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Abstract. A new hybrid of feature-based and intensity-based registra-
tion is presented. The algorithm reflects a new understanding of the
role of alignment error in the generation of registration constraints. This
leads to an iterative process where distinctive image locations from the
moving image are matched against the intensity structure of the fixed
image. The search range of this matching process is controlled by both
the uncertainty in the current transformation estimate and the proper-
ties of the image locations to be matched. The resulting hybrid algorithm
is applied to retinal image registration by incorporating it as the main
estimation engine within our recently published Dual-Bootstrap ICP al-
gorithm. The hybrid algorithm is used to align serial and 4d CT images
of the lung using a B-spline based deformation model.

1 Introduction

Feature-based and intensity-based registration algorithms differ considerably in
the image-based features that drive the alignment process [4]. Intensity-based
techniques use all image pixels and do not require explicit feature extraction.
They tend to be more stable around minima of the objective function because
they don’t rely on uncertain feature locations or on correspondences which may
fluctuate with slight changes in the transformation. On the other hand, feature-
based techniques tend to be faster, have a wider capture range, and allow align-
ment to be focused on only selected subsets of the image data. These strengths
and weaknesses are studied experimentally in [9].

A growing set of papers has begun to address the issue of combining feature-
based and intensity-based registration. As examples, in [5] registration is driven
both by intensity similarity error and by errors in the positions of matched
features. In Feldmar et al. [7] intensity is treated as a 4th dimension for ICP
matching, while Sharp et al. [13] combines ICP with invariant features. In a much
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different approach, Aylward et al. [1] locate tubular structures in one image and
then align images using gradient-descent of a “tubularness” measure evaluated
at the transformed locations of these structures in the other image. Ourselin, et
al. [10] use block-matching of intensities together with robust regression. Shum
and Szeliski [15] use block matching of intensities to refine video mosaics. The
PASHA algorithm [4] combines correspondence and deformation processes in a
global objective function. In the HAMMER algorithm [14] registration is driven
by the alignment of feature positions based on a hierarchical description of the
surrounding intensity distribution.

This paper presents a new hybrid of intensity-based and feature-based regis-
tration and applies the resulting algorithm in two contexts: aligning low-overlap
retina images and spline-based alignment of lung CT volumes. Feature points
found in the moving image are matched against the intensity structure of the
fixed image. Importantly, the search range for the match is dictated by both
the properties of the feature and the uncertainty in the current transforma-
tion estimate. This differs from common intensity-based techniques where con-
straints are driven by local changes in the similarity measure. It also differs from
correspondence-based methods like ICP [2] where matching is purely a nearest-
point search.

This core algorithm is built into two different overall registration algorithms.
The first is an extension of our recent Dual-Bootstrap ICP [17] algorithm for
aligning retinal images. Replacing the feature-to-feature ICP algorithm with
the new feature-to-intensity similarity matching increases the effectiveness for
extremely different cases. The second overall algorithm is a new technique for
non-rigid, B-spline alignment of lung CT volumes. Small regions with sufficient
intensity variation in the moving image are matched against the fixed image.
These matches control the estimate of hierarchical B-spline deformations. The
algorithm is applied to effectively align serial CT volumes.

2 The Role of Uncertainty in Registration

We motivate the new hybrid algorithm by considering the importance of un-
certainty in registration. Let S(p,q) measure the region-based similarity error
between moving image Im at location p and fixed (target) image If at location
q. Let T (p; θ) be the transformation mapping p from Im onto If based on the
(to be estimated) parameter vector θ. Finally, let P be a set of locations in Im

where transformation constraints are applied.
Intensity-based algorithms search for the transformation minimizing the ag-

gregate similarity error:

E(θ) =
∑

pi∈P
S(pi, T (pi,θ)), (1)

Regularizing constraints may be placed on θ, but we will ignore these for now.
E(θ) is most frequently minimized through a gradient-descent technique [8].
The estimate, θ̂, remains uncertain throughout the minimization process. This
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Fig. 1. Two examples of a one-dimensional cross-section of the similarity error function
surface surrounding a transformed point p′. The interval over which the function is
plotted is the uncertainty region. The arrow shows the direction of gradient descent
based on the point. The location q is the minimum of the similarity error function
within the search region. In (a) the gradient descent direction is in the direction of the
minimum, whereas in (b) the direction is away from the minimum.

in turn causes uncertainty in the location T (pi, θ̂). We investigate the effect of
this on the constraints used in registration.

Suppose we have a measure of the uncertainty on p′
i = T (pi, θ̂) and this

can roughly be described in terms of a standard deviation σ. Consider a region
of width ±cσ around p′

i in If . If the uncertainty model is reasonably accurate,
this region will likely contain the true homologous point in image If to pi. Call
this point qi. Moreover, if the similarity error function is correct, this point will
also minimize S(pi,q) for all q within this uncertainty region. If the gradient
direction ∇S(pi,q) evaluated at p′

i points in the direction of qi, then the gra-
dient descent direction computed for point i is consistent with the direction the
estimate needs to move (based on the local constraints). This happens when the
search region is convex, as illustrated in Figure 1(a). On the other hand, if the
gradient points away from qi then the constraint will pull the transformation
estimate in the wrong direction (Figure 1(b)). This is likely to happen when the
uncertainty region is large. When it happens at enough points, registration will
descend into an incorrect local minimum. This problem can occur no matter at
what resolution the images are represented. A similar problem occurs in ICP-like
matching when the uncertainty region contains multiple points and the closer
point drives registration in the wrong direction.

3 Iterative Most Similar Point (IMSP)

The natural alternative to gradient-based minimization is to search for the most
similar location, qi, surrounding p′

i. This leads to a conceptually straightforward
registration algorithm: iteratively match the feature points by minimizing the
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similarity error and estimate the transformation based on the matches. The
trick (and primary novelty) is using uncertainty to dictate the search region for
minimizing the error. A summary outline of this “IMSP” procedure is presented
below, followed by a sketch of important details:

1. Given are initial transformation estimate θ̂0, moving image Im, fixed image
If , and feature point set P from Im.

2. Initialize t = 1.
3. For each pi ∈ P,

a) Use the properties of pi and the uncertainty in the current estimate to
determine a search region N(p′

i) surrounding p′
i = T (p, θ̂t−1) in If .

b) Find the location qi that minimizes S(pi,q) over N(p′
i). Gather these

image location pairs (pi,qi) into a set of correspondences Ct.
4. Estimate the new parameter set:

θ̂t = argmin
θ

∑

(pi,qi)∈Ct

wiD(T (pi,θ),qi)2 (2)

Here D(·, ·) is an alignment error function, and wi is a robust weight.
5. Compute the alignment error variance, σ2

t , and the covariance of θ̂t.
6. t = t + 1
7. Repeat steps 3-6 until convergence.

3.1 Feature Points

Feature points may be extracted from Im to form P in several ways. When
aligning retinal fundus images, these are automatically-detected centerline points
along the retinal vessels [6]. In the lung CT application, the volume is divided
into small regions, and the gradient structure of each region is analyzed (eigen
analysis) to determine if it is “landmark-like” (significant variation of intensity
in all directions) “vessel-like” (significant variation in two directions), “face-like”
(significant variation in one direction), or homogeneous. Matching of the feature
points is restricted to the directions along which their intensity structure varies.
For example, the search for a match for a face-like feature is only along the normal
to the face after it has been (approximately) transformed into If based on the
current transformation estimate. Alignment error constraints, D(T (pi,θ),qi),
are defined in the same way.

3.2 Uncertainties and Search Regions

The key to the new algorithm is calculating the uncertainty and the resulting
search region, N(p′

i). The first issue is estimating the standard deviation of
the alignment error, a difficult problem in robust estimation. We have found
that a similarity-weighted average of the squared alignment errors (step 5 of the
algorithm) is more effective than the usual robust estimation based on geometric
distances. Intuitively, the reason is that the covariance-driven search already
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eliminates the possibility of gross outliers, making the similarity score a much
better indication of match correctness. The weight for a correspondence1 is

wi =
S′′(pi,qi)

1 + S(pi,qi)
.

This favors matches with lower overall similarity error and sharper local minima
of the error. The similarity error used throughout the paper is normalized SSD.
The scale estimate is σ2

t =
∑

wiD(T (pi,θ),qi)2 /
∑

wi. For the first iteration
of matching a prior estimate σ0 must be used .

Once we have the scale there are two ways to use it in defining the search
region. The first is to define an isotropic volume of radius cσ around each trans-
formed feature location, p′

i, in If . The second is based on computing the co-
variance matrix Σθ of the transformation parameters at each stage of the algo-
rithm (see below). If we compute the Jacobian, J, of the transformation function
T (pi,θ) with respect to point location pi, then standard covariance propaga-
tion techniques show that the covariance matrix of p′

i, the mapped point, is
approximately JΣθJT . This covariance matrix defines a search volume (error
ellipsoid) surrounding p′

i (in fact, the first way to define the search area ap-
proximates the covariance matrix as σ2I). Using either method, the final search
region for each feature is then along the feature’s search direction (mapped by
the transformation estimation, as above) within this volume.

3.3 Robust Parameter Estimation

Parameter estimation in each iteration is based on weighted least-squares using
the similarity weights above. Levenberg-Marquardt techniques are needed for
estimating the spline parameters. The covariance matrix of the transformation
parameters can be estimated approximately [11, Ch. 15] as Σθ = σ2

t H
−1(θ̂t),

where H(θ̂t) is the Hessian matrix, evaluated at the parameter estimate. This
explicit calculation is not practical for 3D B-spline deformation models. In on-
going work we are developing approximations.

4 Retinal Image Registration

The first application of the new IMSP algorithm is to use it in place of ICP
within our Dual-Bootstrap ICP (DB-ICP) algorithm for retinal image registra-
tion [17]. DB-ICP generates a series of low-order initial transformation estimates
based on automatic matching of small image regions. It then tests each initial
transformation and associated region separately to see if it can be “grown” into
an accurate, image-wide quadratic transformation (12 parameters). The growth
process iteratively: (1) refines the transformation estimate, (2) expands the re-
gion, and (3) tests to see if a higher-order transformation model can be used,
with steps (2) and (3) controlled by Σθ. IMSP can be used in place of ICP in
1 See [16] for a different form of covariance-based weighting.
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Fig. 2. An example retinal image alignment where DB-ICP failed but DB-IMSP suc-
ceeded. The small overlap region between the images contains little variation in the
vessel contour directions, leading to instability in the feature-to-feature alignment but
not in feature-to-intensity alignment.

step (1), matching vascular centerline points from the moving image against the
intensities of the fixed image using normal distance constraints.

Although DB-ICP is extremely successful (100% success on image pairs that
overlap by at least 35% and have at least a minima set of features), DB-IMSP
is better. From our large data set we pulled 81 difficult image pairs having low
image overlaps and poor contrast. DB-ICP aligned only 33% of these pairs (to
a required average alignment error of less than 1.5 pixels on 1024x1024 images),
whereas DB-IMSP aligned 86%. By not relying on consistency between extracted
features in the two images, it was able to generate more constraints. An example
is shown in Figure 2.

5 Spline-Based Lung CT Volume Registration

The second application of IMSP is in B-spline alignment [12] of lung CT volumes.
As discussed above, feature set P is determined by analyzing the distribution of
intensity gradients in regularly-spaced blocks in each image. In each iteration, the
neighborhood search volume is isotropic, with radius cσt; due to the large number
of transformation parameters, the covariance matrix is not explicitly computed.
The algorithm proceeds in a coarse-to-fine manner, starting at 64x64 (within
each slice) and ending at 256x256. The uniform B-splines are also estimated
in a hierarchical fashion, with a knot spacing of 360 millimeters at the 64x64
resolution and 90 millimeters at the 256x256 resolution. For each combination of
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Fig. 3. Example registration results using IMSP and a B-spline deformation on serial
lung CT images. The left shows checkerboard results (alternating blocks from the two
images) in a single slice following alignment. The right shows the affine alignment using
the final IMSP correspondences from B-spline registration.

resolution and B-spline knot spacing, the algorithm proceeds as described above.
The correspondence constraints are powerful enough, at least in this application,
that no additional smoothness constraints must be placed on the B-spline.

In preliminary studies, this algorithm has been applied to align the individual
volumes in a 4d CT sequence and serial, intra-patient 3d CT volumes taken 2 to
6 months apart. The 4d CT alignment was accurate to significantly less than a
voxel. In the serial alignment problem, using images taken with GE Lightspeed
16 and GE Lightspeed Ultra scanners, the deformations were quite large. The
final alignment error for 3 different patients (4 alignments — one patient had 3
volumes) we’ve studied averaged approximately 1.5mm as compared to an affine
alignment error of 11.7mm (using the final B-spline correspondences). Therefore,
unlike rigid registration [3], the deformable results are approaching the accuracy
needed for serial CAD studies. An example side-by-side comparison of the B-
spline results and the affine alignment for a single slice is shown in Figure 3.

6 Discussion and Conclusions

The results on retinal and lung CT registration show the promise of the new
IMSP algorithm. The computation and use of uncertainty effectively controls
the search range for feature-to-intensity matching. The algorithm produces ac-
curate matches while relying less on consistency between feature locations in
the two images. The results raise several interesting issues for on-going work.
First is an effective combination of ICP-style feature-to-feature correspondences
and IMSP-style feature-to-intensity correspondences to improve both reliability
and efficiency. Second is using IMSP constraints to build a variable resolution
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B-spline model, introducing higher resolutions where the deformations are more
substantial and the constraint set richer. Third is using the resulting algorithm
for serial registration of lung CT volumes in computer-aided diagnosis.
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