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Abstract. Segmenting a video sequence into different coherent scenes
requires analyzing those aspects which allow finding the changes where
a transition is to be found. Textures are an important feature when we
try to identify or classify elements in a scene and, therefore, can be very
helpful to find those frames where there is a transition. Furthermore, an-
alyzing the textures in a given environment at different scales provides
more information than considering the features which can be extracted
from a single one. A standard multiscale texture analysis would require
an adjustment of the scales in the comparison of the textures. However,
when analyzing video sequences, this process can be simplified by assum-
ing that the frames have been acquired at the same resolution. In this
paper, we present a multiscale approach for segmenting video scenes by
comparing the textures which are present in their frames.

1 Introduction

In this paper, we present a method for video segmentation based on the dis-
tribution of the orientation of the edges. We use the results of the multiscale
texture analysis described in [1] and study the behavior of natural textures in
order to find the transitions between the different video scenes. To this end,
we estimate the gradient in every point of the region and build an orientation
histogram to describe it. This allows performing satisfactory classifications in
most cases, but some of them are not properly classified. A multiscale analysis
of the textures improves the results, considering the evolution of the textures
along the scale. In natural textures, the changes produced when a certain scene
is observed at different distances introduce new elements which must be taken
into account when comparing the views. This texture comparison technique is
applied to video segmentation by considering those intervals within which the
energy is low enough to be considered as normally evolved video sequences.
The paper is structured as follows: Section 2 shows how textures can be

described and classified through their orientation histograms. In section 3, mul-
tiscale analysis is introduced to improve the classification method and some
considerations are analyzed in natural textures. Section 4 describes the applica-
tion of multiscale texture comparison to video segmentation. Finally, in section
5, we give an account of our main conclusions.



2 Texture Description and Classification

In order to describe a texture in terms of the edges which are present in it, we
must estimate the magnitude and the orientation of the gradient in every point
of the region. With these values, we can build an orientation histogram which
reflects what the relative importance of every orientation is. We first calculate
an initial estimation for every point using the following mask for the horizontal
component xi and its transpose for the vertical component yi:
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Using the structure tensor method, the orientation of the gradient at a certain
point can be estimated by means of the eigenvector associated to the lowest
eigenvalue of the matrix in (2), whereas the magnitude can be approximated
by the square root of its highest eigenvalue. We first convolve the image with
a Gaussian to increase the robustness of the approximations. By adding the
magnitude in the points with the same orientation, we can build an orientation
histogram for each texture. These histograms are normalized, so that the global
weight is the same for all of them.Ã PN
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In order to compare two textures, an energy function is built, in which the
Fourier coefficients of both histograms are analyzed. A change in the orientation
of a texture will only cause a cyclical shift in the histogram. For this reason,
the Fourier coefficients are modified as follows: let fn and gn be the orientation
histograms of length L corresponding to the same texture but shifted a positions,
i.e. the texture has been rotated an angle θ = 2πa/L, and let fk and gk be the
kth Fourier coefficients of these histograms, then fk = gke

−i 2πkaL .
In addition, the fact that the number of discrete orientations used for the

histograms is constant as well as the normalization of the weights make the
lengths of the signals and the total weight equal in both textures. Due to the
fact that the higher frequencies are more sensitive to noise than the lower ones,
a monotonic decreasing weighting function w(.) can be used to emphasize the
discrimination, thus obtaining the following expression, in which the first terms
have a more important contribution than the last ones:
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Fig. 1. Results of searching for similar textures for a texture in database 1 and a
texture in database 2

To test this technique, we have used two sets of textures contained in two
databases. The first database has been made publicly available for research pur-
poses by Columbia and Utrecht Universities [2] and consists of different materi-
als. The second one corresponds to different natural scenes acquired at several
distances. In Fig. 1, we show some results of the application of the technique
explained above. From the image databases, one is selected and the five images
which produce the lowest energies are shown.
The orientation histograms extracted from the textures describe how the

different orientations are quantitatively distributed across the region which is
studied, but they provide no information about the spatial neighborhood of the
pixels with a certain orientation. Thus, a completely noisy image, in which all
orientations are found in approximately the same proportion, but in a disor-
dered way, would generate a similar histogram as a circle, where the orientation
increases gradually along its outline. This forces us to search for a certain tech-
nique which complements the information provided by this kind of histograms
in order to enhance their recognition capability.

3 Multiscale Texture Analysis

The interpretation of the information we perceive from the environment depends
on the scale we use to process it. The multiscale analysis approach has been
successfully used in the literature for texture enhancement and segmentation
(see [3] and [4] for more details).
A multiscale analysis can be determined by a set of transformations {Tt}t≥0,

where t represents the scale. Let I be an image, i.e. I : Ω −→ <, where Ω is the
domain where the image is defined. We will consider that Ω = <n, I ∈ H2(Ω) (I
and ∇I have finite L2 norm) and It = Tt(I) is a new image which corresponds to
I at a scale t. For a given image I, to which the multiscale analysis is applied, we
can extract a histogram {hti}i=0,..,L−1 which determines the distribution of the
orientations of I at scale t. In this case, the normalization of the values within a



histogram is performed with respect to the initial addition. In order to compare
the histograms of two images, the scale must be first adjusted.

3.1 Gaussian Multiscale Analysis

We will use a Gaussian filter, whose properties are described in [5] and [6]. In one
dimension, this process can be quantized as follows, where the scale t is related
to the standard deviation σ according to the expression 2t = σ2:

(x ∗Kt)m =
∞X

n=−∞
xn

1√
4πt

e−
(m−n)2

4t . (4)

Given a signal f , the result of convolving f with the Gaussian filter Kt is
equivalent to the solution of the heat equation, given by ∂u/∂t = ∂2u/∂x2,
where u(t, x) is the solution of the equation, using f as the initial data (u(t, s) =
Kt ∗ f(x)). Considering this relationship, a discrete version of the heat equation
can be used to accelerate the approximation of the Gaussian filtering (see [7]
for more details), which results in a recursive scheme in three steps for each
direction.
This process will be performed by rows and by columns in order to obtain a

discrete expression for a two-dimensional Gaussian filtering. Making use of the
features of the Gaussian kernels, the result of applying a Gaussian filter with an
initial scale t can be used to obtain a Gaussian filtering of the initial image for
a different scale with no need to start again from the input.

3.2 Multiscale Orientation Histogram Comparison

We must take into account that, for a certain texture, the use of different reso-
lutions forces us to apply Gaussian functions with different standard deviations,
thus requiring an adaptation stage. To do that, we extract the evolution of the
magnitude of the gradients at different scales and we use them to compare the
textures. Even if the quantitative distribution of the orientations may be alike
for different textures, the spatial distribution will cause a divergence in the evo-
lution, so that the factors will differ.
One of the properties of the Gaussian filtering is the relationship between the

resolution of two images and the effects of this kind of filters. In fact, the result of
applying a Gaussian filter with standard deviation σ to an image with resolution
factor x is equivalent to applying a Gaussian filter with standard deviation kσ
to the same image acquired with a resolution factor kx.
Given two textures, I0 and I 00, we will estimate the scale factor k using the

normalized evolution of the addition of the norm of the gradient, that is, we will
use:

φ(I0, Ω, t) =
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Fig. 2. Comparison of two similar textures at different scales

It is well known (see for instance [5]) that φ(I0, Ω, t) is a decreasing function
with respect to t and Limt→∞φ(I0, Ω, t) = 0. On the other hand, if I 00(x, y) =
I0(kx, ky) ∀(x, y) ∈ Ω, then φ(I0, Ω, t) = φ(I 00, kΩ, k2t) = φ(I 00, Ω, k2t), consid-
ering that the texture is periodically repeated.
Consequently, in order to estimate a scale factor k between two textures

I0 and I 00, we will compare the functions φ(I0, Ω, t) and φ(I 00, Ω, t). Let r1n =
φ(I0, Ω, (σn)

2 /2) and r2n = φ(I 00, Ω, (σn)
2 /2) be the ratios obtained for two

textures at scale σn = nσ0, the best adjusting coefficient k to fit the series of r2n
to that of r1n, both consisting of N terms, can be obtained as follows: We first
fit a value 0 < h < 1 and we interpolate the values in the series r1n and r2n to
obtain two new series σ1n and σ2n which estimate the scales for which the ratios
(1, 1−h, 1−2h, 1−3h, ..., 1−(N−1)h) are obtained. In other words, we estimate
the scale where φ(I,Ω,

¡
σ1n
¢2
/2) = 1− nh. We must point out that, if nh < 1,

then σ1n and σ
2
n are well-defined, because φ(I,Ω, t) is a decreasing function with

respect to t and Limt→∞φ(I0, Ω, t) = 0. With these values, we minimize the
following error to obtain the scale factor k:

e(k) =
1

N

N−1X
i=0

¡
σ1i − kσ2i

¢2
. (6)

We can study how the energy obtained when comparing the orientation his-
tograms evolves as we apply a Gaussian filtering to the textures. We use the
adjusting factor k to relate the scales to be compared and we obtain the energies
for the comparison of the histograms at N different scales.
Figure 2 shows the results of comparing two images corresponding to similar

textures, acquired at different distances. As observed, not only the initial energy
is low, but also the subsequent energies, obtained when comparing the images at
the corresponding scales, decrease when we increase the scale. On the other hand,
Fig. 3 shows the comparison of two images of different textures. The energies,
far from decreasing, increase from the initial value.

3.3 Resolution Adjustment in Natural Scenes

We have extracted the evolution of the square of the gradient across the image
for all the textures in the second database, in which different natural scenes



Fig. 3. Comparison of two different textures

have been acquired at different distances. With these values, we have calculated
a ratio for every couple of pictures in the database. Instead of observing a great
variability in the ratios according to the different natures and distances, they are
very close to 1 in most cases. The fact that certain particular elements appear
when we approach them, while other global elements disappear, thus generating
new gradients while other ones are eliminated, makes the total addition similar,
and the information, in terms of changes existing in the image, is approximately
constant. In fact, the mean ratio for the comparison of two textures, considering
in each case the ratio which is lower than 1, is 0.91975, with standard deviation
0.06190. In artificial textures, a change in the resolution produces a change in
the evolution of the addition of the squares of the gradients and no additional
information is added, thus generating more variable ratios.

4 Video Segmentation

The multiscale comparison of natural textures described above has been used
to segment video sequences by finding the transitions in which the texture his-
togram undergoes a great change. On the assumption that, when a scene finishes
and a new one starts, the textures in the frames are quite different, the ener-
gies obtained when comparing them will be significant and the transition can be
located.
If we force the system to be sensitive enough to avoid overlooking any scene

transition, the threshold which determines from which value a change is consid-
ered as significant may be too low to avoid including some intra-scene changes
as transitions, thus reducing the specificity. At the same time, the transitions
can be either abrupt, i.e. a scene finishes in frame n and the new scene starts
in frame n + 1, or soft, i.e. there is a diffusion, shift, or any other effect to go
from a scene to the following. The latter type forces us to compare frames which
are not consecutive in order to detect the change. But this might include more
intra-scene changes as transitions. Thus, a multiple temporal interval is needed.
We have used a set of videos and reports provided by researchers from the

Universidad Autónoma de Madrid [8]. Human observers have signaled the frames
where a transition is found, and we have compared these values with the frames
where the energy is higher that a certain threshold. We have used four versions of
every frame: the original image and the image after the application of a Gaussian



Table 1. True transitions (TT) and false transitions (FT) located using original scale
analysis for time interval 10 (OSA10), multiscale analysis for time interval 10 (MSA10)
and multiscale analysis for combined time intervals 10 and 5 (MSA10-5). Number of
frames: 2500, number of transitions: 21, number of comparisons: 249

Method TT Detected FT Detected % of FT
OSA10 21 40 18
MSA10 21 27 12
MSA10-5 21 23 10

Fig. 4. Example of scenes and transitions detected in a video sequence. Every couple
of images corresponds to the initial and final frames of a scene

filter with σ = 1, 5 and 10. The best results have been obtained using the mean
of the two intermediate values for σ = 0, 1, 5 and 10.
If we use an interval of 10 frames in texture comparison in order to determine

where a transition occurs, we are able to detect all actual transitions in the
sequence of video frames. However, 18% of normal changes, i.e. those which
occur between frames of the same scene, are labelled as transitions, since there
is a considerable evolution of the elements in them. If we consider a combination
of the energies for σ = 0,1,5 and 10, these false transitions are reduced to 12%.
Furthermore, if we select the candidates to be transitions for a temporal interval
of 10 frames and we analyze them with a temporal interval of 5 frames, we can
refuse some of them considering the changes as normal intra-scene evolutions
and the false transitions are reduced to 10%. Table 1 shows a comparison of
the results using these methods. Figure 4 shows the initial and final frames of
different scenes extracted for a video sequence.



5 Conclusion

In this paper, we have presented a new approach to video sequence segmentation
based on a multiscale classification of natural textures. By using the structure
tensor, we have obtained an estimation of the gradient in every point of the
textures. The extraction of orientation histograms to describe the distribution
of the orientations across a textured region and the multiscale analysis of the
histograms have produced quite satisfactory results, since the visual similarity or
difference between two textures is much more reliably detected by the evolution
of the energies resulting when comparing the histograms at different scales.
We have observed how the ratio for the adjustment of the scales is not far

from 1 when natural images are considered, since the information contained in
them changes qualitatively, but not as much quantitatively. The need for a high
sensibility, in terms of transitions detected in order to avoid overlooking them,
produces a decrease in the specificity, in such a way that certain false transi-
tions appear as such when the energy is extracted. However, the comparison at
different scales and using different temporal intervals reduces significantly these
misconstrued normal changes while preserving the right ones.
The promising results obtained in the tests which have been implemented

confirm the usefulness of the multiple comparison of the images, since they endow
us with a much more robust discrimination criterion.
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