Skip to main content

A Procedure for the Automated Detection of Magnetic Field Inversion in SOHO MDI Magnetograms

  • Conference paper
  • First Online:
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3215))

  • 1085 Accesses

Abstract

Magnetic inversion lines are generally constructed from line-of-sight magnetic field data which have been smoothed to reduce the resolution scale of the data. This eliminates the fine details of the magnetic inversion lines found in regions of strong magnetic field. The paper presents a new approach to constructing magnetic neutral lines, based on a distance transform, which aims to construct neutral lines retaining fine detail in regions of strong magnetic field while reducing the detail elsewhere. The method of implementation is de-scribed and results obtained are compared with those obtained by applying Gaussian smoothing to solar magnetograms and with filaments visible in an H image for 2002 July.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Priest, E.R.: Solar magneto-hydrodynamics. In: Geophysics and Astrophysical Monographs. Reidel, Dordrecht (1984)

    Google Scholar 

  2. Priest, E., Forbes, T.: Book Rev.: Magnetic reconnection. Cambridge U Press, Cambridge (2000)

    Book  Google Scholar 

  3. Babcock, H.V., Babcock, H.D.: The Sun’s Magnetic Field, 1952–1954. Astrophysical Journal 121, 349–366 (1955)

    Article  Google Scholar 

  4. Scherrer, P.H., et al.: Annual Review. Astr. Astrophys. 2, 363 (1995)

    Google Scholar 

  5. Wang, H., Denker, C., Spirock, T., et al.: New Digital Magnetograph At Big Bear Solar Observatory. Solar Physics 183(1), 1–13 (1998)

    Article  Google Scholar 

  6. Ulrich, R.K.: In Cool Stars, Stellar Systems and the Sun. In: Giampapa, M.S., Bookbinder, J.A. (eds.) Astron. Soc. of the Pacific, San Francisco, Calif, p. 265 (1992)

    Google Scholar 

  7. Kippenhahn, Schluter: Eine Theorie der solaren Filamente. Zeitschrift für Astrophysik 43, 36–62 (1957)

    MATH  Google Scholar 

  8. Kuperus, M., Raadu, M.A.: The Support of Prominences Formed in Neutral Sheets. Astronomy and Astrophysics 31, 189–193 (1974)

    Google Scholar 

  9. Lerche, I., Low, B.C.: Cylindrical prominences and the magnetic influence of the photospheric boundary2. Solar Physics 66, 285–303 (1980)

    Article  Google Scholar 

  10. Somov, B.V.: Cosmic Plasma Physics. In: Astrophysics and Space Science Library, vol. 252. Kluwer Academic Publishing, Boston (2000)

    Google Scholar 

  11. Sturrock, P.A., Jardin, M.: Book Review: Plasma physics. Cambridge U Press, Cambridge (1994)

    Google Scholar 

  12. Falconer, D.A., Moore, R.L., Porter, J.G., Gary, G.A.: Neutral-line magnetic shear and enhanced coronal heating in solar active regions. Astrophysical Journal 482, 519–534 (1997)

    Article  Google Scholar 

  13. Bornmann, P.L., Winkelman, J.R., Cook, D., Speich, D.: Automated solar image processing for flare forecasting. In: Solar Terrestrial Workshop, Hitachi, Japan, pp. 23–27 (1996)

    Google Scholar 

  14. Durrant, C.J.: Polar magnetic fields – filaments and the zero-flux contour. Solar Phys. 211, 83–102 (2002)

    Article  Google Scholar 

  15. Ulrich, R.K., Evens, S., Boyden, J.E., Webster, L.: Mount Wilson synoptic magnetic fields: improved instrumentation, calibration and analysis applied to the 2000 July 14 flare and to the evolution of the dipole field. Astrophysical Journal Supplement Series 139(1), 259–279 (2002)

    Article  Google Scholar 

  16. Severny, A.: Vistas Astron 13, 135 (1972)

    Google Scholar 

  17. Howard, R.F.: Annual Review, Astron. Astrophys. 15, 153 (1977)

    Google Scholar 

  18. Zwaan, C.: Annual Review. Astron. Astrophys. 25, 89 (1987)

    Article  Google Scholar 

  19. Cuisenaire, O., Macq, B.: Fast and exact signed Euclidean distance transformation with linear complexity. In: Proc. IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICCASSP 1999), Phoenix (AZ), March 1999, vol. 6, pp. 3293–3296 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ipson, S.S., Zharkova, V.V., Zharkov, S.I., Benkhalil, A. (2004). A Procedure for the Automated Detection of Magnetic Field Inversion in SOHO MDI Magnetograms. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30134-9_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30134-9_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23205-6

  • Online ISBN: 978-3-540-30134-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics