1−kQ2 to have a rank 1 matrix leads to a scale correcting factor. Therefore,
equation (12) allows us to project a circle of any radius given the projection of
two circles, all of them concentric.

This process can be used to find the projected center of the concentric circles
as well. As the projected center of a circle is always enclosed in its projected
ellipse, if we project circles of smaller and smaller radii, we will be reducing the
space where the projected center can be. In the limit, a circle of radius zero
should project onto the projected center of the circles. Applying equation (12)
to a circle of radius r3 = 0 results in an ellipse (of radius zero) whose center is
at the projected center of the concentric circles (xc, yc). The center of an ellipse
in matrix form is given by [8]:

xc =
Q(2,2)Q(1,3) − Q(1,2)Q(2,3)
(

Q(1,2)

)2
− Q(1,1)Q(2,2)

and yc =
Q(2,3)Q(1,1) − Q(1,2)Q(1,3)
(

Q(1,2)

)2
− Q(1,1)Q(2,2)

.


