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Abstract. In this paper, we propose an Expectation-Maximization
(EM) approach to separate a shape database into different shape classes,
while simultaneously estimating the shape contours that best exemplify
each of the different shape classes. We begin our formulation by employ-
ing the level set function as the shape descriptor. Next, for each shape
class we assume that there exists an unknown underlying level set func-
tion whose zero level set describes the contour that best represents the
shapes within that shape class. The level set function for each exam-
ple shape is modeled as a noisy measurement of the appropriate shape
class’s unknown underlying level set function. Based on this measure-
ment model and the judicious introduction of the class labels as hidden
data, our EM formulation calculates the labels for shape classification
and estimates the shape contours that best typify the different shape
classes. This resulting iterative algorithm is computationally efficient,
simple, and accurate. We demonstrate the utility and performance of
this algorithm by applying it to two medical applications.

1 Introduction

Shape classification can be defined as the systematic arrangement of shapes
within a database, based on some similarity criteria. It has received consider-
able attention in recent years with important applications to problems such as
computer aided diagnosis, handwriting recognition, and industrial inspection.
The various classification techniques in the literature can be broadly catego-
rized into those based on feature matching and those based on dense matching.
Dense matching algorithms are computationally expensive as they try to trans-
form or warp one shape into another based on some energy optimization scheme.
For example, Del Bimbo and Pala [3] derived a similarity measure between two
shapes based on the amount of elastic deformation energy involved in matching
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the shapes. Cohen et. al., [2] developed an explicit mapping between two shape
contours based on finite element analysis. Basri et. al., [1] used the sum of local
deformations needed to change one shape into another as the similarity metric
in comparing two shapes.

Feature matching algorithms are more popular and utilize low-dimensional
feature vectors extracted from the shapes for classification. For example, Dion-
isio and Kim [5] classified objects based on features computed from polygonal
approximations of the object. Kawata et al., [8] extracted surface curvatures and
ridge lines of pulmonary nodules from 3D lung CT images to discriminate be-
tween malignant and benign nodules. In Golland et al., [7], skeletons are used to
extract features which are then used within different linear classification meth-
ods (Fisher linear discriminant and linear Support Vectors method). Gdalyahu
and Weinshall [6] constructed syntactic representation of shapes (with primitives
consisting of line segments and attributes consisting of length and orientation),
and used a variant of the edit matching procedure to classify silhouettes.

We consider our algorithm as a feature matching algorithm. The individual
pixels associated with each shape’s level set representation are the features as-
sociated with that particular shape. One might argue that the dimensionality
of this feature space is too high, and is not really a feature space as it does not
capture only the salient information pertinent to a shape. However, we believe
that it is the over representation or redundancy within this feature space that
lends simplicity to our formulation and affords us the ability to capture very
subtle differences among shapes for classification. We then incorporated this
high-dimensional feature vector within an EM framework to provide us with a
principled approach of comparing shapes for classification.

The rest of this paper is organized as follows. Section 2 illustrates how we
incorporated the level set methods into the EM framework for shape classifica-
tion and estimation. In Section 3, we present experimental evaluations of our
algorithm by applying our technique to two medical problems. We conclude in
Section 4 with a summary of the paper and a discussion on future research.

2 Shape Classification and Estimation

Given a database of example shapes, the goal of our algorithm is two-fold: (1)
to separate the example shapes into different groups of approximately the same
shapes (based on some similarity measure), and (2) to estimate the shape contour
for each group that best represents or typifies the shapes contained within that
group. Accomplishing these two tasks of shape classification and estimation is
difficult, and is the problem which we focus on in this paper.

In this shape classification and estimation problem, if the underlying shape
contour of each shape class is known a priori, then various pattern recognition
techniques in the literature can be employed to separate the shapes within the
database into different groups. Similarly, if the class labels of every example
in the database is known a priori, then the underlying contour for each shape
class can be estimated by calculating the “average” shape contour within each
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shape class. Needless to say, it is difficult to calculate or determine either the
representative shape contour of each class or the class labels of the example
shapes in the database without knowledge of the other. However, we will show
in this paper that it is possible to estimate both using the EM algorithm.

2.1 Shape Representation

We begin by describing our choice of the shape descriptor. Let the shape database
T consist of a set of L aligned contours {C1, C2, ..., CL}.1 We employ the signed
distance function as the shape descriptors in representing each of these con-
tours [9]. In particular, each contour is embedded as the zero level set of a
signed distance function with negative distances assigned to the inside and posi-
tive distances assigned to the outside. This technique yields L level sets functions
{Y1, Y2, ..., YL}, with each level set function consisting of N samples (using iden-
tical sample locations for each function).

2.2 Measurement and Probabilistic Models

For simplicity of derivation and clarity of presentation, we assume that there
are only two shape classes within the database which we would like to group.
It is important to realize, however, that it is straightforward to generalize our
algorithm to classify more than two classes. By limiting ourselves to classify only
two shape classes, we can employ the binary class label C = {C1, C2, ..., CL} to
indicate which of the two shape classes each of the example shapes belong to.
Specifically, each Cl ∀l = 1, ..., L takes on the values of 0 or 1.

In our problem formulation, we postulate that there are two unknown level
set functions X = {X1, X2}, one associated with each of the two shape classes
with the property that the zero level sets of X1 and X2 represent the underlying
shape contours of the two shape classes A and B. Importantly, there are no
restrictions placed on whether X is a signed distance function. Next, we view
each example shape’s level set function Yl as a noisy measurement of either X1
or X2. Based on this formulation, the explicit dependence of Yl on X and Cl is
given by the following measurement model:

Yli =
[
Cl

(
1 − Cl

) ] [
X1i

X2i

]
+ v

i ∀i = 1, ..., N (1)

where v ∼ N (0, σ2I) represents the measurement noise with σ as the standard
deviation of the noise process.2 This measurement model gives us the following

1 Any alignment strategy that will result in the shapes having the same orientation
and size can be employed.

2 The notation I represents the identity matrix and the notation N (µ, Λ) represents
a Gaussian random vector with mean µ and variance Λ.
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conditional probability of Y given C and X:

p(Y |X, C) =
L∏

l=1

p(Yl

∣∣X, Cl) =
L∏

l=1

[
Cl

(
1 − Cl

)]



N∏
i=1

1√
2πσ

e− (Yli
−X1i

)2

2σ2

N∏
i=1

1√
2πσ

e− (Yli
−X2i

)2

2σ2




. (2)

Of note, this probability model bears resemblance to the stochastic framework
introduced in [10] for the construction of prior shape models.

We assume that the class labels C and the level set representations of the
shape contours X are statistically independent and hence

p(C
∣∣X) = p(C) . (3)

Without any prior knowledge regarding the classifications of the various example
shapes in the database, we set

p(Cl) =
{

0.5 if Cl = 0
0.5 if Cl = 1 ∀l = 1, ..., L . (4)

2.3 The EM Framework

The EM procedure, first introduced by Dempster et. al. [4] in 1977, is a pow-
erful iterative technique suited for calculating the maximum-likelihood (ML)
estimates in problems where parts of the data are missing. The missing data
in our EM formulation is the class labels C. That is, if the class labels for the
different shapes within the database are known, then estimating the underlying
shape contour which best represents each shape class would be straightforward.
The observed data in our EM formulation is Y , the collection of level set repre-
sentations of the example shapes. Finally, X is the quantity to be estimated in
our formulation.

The E-step. The E-step computes the following auxilliary function Q:

Q(X
∣∣∣X [k]) =

〈
log p(Y, C|X)

∣∣∣Y, X [k]
〉

(5)

where X [k] is the estimate of X from the kth iteration, and
〈

·
〉

represents the
conditional expectation over C given Y and the current estimate X [k]. Using
Bayes’ rule and our earlier simplified assumption that C and X are statistically
independent, Q can be rewritten as

Q(X
∣∣∣X [k]) =

〈
log p(Y |X, C)

∣∣∣Y, X [k]
〉

+
〈
log p(C)

∣∣∣Y, X [k]
〉

. (6)

Since the M-step will be seen below to be a maximization of Q(X
∣∣X [k]) over

X, we can discard the second term in Eq. (6) since it does not depend on X.
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Expanding the remaining term in Eq. (6), we have that3

Q(X
∣∣X [k])=−

L∑
l=1

[〈
Cl

∣∣Yl, X
[k]

〉 (
1 −

〈
Cl

∣∣Yl, X
[k]

〉)]



N∑
i=1

(
Yli − X1i

)2

N∑
i=1

(
Yli − X2i

)2




. (7)

As evident from above, the core of the E-step is the computation of
〈
Cl

∣∣Yl, X
[k]

〉
.

Using the formula for expectations, Bayes’s rule, and Eqs. (2), (3), and (4), we
find that

〈
Cl

∣∣Yl, X
[k]〉 =

N∏
i=1

e− (Yli
−X

[k]
1i

)2

2σ2

N∏
i=1

e− (Yli
−X

[k]
1i

)2

2σ2 +
N∏

i=1
e− (Yli

−X
[k]
2i

)2

2σ2

. (8)

This equation is equivalent to calculating the posterior shape class probabilities
assuming that the underlying level set functions X1 and X2 are known.

The M-step. Estimates of X1 and X2 are obtained in the M-step of our for-
mulation by maximizing the auxiliary function Q. In other words, the M-step
calculates the X [k+1] such that

X [k+1] = arg max
X

Q(X
∣∣X [k]). (9)

To solve for X [k+1], we imposed the zero gradient condition to Eq. (7). In partic-
ular, by differentiating Q(X

∣∣X [k]) with respect to X1i
and X2i

for each pixel i,
and setting each resulting equation to 0, we obtain the following two expressions:

X
[k+1]
1i

=

L∑

l=1

〈
Cl

∣∣Yli
,X[k]

i

〉
Yli

L∑

l=1

〈
Cl

∣∣Yli
,X

[k]
i

〉 ∀i = 1, ..., N

X
[k+1]
2i

=

L∑

l=1

(
1−

〈
Cl

∣∣Yli
,X[k]

i

〉)
Yli

L∑

l=1

(
1−

〈
Cl

∣∣Yli
,X

[k]
i

〉) ∀i = 1, ..., N

. (10)

Eq. (10) is equivalent to an ML estimator of the level set functions X1 and X2
when the shape labels are known. Of interest, note that both X1 and X2 are
weighted averages of distance maps from different shape examples. As a result,
neither X1 and X2 are signed distance functions because distance functions are
not closed under linear operations.
3 Here, in order to take the log of p(Y |X, C) in Eq. (2), we have used the fact that

each Cl is a binary indicator which selects the appropriate probability distribution
function.
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Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 Shape 7 Shape 8

Fig. 1. Database of eight contours outlining the right and left lung fields from a col-
lection of chest radiographs.

Class A Class B

Shape 1 2 3 4 5 6 7 8
Radiologist Nl Nl Dz Nl Dz Dz Nl Dz

EM A A B A B B A B

Fig. 2. Left: Level set estimates of the two shape classes with the zero level set marked
in white. Right: Comparion of chest radiograph labelings between a radiologist and our
EM algorithm. The radiologist classified the chest radiographs into normal (Nl) or one
with emphysema (Dz). The EM algorithm classified them into class A or class B.

3 Experimental Results

In this section, we present two medical applications to illustrate the performance
of our algorithm. In both examples, we employ the alignment strategy proposed
in [11] to guarantee that the example shapes in the database are all aligned to
one another in terms of size and orientation. Furthermore, in these experiments,
we start the iteration on the E-step, and initialize X1 and X2 to be the average
of signed distance maps from two mutually complementary subsets of the shape
database. Specifically, X1 is set to be the average of the first four signed distance
maps, and X2 is set to be the average of the latter four signed distance maps.
After convergence of our algorithm, we threshold the class labels to obtain the
classification results we show in this section.

3.1 Chest Radiographs of Normal and Emphysematous Patients

Emphysema is a lung disease which involves the destruction of alveoli and its
surrounding tissue. Typical findings on chest xrays of emphysema patients in-
clude hyperinflation of the lung fields and flattened diaphram. Figure 1 shows
a database consisting of eight sets of contours with each set representing the
outlines of the right and left lung fields from a different patient’s chest radio-
graph. The eight patients’ chest radiographs have been classified a priori by
a radiologist as having either normal or emphysematous lung. The experiment
here is two-fold: (1) to classify the eight sets of contours shown in Figure 1 into
two groups based on our EM-based classifier, and (2) to compare the grouping
scheme generated by our algorithm with the one from the radiologist’s.

The experimental results are shown in Figure 2. The two images shown in
Figure 2 represent the level set functions of the two shape classes with the
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zero level set of each level set function outlined in white. The white contours
can be thought of as the representative shape of each shape class. The table
in the figure shows that the grouping scheme generated by our EM algorithm
exactly matched the one generated by the radiologist. In particular, notice that
Class A corresponds to normal and Class B corresponds to diseased patients.
Not surprisingly, Class B’s representative shape shows the hyperinflated lung
as well as the flatten diagphram typical of emphysematous patients. For this
particular experiment with each shape having 300×300 pixels, it took 5 iterations
to converge requiring approximiately 1.67 seconds on an Intel Xeon 4.4GHz dual
processor computer.

3.2 Cerebellum of Neonates with Dandy-Walker Syndrome

Dandy-Walker Syndrome is a congenital brain malformation associated with
agenesis of the cerebellum. Our task is to separate the cerebellum database
shown in Figure 3 into normal cerebellums and those afflicted with Dandy-
Walker Syndrome. The eight cerebellums in the database are known a priori to
either have the disease or not. The experiment here is: (1) to classify the eight
cerebellums into two different groups based on our EM-based shape classifier,
and (2) to compare the results of the grouping scheme generated by our EM
algorithm with the one known a priori.

The experimental results are shown in Figure 4. The two shapes shown in
Figure 4 are the representative shapes of the two shape classes. The table in the
figure shows that the grouping scheme generated by our EM algorithm matched
the correct answer. In particular, notice that Class A corresponds to normal and
Class B corresponds to diseased patients. Class B’s representative shape shows
partial agenesis of the superior aspect of the cerebellum. For this 3D experiment,
each example shape’s level set function is represented by 256 × 256 × 50 pixels.
In terms of processing time, 10 iterations were required for convergence taking
approximiately 39 seconds on an Intel Xeon 4.4GHz dual processor computer.

4 Conclusions and Future Research Directions

We have outlined a novel approach for statistical shape classification and esti-
mation based on the EM algorithm and the level set representation of shapes.
The approach we have outlined is flexible as it can handle the classification
of complex shapes (including those that have dimensionality greater than two
and those with complex topologies) into multiple shape classes (and not just
limited to two classes). The experimental results we show here are encourag-
ing as it demonstrates low classification errors with fast processing times. We
are currently exploring the use of other implicit shape representations (other
than distance transforms) that will not cause any inconsistencies in the shape
representation during the calculation of the M-step. We are also interested in ex-
tending this formulation to enable it to provide users with information regarding
the specific differences among the different shape classes.
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Fig. 3. Database of normal and diseased cerebellums.

Shape 1 2 3 4 5 6 7 8
Dx Nl Nl Nl Dz Dz Nl Dz Nl
EM A A A B B A B A

Fig. 4. Left: Shape estimates of the two shape classes. Right: Comparion of labelings
between the truth and our EM classifier. The diagnosis (Dx) of the cerebellums is either
normal (Nl) or one with Dandy-Walker syndrome (Dz). The EM algorithm classified
the cerebellums into class A or class B.
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