Skip to main content

When to Stop Range Process – An Expanded State Space Approach

  • Conference paper
  • 715 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3214))

Abstract

This paper studies an optimal stopping problem from a view point of reward accumulation. We introduce a new notion of gain process, which is evaluated at stopped state. Some of gain processes are terminal, additive, minimum, range, ratio and sample variance. The former three are simple and the latter are compound. In this paper we discuss the range process. Applying an invariant imbedding approach, we give a recursive formula for optimal value functions and show an optimal stopping rule.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R.: Dynamic Programming. Princeton Univ. Press, NJ (1957)

    MATH  Google Scholar 

  2. Bellman, R., Denman, E.: Invariant Imbedding. Lect. Notes in Operation Research and Mathematical Systems 52 (1971)

    Google Scholar 

  3. Chow, Y., Robbins, H., Siegmund, D.: Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin Company, Boston (1971)

    MATH  Google Scholar 

  4. Hisano, H.: Optimal stopping problem on finite Markov chain. Bull. Informatics and Cybernetics 34, 97–104 (2003)

    MathSciNet  Google Scholar 

  5. Iwamoto, S.: Theory of Dynamic Program: Japanese. Kyushu Univ. Press, Fukuoka (1987)

    Google Scholar 

  6. Iwamoto, S.: Associative dynamic programs. J. Math. Anal. Appl. 201, 195–211 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Iwamoto, S.: Fuzzy decision-making through three dynamic programming approaches. In: Proc. of the 8th Bellman Continuum, pp. 23–27 (2000)

    Google Scholar 

  8. Iwamoto, S.: Recursive method in stochastic optimization under compound criteria. Advances in Mathematical Economics 3, 63–82 (2001)

    MathSciNet  Google Scholar 

  9. Iwamoto, S., Fujita, T.: Stochastic decision-making in a fuzzy environment. J. Operations Res. Soc. Japan 38, 467–482 (1995)

    MATH  MathSciNet  Google Scholar 

  10. Iwamoto, S., Tsurusaki, K., Fujita, T.: On Markov policies for minimax decision processes. J. Math. Anal. Appl. 253, 58–78 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Iwamoto, S., Ueno, T., Fujita, T.: Controlled Markov chains with utility functions. In: Proc. of Intl Workshop on Markov Processes and Controlled Markov Chains, pp. 135–148 (2002)

    Google Scholar 

  12. Lee, E.: Quasilinearization and Invariant Imbedding. Academic Press, NY (1968)

    MATH  Google Scholar 

  13. Shiryaev, A.: Optimal Stopping Rules. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  14. Snell, J.: Applications of martingale system theorems. Transactions of the American Mathematical Society 73, 171–176 (1952)

    Article  MathSciNet  Google Scholar 

  15. Sniedovich, M.: Dynamic Programming. Marcel Dekker, Inc., New York (1992)

    MATH  Google Scholar 

  16. Tsurusaki, K.: Extrema-trimmed sum in decision problem. In: Proc. of the 8th Bellman Continuum, pp. 2–6 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsurusaki, K., Iwamoto, S. (2004). When to Stop Range Process – An Expanded State Space Approach. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30133-2_160

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30133-2_160

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23206-3

  • Online ISBN: 978-3-540-30133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics