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Abstract. Nonuniformity in the pixel intensity in homogeneous regions
of an observed image is modeled as a multiplicative smooth bias field.
The multiplicative bias field tends to increase the entropy of the original
image. Thus, the entropy of the observed image is minimized to estimate
the original image. The entropy minimization should be constrained
such that the estimated image is close to the observed image and the
estimated bias field is smooth. To enforce these constraints, the bias field
is modeled as a thin–plate deforming elastically. Mathematically, the
elastic deformation is described using the partial differential equation
(PDE) with the body force evaluated at each pixel. In our formulation,
the body force is evaluated such that the overall entropy of the image
decreases. In addition, modeling the bias field as an elastic deformation
ensures that the estimated image is close to the observed image and that
the bias field is smooth. This provides a mathematical formulation which
is simple and devoid of weighting parameters for various constraints of
interest. The performance of our proposed algorithm is evaluated using
both 2D and 3D simulated and real subject brain MR images.
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1 Introduction

Magnetic resonance imaging (MRI) provides detailed information about anatom-
ical structure. The signal-to-noise ratio (SNR) of the images is improved with the
increase in the static magnetic field (B0) strength. This improved SNR improves
the image resolution and the details of the anatomical structures. However, with
higher magnetic field strengths, image pixel nonuniformities, i.e. smooth varia-
tion in the intensities of the pixels of the same tissue type, tend to increase. This
smooth variation of the pixel intensities within a homogeneous region makes au-
tomated image processing, such as image segmentation, visualization and deriva-
tion of computerized anatomical atlas, more difficult.
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There are various reasons for image nonuniformities [11], which include poor
radio frequency (RF) coil uniformity, gradient–driven eddy currents, and subject
anatomy both inside and outside the field of view. Some of the causes of nonuni-
formity, such as frequency response of the receiver and spatial sensitivity of the
unloaded RF coils, can be overcome by proper calibration of the MR unit [7].
However, nonuniformities due to the geometry and the magnetic susceptibility
of a subject remain [12] and require a post processing approach for correction.

The difficulty of correcting for the intensity nonuniformity stems from the
fact that nonuniformities change with MRI acquisition parameters and subjects
in the magnet [1]. In addition, the nonuniformities tend to change the tissue
statistics such as mean and variance of the pixel intensities [1]. Thus, a robust and
automatic method for correcting nonuniformities is essential for post–processing
MR images. In medical image processing literature, a number of methods have
been proposed [12,3,6,1,14,2,10] each with its strengths and weaknesses. Authors
in [6] also proposed an entropy minimization method which optimizes a cost
function that is a sum of three different terms. Thus, the estimated bias field
depends upon the weights of these terms.

We propose a simple and an unifying mathematical framework where the
appropriate constraints on the bias field are naturally included. The bias field
forms a smooth multiplicative field, a model which has been widely used [12,
14]. The multiplicative bias field is converted into an additive field by taking
the natural logarithm of the pixel intensities of the observed image. Next, the
additive bias field is modeled as a thin plate deforming elastically. The elastic
deformation is mathematically modeled using the partial differential equations
(PDE). This model automatically incorporates the constraints that the bias field
should be smooth and the estimated image should be close to the observed image.
The body force in the elastic model is evaluated such that the overall entropy
of the estimated image is decreased. In evaluating the body force, segmentation
of the observed image into tissue classes is required which is achieved using the
EM [5] algorithm which iteratively updates the mean and variance of each tissue
class.

2 Methods

Image nonuniformity is usually modeled as a smooth pixelwise multiplicative
bias field [12,6]. Let (U(x, y, z)) denote the bias field and (T (x, y, z)) be the pixel
intensity of the original image at location (x, y, z), then the observed image pixel
intensity (S(x, y, z)) is given as S(x, y, z) = U(x, y, z) · T (x, y, z).

The multiplicative bias field is converted into an additive field by taking the
natural logarithm which yields lnS = lnU +lnT. Let, s, t and u be the random
variables denoting the logarithm pixel intensities sampled from the observed
image, the original image and the bias field respectively. Thus, s is a sum of t and
u. Assuming that the random variables t and u are statistically independent, the
probability density function of s is thus obtained by convolving the probability
densities of t and u [8]. Convolution operator increases entropy and hence the
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entropy of s is expected to be higher than the entropy of t. Hence, the original
image is estimated from the observed image by reducing the entropy of the
observed image. In addition, the estimation of the original image is constrained
by the assumption that the bias field is smooth and that the original image is
close to the observed image.

In our formulation, we model the logarithmic additive bias field as a thin
plate deforming elastically under a body force where the body force is evalu-
ated to minimize the entropy of the observed image. In a linear elastic model,
the restoring forces are proportional to the displacement. Thus, the elastic model
automatically incorporates the constraint that the estimated bias field is smooth
and that the estimated image is close to the observed image. The elastic model
can be modeled using elliptic partial differential equation (PDE) allowing a sim-
ple mathematical formulation which is devoid of various weighing terms. The
only weights are µ and λ, the viscosity coefficients, which appear in the PDE
model of the fluid dynamics. In our implementations, µ is always set to 1.0 and a
variation of λ between 0.6 to 1.0 generated good results for most of the images.

The PDE governing the elastic model is given as [4]:

µ∇2−→u + (λ + µ)−→∇(−→∇ · −→u ) + −→
b (−→u ) = −→0 , (1)

where ∇2 = ∇T ∇ is the Laplacian operator, (−→∇ ·−→u ) is the divergence operator,
µ and λ are the elasticity constant and −→u (−→x , t) is the field at time t and position
−→x . The PDE describing the elastic model is an elliptic boundary value problem.

The PDE in Eqn. (1), defined on a domain Ω = [0, 1]3, is a boundary
value problem which is solved numerically using successive over-relaxation (SOR)
method with checker board updates [9]. Zero boundary conditions of −→u (−→x , t)
for all −→x ∈ ∂Ω and all t. Here, ∂Ω denotes the boundary of the domain Ω. Due
to these boundary conditions, the bias field at ∂Ω will be zero. In our implemen-
tation we used Forward Time Centered Space (FTCS) [9] method for numerical
estimation of the various partial derivatives in Eqn. (1).

To evaluate the body force at a pixel, the image pixels are first classified
into different classes using EM [5] based maximum likelihood classification al-
gorithm using the current estimated bias field. For the estimated classification
of each pixel, body force is determined which is used to update the bias field.
Using the estimated bias field, the pixel classification is again updated using the
EM algorithm. This process is repeated till the estimated pixel classifications
converge.

2.1 EM Based Segmentation

We assume that the image pixels can be labeled into 4 classes {background, gray
matter, white matter, fat}. The pixel intensities in these classes are assumed to
be Gaussian distributed. Thus, we need to estimate the mean and variance of the
pixel intensities in each of these classes and the class to which a pixel belongs.
For a given current estimate of the bias field, we estimate the class mean and
variance and the pixel classification using the EM algorithm [5].
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Let, µ = (µ1, µ2, . . . , µn) denote the means, σ = (σ1, σ2, . . . , σn) denote the
standard deviations and π = (π1, π2, . . . , πn) denote the prior probabilities of the
n classes with constraint that

∑
i πi = 1. Let, the class labels be c1, c2, · · · , cn

and let zi = (z1i, z2i, . . . , zni) be a vector of size n in {0,1} such that zi =
(0, 0, . . . , 0, 1︸︷︷︸

m

, 0, . . . , 0) if the ith pixel belongs to mth class. That is, the vector

zi is all zero except for a 1 at the mth location if the pixel belongs to the mth
class. Then given the observed image S and the estimated bias field U , the
likelihood probability P (si|ui, µ, σ) of the observed data at the ith pixel is given
as:

P (si|ui, µ, σ) =
n∑

b=1

πb pb(si|ui, µb, σb) =
n∏

a=1

[
n∑

b=1

πb pb(si|ui, µb, σb)

]zai

.

Then, P (ci|si, ui, σ, µ) =
P (si, ci|ui, µ, σ)
P (si|ui, µ, σ)

=
∏

d

[
πapa(si|ui, µa, σa)∑n

b=1 πb pb(si|ui, µb, σb)
]zdi .

Thus, for the whole image, assuming that the image pixel intensities are
sampled independently, the maximum likelihood estimates of the class mean
and variances using the EM algorithm are given as:

µa =
∑

i ẑai (si − ui)∑
j ẑaj

, σ2
a =

∑
i ẑai (si − ui − µa)2∑

j ẑaj
, ẑai =

πapa(si|ui, µa, σa)∑n
b=1 πb pb(si|ui, µb, σb)

,

where ẑai denotes the expected value of the ith pixel belonging to class a. Thus,
the EM algorithm, in addition to estimating the class variables, also estimates
a probabilistic segmentation of the image.

2.2 The Body Force

For a given estimate of the pixel classification and an estimated bias field, a
body force at each pixel is estimated by minimizing the joint conditional entropy
H(C, T |S, U) which is a measure of uncertainty in the estimated classification
and the bias field corrected image for a given observed image and the current es-
timated bias field. To evaluate this entropy, consider the probability distribution
p(C, T |S, U) which is simplified, assuming that the neighboring pixels in the ob-
served image are statistically independent, as p(C, T |S, U) =

∏
i p(ci, ti|si, ui) =∏

i P (ci = a)pa(ti|si, ui).
Thus, the joint conditional entropy is evaluated as:

H(C, T |S, U) = −
∑

C,T

p(C, T |S, U) log p(C, T |S, U)

= −
∑

i

(
∑

a,ti

p(ci = a, ti|si, ui) log p(ci = a, ti|si, ui)) =
∑

i

H(ci, ti|si, ui),

where the entropy H(ci, ti|si, ui) is given as:

H(ci, ti|si, ui)=−
∑

a

P (ci =a) log p(ci =a)−
∑

a,ti

P (ci =a)pa(ti|si, ui) log pa(ti|si, ui).
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Since the pixel classifications remain constant while estimating the bias field,
the body force is evaluated which minimizes H(C, T |S, U), i.e.,

min
T

H(C, T |S, U) = min
T

∑

i

H(ci, ti|si, ui) = min
T

∑

a

Ha(t|s, u)
∑

i P (ci = a)
N

.

To evaluate the entropy functions Ha(t|s, u), the probability density functions
pa(t|s, u) are estimated using the Gaussian kernel based Parzen window estimate
[13], i.e.,

pa(t|s, u) =
1∑

i P (ci = a)

N∑

i

P (ci = a)
1

σa

√
2π

exp[−1
2

(t − ti)2

σ2
a

],

where t = s − u and ti = si − ui. For heuristic computation of the entropy
Ha(t|s, u), consider two samples of pixels (ti, tj), ∀i, j selected at randomly from
the current estimated image. The entropy terms, Ha(t|s, u), are evaluated as:

Ha(t|s, u) = ln(σa

√
2π

∑

i

Pi(a)) −
∑

j Pj(a)
{

ln
∑N

i=1 Pi(a) exp[− 1
2

(tj−ti)
2

σ2
a

]
}

∑M
j=1 Pj(a)

.

To evaluate minT Ha(t|s, u), we will evaluate variation in Ha(t|s, u) for small
change in the bias field. Let, ∆−→u (−→x , t) denote the small variation in the bias
field at a pixel location −→x at time t. Also, let h = max−→x ‖∆−→u (−→x , t)‖, be the
maximum variation in the bias field over all pixel locations. Then the variation
in the entropy for small change in the bias field is evaluated as follows:

dHa(t|s, u)
d−→u (−→x , t)

= lth→0

{
Ha(t|s, u + ∆u) − Ha(t|s, u)

h

}

=
1

σ2
a

∑M
j=1 Pj(a)

∑

j

Pj(a)

{
N∑

i=1

Wa(i, j)(tj − ti)
∂

∂h
(tj − ti)

}
,

where, Wa(i, j) =
Pi(a) exp(−1

2 ( tj(h)−ti(h)
σa

)2)
∑

k Pk(a) exp(−1
2 ( tj(h)−tk(h)

σa
)2)

.

To evaluate ∂
∂h (tj − ti), consider a second set of samples (t′i, t

′
j)∀i, j selected at

random from the estimated image with the small variation ∆−→u (−→x , t) in the bias
field. Let dj = ± denote increase or decrease in the pixel intensity at the pixel j in
the template image and let di = ± be the increase or decrease at the pixel i. Also,
let the image gradient at the pixel j be denoted as ∇Tj = ( ∂tj

∂x(1)
∂tj

∂x(2)
∂tj

∂x(3) )T .

Then the partial derivatives ∂tj

∂h are defined as ∂tj

∂h = lth→0

(
t′
j−tj

h

)
= ‖∇Tj‖dj ,

which is the magnitude of the gradient in the deformed template image multiplied
with the direction of bias field variation at the voxel j. Similarly, the partial
derivative ∂ti

∂h is evaluated as ∂ti

∂h = ‖∇Ti‖di.
Let sij be the sign which between di and dj , i.e., di = sijdj . Thus, using these,
we have ∂

∂h (tj − ti) = ∂tj

∂h − ∂ti

∂h = (‖∇Tj‖ − sij‖∇Ti‖) dj .
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(a) (b) (c) (d) (e)

Fig. 1. Synthetic data with simulated bias field. (a) Original MRI. (b) Nonuniformity
corrected. (c) Segmentation of (a). (d) Segmentation of (b). (e) Estimated bias field.

(a) (b) (c) (d) (e)

Fig. 2. Real subject 2D MR image. (a) Original MRI. (b) Nonuniformity corrected.
(c) Segmentation of (a). (d) Segmentation of (b). (e) Estimated bias field.

Hence, the partial derivative of the marginal entropy can be written as:

dHa(t|s, u)
dh

=
1∑

j Pj(a)

∑

j

Pj(a)

{
1
σ2

a

∑

i

Wa(i, j)(tj − ti) (‖∇Tj‖ − sij‖∇Ti‖)

}

︸ ︷︷ ︸
bj(a)

dj .

Thus, we use the body force at the j pixel due to the class a is given as

bj(a) = Pj(a)

{
1
σ2

a

∑

i

Wa(i, j)(tj − ti) (‖∇Tj‖ − sij‖∇Ti‖)

}
.

And the total body force at the pixel j is then given by the sum, bj =
∑

a
Pi(a)

N bj(a).

3 Results

In this section we present results of our intensity nonuniformity correction algo-
rithm using both real and synthetic 2D and 3D MR image data.

Fig. 1 (a), shows a synthetic image with added known bias field. This syn-
thetic image is obtained by first manually segmenting a 2D MR image into gray
and white matter and then adding an off–center parabolic bias field. In this syn-
thetic image, the gray matter pixel intensities vary from 38 to 58 and the white
matter intensities vary from 46 to 57. Thus, there is a substantial overlap of pixel
intensities. Fig. 1 (b) shows the image nonuniformity corrected image obtained
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using our proposed algorithm. In this image, the gray matter pixel intensity vari-
ation is from 46 to 58 and the white matter pixel intensity variation is from 56
to 67. Hence, in the corrected image, the variation of the pixel intensities within
a class is reduced, the intensity overlap of the two classes is greatly reduced.

Fig. 1 (c) and (d) show the EM based segmentation of the images in Fig. 1
(a) and (b) respectively. Note that the segmentation is greatly improved after
correcting for intensity nonuniformities. Numerically, for the image in Fig. 1
(c), the mis–classification rates of the EM algorithm are 24% and 12% for the
gray matter and the white matter respectively. However, after correction, for the
image in Fig. 1 (d), the mis–classification rates are 0% and 0.05% for the gray
and white matter respectively.

(a) (b) (c) (d) (e)

Fig. 3. Real subject 3D MRI. (1) Original MRI. (b) Nonuniformity corrected. (c) es-
timated segmentation of (a). (d) Estimated segmentation of (b). (e) Estimated bias
field.

Fig. 2 (a) shows a real subject 2D MR image with nonuniformities. The
image corrected for the nonuniformities using our algorithm is shown in Fig. 2
(b). Note that the corrected image has much better gray matter to white matter
contrast. The estimated bias field is shown in Fig. 2 (e). Fig. 2 (c) and (d) show
the EM based segmentation of the images in Fig. 2 (a) and (b) respectively.

Fig. 3 (a) shows three orthogonal views of a real subject 3D MR of a subject.
Image obtained after correcting for intensity nonuniformities is shown in Fig. 3
(b). Fig. 3 (c) and (d) show the EM based segmentation of the images in Fig. 3
(a) and (b) respectively.

These results show that the nonuniformities in the pixel intensities can be
corrected by minimizing overall entropy of the image. Also, our proposed method
is robust and automated as there are no weighing parameters to be set. The esti-
mated segmentation of the final intensity corrected image shows nonuniformity
correction can lead to better post–processing of the acquired images. Also, since
no underlying model of the deformation field is being assumed, the method can
be used to correct any smooth bias field.
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4 Discussion

We present a mathematical framework for correcting intensity nonuniformities
where the bias field is modeled as a thin plate deforming elastically under a body
force. The body force at each pixel is evaluated such that the overall entropy
of the estimated image is reduced. The elastic deformations of the intensities is
modeled using the partial differential equation (PDE), which is solved using the
successive over relaxation (SOR) method.

Modeling the bias field as elastic deformations has the following advantages.
First, it ensures that the estimated image is close to the original image. This is
due to the fact that in the linear elastic model, the restoration forces are propor-
tional to the amount of deformation. Second, the smoothness of the estimated
bias field is ensured by the PDE modeling the elastic model. Third, the model
is free of weighing parameters.

References

[1] Ahmed, M., Yamany, S., Mohamed, N., and Farag, A. (1999). A modified fuzzy C-
means algorithm for MRI bias field estimation and adaptive segmentation. MIC-
CAI, pages 72–81.

[2] Arnold, J., Liow, J., Schaper, K., Stern, J., Sled, J., Shattuck, D., Worth, A.,
Cohen, M., Leahy, R., Mazziotta, J., and Rottenberg, D. (2001). Qualitative and
quantitative evaluation of six algorithms for correcting intensity nonuniformity
effects. NeuroImage, 13:931–943.

[3] Cohen, M., DuBois, R., and Zeineh, M. (2000). Rapid and effective correction
of RF inhomogeneity for high field magnetic resonance imaging. Human Brain
Mapping, 10:204–211.

[4] Davatzikos, C. et al. (1996). A computerized method for morphological analysis
of the corpus callosum. J. Comp. Assis. Tomo., 20:88–97.

[5] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via EM algorithm. J. Royal Statistical Soc., Ser. B, 39:1–38.

[6] Mangin, J. (2000). Entropy minimization for automatic correction of intensity
nonuniformity. IEEE Workshop on Math. Methods in Bio. Image Analysis (MM-
BIA), pages 162–169.

[7] McVeigh, E., Bronskill, M., and Henkelman, R. (1986). Phase and sensitivity of
receiver coils in magnetic resonance imaging. Med. Phys., 13:806–814.

[8] Papoulis, A. (1991). Probability, Random Variable, and Stochastic Processes.
McGraw–Hill, Inc., 3 edition.

[9] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992).
Numerical Recipes in C. The Art of Scientific Computing. Cambridge University
Press.

[10] Prima, S., Ayache, N., Barrick, T., and Roberts, N. (2001). Maximum likelihood
estimation of the bias field in mr brain images: Investigating different modelings
of the imaging process. Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI’01), LNCS 2208:811–819.

[11] Simmons, A., Tofts, P., Barker, G., and Arridge, S. (1994). Sources of intensity
nonuniformity in spin echo images. Magn. Reson. Med., 32:121–128.



86 R. Bansal, L.H. Staib, and B.S. Peterson

[12] Sled, G., Zijdenbos, A., and Evans, A. (1998). A nonparametric method for
automatic correction of intensity nonuniformity in MRI data. IEEE Trans. of
Medical Imaging, 17(1):87–97.

[13] Viola, P. and Wells, W. M. (1995). Alignment by maximization of mutual infor-
mation. Fifth Int. Conf. on Computer Vision, pages 16–23.

[14] Wells, W., Grimson, W., and Kikinis, R. (1996). Adaptive segmentation of MRI
data. IEEE Trans. on Medical Imaging, 15(4):429–442.


	Introduction
	Methods
	EM Based Segmentation
	The Body Force

	Results
	Discussion



